
Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Domain-Driven
Design

CS 618

Feb 21, 2012

Bill Kidwell

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Domain-Driven Design
 Software models some aspect of the real world

We build design models to understand what we
are building, and how we will build it

 Symmetry between our software, design model,
and the real world allow us to adjust to changes in
the real world

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Ubiquitous Language
 A common language between the domain experts

and the developers

 The Domain model should be based heavily on the
Ubiquitous Language

 Discussion Point:

 How does common language help with technical
decisions? Examples?

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

UL ties the models together

Target Domain

Software Model

Code

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Model-Driven Design
 Tie the Implementation to the Model

 Provide tools that make this efficient

 E.g. round trip reverse engineering tools

 Developers and Modelers are tightly coupled with this
approach

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Navigation Map

encapsulate with

MODEL-DRIVEN

DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJECTS

LAYERED

ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive

choices

access with

maintain integrity with

access with
SERVICES

express model with

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Evans’ Layers (Isolating the Domain)
• A.k.a. Presentation Layer

• Show Information

• Interpret commands

User Interface
Layer

• Thin layer, sirects UI commands to jobs in the Domain Layer

• Should not contain Business Rules or Knowledge

• No business “state”, may have progress “state”

Application
Layer

• Business objects, their rules, and their state

• The majority of the book focuses here Domain Layer

• Generic technical capabilities to support the higher layers

• Message sending, persistence

• Supports the interactions between topmost patterns

Infrastructure
Layer

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Entities
 Have an identity

 Not the address of the object

 What is the identity?

 Consider two person objects, same name, same date of birth –
separate identities

 We often generate an identifier

 Account Number

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Value Objects
 Not all objects are entities!

 We can’t justify the overhead of creating and tracking
identities for all objects

 It is recommended that value objects be immutable

 Examples of possible Value objects

 Money/Currency class

 Point class in a drawing application

 Address class ?

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Services
 Some aspects of the domain don’t map easily to objects

 A Service is some behavior, that is important to the
domain, but does not “belong” to an Entity or Value
object

 Example: Account Transfer

 Encapsulate an important domain concept

 NOTE: Not just for technical infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Characteristics of Services
1. The operation performed by the Service refers to a

domain concept which does not naturally belong to
an Entity or Value Object.

2. The operation performed refers to other objects in
the domain.

3. The operation is stateless.

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Aggregates
 A group of associated objects which are considered as a

unit with regard to data changes

 An aggregate should have one root

 The root is an entity object

 Outside objects can reference root, but not the other
members of the aggregate

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Aggregate Root Example

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (from Evans)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (cont’d)
 Parts are used in many Pos (high contention)

 Fewer changes to parts than Pos

 Changes to part prices do not necessarily propagate to
existing POs

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (cont’d)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Factories
 Encapsulate the information necessary for object

creation
 Includes logic for all creating all the members of an

aggregate

 Allows us to enforce invariants during creation

 Related GoF Design Patterns
 Factory Method, Abstract Factory

 Designing the Factory Interface
 Each operation must be atomic

 The Factory will be coupled to its arguments

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repositories
 Encapsulates logic to obtain object references

 Provides a mechanism to persist/retrieve an object

 Keeps persistence code out of the domain layer

 Repository interface should be driven by the domain
model

 Repository implementation will be closely linked to
the infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repositories

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repository
(Specification
based query)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Building Complex Specifications

