
Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Domain-Driven
Design

CS 618

Feb 21, 2012

Bill Kidwell

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Domain-Driven Design
 Software models some aspect of the real world

We build design models to understand what we
are building, and how we will build it

 Symmetry between our software, design model,
and the real world allow us to adjust to changes in
the real world

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Ubiquitous Language
 A common language between the domain experts

and the developers

 The Domain model should be based heavily on the
Ubiquitous Language

 Discussion Point:

 How does common language help with technical
decisions? Examples?

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

UL ties the models together

Target Domain

Software Model

Code

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Model-Driven Design
 Tie the Implementation to the Model

 Provide tools that make this efficient

 E.g. round trip reverse engineering tools

 Developers and Modelers are tightly coupled with this
approach

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Navigation Map

encapsulate with

MODEL-DRIVEN

DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJECTS

LAYERED

ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive

choices

access with

maintain integrity with

access with
SERVICES

express model with

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Evans’ Layers (Isolating the Domain)
• A.k.a. Presentation Layer

• Show Information

• Interpret commands

User Interface
Layer

• Thin layer, sirects UI commands to jobs in the Domain Layer

• Should not contain Business Rules or Knowledge

• No business “state”, may have progress “state”

Application
Layer

• Business objects, their rules, and their state

• The majority of the book focuses here Domain Layer

• Generic technical capabilities to support the higher layers

• Message sending, persistence

• Supports the interactions between topmost patterns

Infrastructure
Layer

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Entities
 Have an identity

 Not the address of the object

 What is the identity?

 Consider two person objects, same name, same date of birth –
separate identities

 We often generate an identifier

 Account Number

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Value Objects
 Not all objects are entities!

 We can’t justify the overhead of creating and tracking
identities for all objects

 It is recommended that value objects be immutable

 Examples of possible Value objects

 Money/Currency class

 Point class in a drawing application

 Address class ?

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Services
 Some aspects of the domain don’t map easily to objects

 A Service is some behavior, that is important to the
domain, but does not “belong” to an Entity or Value
object

 Example: Account Transfer

 Encapsulate an important domain concept

 NOTE: Not just for technical infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Characteristics of Services
1. The operation performed by the Service refers to a

domain concept which does not naturally belong to
an Entity or Value Object.

2. The operation performed refers to other objects in
the domain.

3. The operation is stateless.

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Aggregates
 A group of associated objects which are considered as a

unit with regard to data changes

 An aggregate should have one root

 The root is an entity object

 Outside objects can reference root, but not the other
members of the aggregate

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Aggregate Root Example

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (from Evans)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (cont’d)
 Parts are used in many Pos (high contention)

 Fewer changes to parts than Pos

 Changes to part prices do not necessarily propagate to
existing POs

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

PO Example (cont’d)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Factories
 Encapsulate the information necessary for object

creation
 Includes logic for all creating all the members of an

aggregate

 Allows us to enforce invariants during creation

 Related GoF Design Patterns
 Factory Method, Abstract Factory

 Designing the Factory Interface
 Each operation must be atomic

 The Factory will be coupled to its arguments

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repositories
 Encapsulates logic to obtain object references

 Provides a mechanism to persist/retrieve an object

 Keeps persistence code out of the domain layer

 Repository interface should be driven by the domain
model

 Repository implementation will be closely linked to
the infrastructure

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repositories

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repository
(Specification
based query)

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Building Complex Specifications

