CS618

Domain-Driven
Design

CS 618
Feb 21, 2012
Bill Kidwell

EEIN

Tackling Complexity in Ihe Heart of thware
-

Domain-Driven
Design Quickly

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software by Eric Evans :

ENEIEVARRR: Sl Y OAR

KENTUCKY"
seeblue.

Domain-Driven Design

* Software models some aspect of the real world

* We build design models to understand what we
are building, and how we will build it

* Symmetry between our software, design model,
and the real world allow us to adjust to changes in
the real world

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

KENT UCKY
seeblue.

Ubiquitous Language

* A common language between the domain experts
and the developers

* The Domain model should be based heavily on the
Ubiquitous Language
® Discussion Point:

e How does common language help with technical
decisions? Examples?

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

KENT UCKY”
seeblue.

CS618

UL ties the models together

Software Model 1
Code ‘ -

openbue] snounbidn

Domain-Driven Design: Tackling Complexity in the Heart of
Software '

by Eric Evans

KENT UCKY
seeblue.

Model-Driven Design

* Tie the Implementation to the Model
* Provide tools that make this efficient
e E.g. round trip reverse engineering tools

* Developers and Modelers are tightly coupled with this
approach

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

CS618

Navigation Map

access with REPOSITORIES

access with

/ ~maintain integrity with /
express model with

—

express model with

express model with

MODEL-DRIVEN
DESIGN

encapsulate with encapsulate with

o

isolate domain with

X Y

mutually exclusive

LAYERED encapsulate with

ARCHITECTURE

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Evans’ Layers (lsolating the Domain)

USQI‘ Interface * A k.a. Presentation Layer

* Show Information

Layer * Interpret commands

Appllcatlon * Thin layer, sirects Ul commands to jobs in the Domain Layer

+ Should not contain Business Rules or Knowledge
Layer * No business “state”, may have progress “state”

* Business objects, their rules, and their state
* The majority of the book focuses here

Domain Layer

Infra Structure * Generic technical capabilities to support the higher layers

* Message sending, persistence
Layel‘ * Supports the interactions between topmost patterns

Domain-Driven Design. Tackling Complexity in the Heart of UK
Software by Eric Evans 3

MNP R ST TY OF

KENTUCKY"
seeblue.

CS618

Entities

* Have an identity
e Not the address of the object
e What is the identity?

« Consider two person objects, same name, same date of birth —
separate identities

« We often generate an identifier
« Account Number

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Value Objects

* Not all objects are entities!

e We can't justify the overhead of creating and tracking
identities for all objects

* It is recommended that value objects be immutable
* Examples of possible Value objects

e Money/Currency class

e Point class in a drawing application
e Address class ?

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Services

* Some aspects of the domain don’t map easily to objects

* A Service is some behavior, that is important to the
domain, but does not “belong” to an Entity or Value
object

* Example: Account Transfer

* Encapsulate an important domain concept
e NOTE: Not just for technical infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Characteristics of Services

1. The operation performed by the Service refers to a
domain concept which does not naturally belong to
an Entity or Value Object.

>. The operation performed refers to other objects in
the domain.

3. The operation is stateless.

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Aggregates

* A group of associated objects which are considered as a
unit with regard to data changes

* An aggregate should have one root
* The root is an entity object

* Qutside objects can reference root, but not the other
members of the aggregate

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

CS618

Aggregate Root Example

A Ay olppcT Cltnacy By ACGEEGA T
) e : Boeclary mary refeencs M roof, Car,
Engine o quabry Poe databass for £ by 1D

A et lonk s

Whaeel - : - Customer
4 Car

Position Tire - X

A object oulssde Mo LGGAEGATE
bordary may nof hold & refenance (o
. Tire tecausse Tirg o @

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software by Eric Evans :

MNP R ST TY OF

KENTUCKY"
seeblue.

PO Example (from Evans)

Purchase Qrder
approved limit

{ sum of ltem amounts <=
PO approved limit }

WO+
Part Purchase Order Line ltem
price quantity

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEI’/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

PO Example (cont’d)

* Parts are used in many Pos (high contention)
* Fewer changes to parts than Pos

* Changes to part prices do not necessarily propagate to
existing POs

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

PO Example (cont’d)

Domain-Driven Design: Tackling Complexity in the Heart of

Software

Purchase Order

approved limit

Part

WO+

{ sum of Item amounts ==
PO approved limit }

price

Purchase Order Line ltem

by Eric Evans

quantity
price

UK

MNP R ST TY OF

KENTUCKY
seeblue.

Factories

* Encapsulate the information necessary for object
creation

e Includes logic for all creating all the members of an
aggregate

e Allows us to enforce invariants during creation

e Related GoF Design Patterns
 Factory Method, Abstract Factory

e Designing the Factory Interface
« Each operation must be atomic
» The Factory will be coupled to its arguments

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Repositories

* Encapsulates logic to obtain object references
* Provides a mechanism to persist/retrieve an object
» Keeps persistence code out of the domain layer

» Repository interface should be driven by the domain
model

* Repository implementation will be closely linked to
the infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEf/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

Repositories

findCustomer(“C0123")

CustomerRepository

| » | findCustomer(string id)
Client C0123 addCustomer(Customer)

find or reconstitute

Customer C0123

customerlD = “C0123"
name = “Name”
address = Address

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software byEI’/CEVaHS UNIVEROSITY or

KENTUCKY"
seeblue.

CS618

Criteria criteria = new Criteria();
criteria.equal(TradeOrder.SECURITY, "WCOM");
criteria.equal(TradeOrder. ACCOUNT, "123");

Repository
(Specification
based query)

collection of
TradeCrders

locate and
reconstitute

1456 : TradeOrder
trackingid = t456
brokerageAccountld = 123
type = BuyOrder
security = "WCOM"
numberofShares = 500

1678 : TradeOrder t567 : TradeQrder
trackingid = t678 trackingid = t567
brokerageAccountld = 123 brokerageAccountld = 123
type = BuyOrder type = SellOrder
security = "WCOM" security = "WCOM"
numberofShares = 300 numberofShares = 250

Domain-Driven Design: Tackling Complexity in the Heart of UK
Software by Eric Evans ey

MNP R ST TY OF

KENTUCKY"
seeblue.

CS618

Building Complex Specifications

ccimtarfaces>
I5 pecification
+indil)
+Issatistiediy () (]
et} i |CompositeSpecification
+0ri) i
_[+&nd(] <}
H::--[EE-H:IE--'L-I-:IE;'II
+MNati]
+0r (]
Andspecification OrSpecification Ands pecification
slne: ISpecification sne: ISpecification sranngd: [Soecification
sither: JScecificatiion s0ther: I€gpecification +hatSpecificataond)
shndSpecatrcation]) sOrspecafrcation]) sIsSatysfiedBy ()
sIsSatisfiedBy (] sIsSatisfiedBy (]

Domain-Driven Design: Tackling Complexity in the Heart of UK

ENEIEVARRR: Sl Y OAR

Software by Eric Evans
KENTUCKY"

seeblue.

