
Automating Requirements Traceability: Two
Decades of Learning from KDD

Alex Dekhtyar
Department of Computer Science and Software Engineering

Cal Poly, San Luis Obispo
dekhtyar@calpoly.edu

Jane Huffman Hayes
Department of Computer Science

University of Kentucky
hayes@cs.uky.edu

Abstract—This paper summarizes our experience with using
Knowledge Discovery in Data (KDD) methodology for automated
requirements tracing, and discusses our insights.

Index Terms—requirements tracing, traceability, knowledge
discovery from data, information retrieval

I. INTRODUCTION

Next year will mark the 20th anniversary of the pioneering
work of Antoniol et al. on automating the requirements tracing
process [1]. This work was followed closely by Marcus and
Maletic [18] and Hayes, Dekhtyar, and Sundaram [15]. As a
result, the idea of bringing techniques from the Information
Retrieval, and later the Machine Learning, communities1 to
automate requirements tracing has found wide spread accep-
tance in the Requirements Engineering community, and has
yielded a variety of important developments in the past 18
years [17, 5].

In this paper we summarize the experiences of using Knowl-
edge Discovery in Data (KDD) techniques for automating
requirements tracing, and share our thoughts on the benefits
we reaped and the challenges we faced.

II. USING KDD TECHNIQUES FOR AUTOMATED
REQUIREMENTS TRACING

The requirements tracing problem [13] can be formulated
as follows: given a collection of software requirements and
another artifact of the software engineering process (design
document, code, use cases, test cases, bug reports, etc. . . ):
find, for each requirement, individual elements in the other
artifact that relate to it.

Tracing, “the activity of either establishing or using traces”
[7], is the solution to providing information about the relation-
ships between different artifacts of the software development
lifecycle. Such information contributes to (Independent) Vali-
dation & Verification of mission- and safety-critical systems,
supports change impact analysis, criticality analysis, regression
testing, and other important activities.

In this paper, we understand the term trace as “the act
of following a trace link from a source artifact to a target
artifact (primary trace link direction) or vice-versa (reverse

1In this paper we use the term ”KDD”=”Knowledge Discovery in Data” to
refer to the overarching field of intelligent information analysis which includes
both Information Retrieval and Machine Learning as its constituent parts.

trace link direction” [7]. A trace link is defined as “a spec-
ified association between a pair of artifacts, one comprising
the source artifact and one comprising the target artifact.”
[7]. Trace matrices, otherwise known as trace relations are
collections of vetted (validated) trace links between a pair of
artifacts. A candidate link is trace link that has not been vetted
(i.e., pronounced valid), while a candidate trace matrix is a
collection of candidate links. In empirical studies related to
tracing, we often refer to ground truth or gold standard trace
relations, or answer sets: the trace relations determined ahead
of time to be correct that have to be captured by whatever
tracing methodology is under investigation.

To automate tracing, the pioneering works [1, 18, 15]
adopted the Information Retrieval approach of (a) representing
the requirements and the elements of other artifacts as vector-
ized collections of features, and (b) determining related pairs
by computing a formal similarity score over the vectorized
representations. A wide range of approaches including Naı̈ve
Bayes (a.k.a. Probabilistic Information Retrieval) [21], tf-idf
Vector Space retrieval [20] and Latent Semantic Indexing
(LSI) [10] have been studied at the outset. Later, additional
techniques, incorporating a wider range of Machine Learning
algorithms, such as, Latent Dirichlet Allocation (LDA) [3]
feedback analysis [22], and more were used to various degrees
of success over the past 15 years [14, 19, 6]. For a more
thorough overview of the work on automated traceability we
refer the reader to the surveys of Winkler and von Pilgrim [23]
and Borg et al. [4].

In what follows, we summarize both our own experience of
adopting and adapting KDD techniques for automated tracing,
as well as the experiences of our colleagues shared with us
at a variety of fora including, but not limited to, the bi-
annual TEFSE (Traceability in Emerging Forms of Software
Engineering) workshops (renamed in 2015 to International
Symposium on Software and Systems Traceability), and the
2007 and 2017 Symposia on Grand Challenges in Traceability
(GCT’2007 and GCT’2017).

We make the following core observations summarizing our
collective experiences.

a) Tracing is a ”small data” problem: The term ”big
data” has become popular in recent years, and the vast
majority of KDD techniques have been addressing the need
to derive insight from massive collections of data (such as



millions of email messages, billions of business transactions,
or petabytes of scientific observation data). Many Machine
Learning and Information Retrieval techniques specifically
rely on the abundance of data to construct classification
models, or representations of data points.

Compared to such problems, requirements tracing is a
feature-poor small data problem. It is feature-poor because
individual requirements, design elements, code components,
bug reports, test cases, etc., are relatively short documents -
typically the equivalent of about a paragraph (often – a short
one) of text. It is a small data problem because in a typical
requirements tracing scenario the total number of data points
(individual requirements, design elements, test cases, etc.) is
relatively small - on the order of tens, sometimes hundreds of
individuals.

There are important implications of this fact. KDD methods
proven to be robust in big data settings may not necessarily
yield more accurate trace relationships simply because these
methods do not receive enough information to learn.

b) Measurements of Success: The automated require-
ments tracing community fully adopted both the primary
measures of accuracy used in KDD: precision (percent of
retrieved answers that are correct), recall (percent of correct
answers that were retrieved), f-measure (a possibly weighted
harmonic mean of precision and recall), as well as the sec-
ondary measures: Mean Average Precision (MAP)2, area under
the ROC3 curve [12], etc. to evaluate the quality of trace
relationships. This adoption of KDD measures transcended
their original intended use for evaluation of the quality of
automated tracing techniques and is now used to evaluate
trace relationships regardless of how they were constructed:
automatically, manually, or through a hybrid approach.

c) Relative importance of accuracy measures: Tracing
is an example of what Berry calls a ”hairy task” [2]: a task
where detecting a false positive is much simpler and faster than
discovering an error of omission. As such, when evaluating the
results of automated methods generating candidate traces, it is
important to understand that recall, i.e., the percentage of true
links discovered by the tracing method, is significantly more
important than precision, the percentage of discovered links
that are true. This is in direct contrast to how Information
Retrieval methods are evaluated on typical tasks, such as web
search, where precision — i.e., lack of false positive links on
the returned page of links — is more important than recall4.

d) Lack of datasets is stifling: KDD research and devel-
opment gave rise to large dataset collections: from the UCI
Machine Learning repository5, to TREC dataset collections6,

2Given an ordered list of n results, the average precision of the list is the
average of the precisions of lists of 1, 2,. . . , n results. Mean Average Precision
is the average of the Average Precisions over multiple queries.

3The Receiver Operating Curve (ROC curve) is a mapping of a method’s
true positive rate vs. false positive rate plotted as a 2 Ddiagram. The area
under the ROC curve is a good measure of the accuracy of a KDD technique.

4Which is often not known because many IR problems do not have
exhaustive ground truth, making it impossible to compute recall.

5https://archive.ics.uci.edu/ml/index.php
6https://trec.nist.gov/data.html

to Kaggle7. Yet there is a distinct dearth of good datasets for
requirements tracing. This has to do with two major obstacles:
(a) difficulty of converging on the ground truth, and (b) the
overall lack of publicly available high-quality trace relations
for large projects.

e) No one believes our ground truth: Another major
issue we have encountered in our work on tracing projects
is the distinct suspicion with which the larger Requirements
Engineering community views ground truth produced as part
of tracing research. This is in contrast with the high degree of
trust the KDD community generally puts in the ground truth
for its datasets. The amount of correspondence with reviewers,
and the amount of text that had to be included in the papers
(only by the authors, not to mention similar efforts by their
colleagues) explaining the origins of the ground truth trace
relations far exceeds what one does in KDD or Data Science
communities.

f) Tool-building: Over the past 15 years research groups
studying automated tracing have engaged individually and,
eventually, jointly [17] in tool-building. Interestingly enough,
for the vast majority of the tools, until very recently (when
TraceLab [17] allowed for direct incorporating of existing Ma-
chine Learning libraries), the tool-building efforts proceeded
in isolation from the tool- and library-building efforts in the
KDD community. This, in part, can be explained by both (a)
lack of reliable KDD libraries available in mid-2000s when
automated tracing tool-building commenced, and (b) the need
for UI/UX that is custom-tailored to the tracing problem.

g) Automation alone is not enough: There are two ways
to produce trace relationship. First, it can be done as a
byproduct of the software lifecycle, where software engineers
create and maintain up-to-date traces between a variety of
artifacts they build. Alternatively, and often observed in prac-
tice, tracing is done aposteriori, as the means of recovering
a relationship that was not created or maintained during the
software lifecycle. Additionally, tracing is done as part of
the Verification & Validation process. In this latter scenario
the presence of trace relations is often ignored as they are
recovered from scratch and then compared to the existing ones.
The V&V process is often used for mission- and safety-critical
systems, where the cost of human error is high.

When validating the trace relationships as part of the
V&V process, the candidate trace relationships produced by
the automated methods must be further validated by human
analysts. This turns out to be a difficult problem by itself.
Our research shows that humans do not necessarily improve
high accuracy candidate traces provided to them by automated
methods, but may drastically improve some low accuracy ones
[8, 11, 9].

h) What if no one comes?: KDD techniques are routinely
productized in a wide range of commercial applications.
However, as widely as these techniques are applied to tracing,
the successful use of the KDD technologies for tracing in
actual industry projects is rare.

7http://www.kaggle.com



III. MOVING FORWARD

Based on our observations and lessons learned, we posit:
a) Requirements tracing is essentially applied KDD: The

tracing community has adopted and internalized the KDD view
of tracing, evaluating the artifacts, and analyzing the quality
of trace relations.

b) We need standards for ground truth: The RE commu-
nity should come to an acceptable standard of what constitutes
sufficient evidence of validity of ground truth developed for
tracing and other RE datasets. This will streamline both
reporting and reviewing of a large number of papers, and will
encourage more research groups to develop their own datasets
complete with newly obtained ground truth.

This problem is well-recognized in the community, and
efforts to address are underway. One such effort, the MIDAS
tool, concentrates on the production of ground truth for trace
relations via crowdsourcing [16].

c) We need more datasets: Related to the observation
above, in order to progress and improve the accuracy of
automated trace recovery techniques, the requirements tracing
community needs more data. Development of new tracing
datasets – both small and large, is an important challenge for
all research groups working in this area.

This too, is a well-understood problem that exists in the
larger context of the dearth of good datasets for empirical
SE research. One of the ways to address this is creation
of venues that welcome dataset submission – such as the
PROMISE conference, and the RE Data Track. These efforts
are in line with the ways by which the KDD community builds
its repository of datasets.

d) Requirements Engineering (and Software Engineer-
ing) researchers should get Data Science training: As ev-
idenced by the proliferation of conferences such as ASE,
MSR, and PROMISE, the use of KDD methods in Software
Engineering is not limited to tracing, nor is tracing the most
prominent application of such methods. In the early 2000s,
research in the area of applications of KDD techniques to
Software Engineering almost invariably involved researchers
with primary expertise in KDD collaborating with empirical
Software Engineering researchers. Today, Software Engineer-
ing researchers should learn, as part of their base education,
the KDD techniques and their use for data analysis. Knowing
how to apply these techniques to analysis of software artifacts
is no longer optional for empirical Software Engineering
researchers.

ACKNOWLEDGEMENTS

The work of the second author has been supported in part by NSF
grants CCF-1511117 and CICI 1642134.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo. Recovering code to documentation links in oo
systems. In Proceedings, Sixth Working Conference on Reverse
Engineering, pages 136–144, October 1999.

[2] D.M. Berry. Evaluation of tools for hairy requirements and
software engineering tasks. In Proceedings International Re-
quirements Engineering Conference Workshops (RE’2017 Work-
shops), pages 284–291, September 2017.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[4] Markus Borg, Per Runeson, and Anders Ardö. Recovering
from a decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical Software Engi-
neering, 19(6):1565–1616, 2014.

[5] J. Cleland-Huang, O. Gotel, J.H. Hayes, P. Mäder, and A. Zis-
man. Software traceability: Trends and future directions. In
Proceedings, International Conference of Software Engineering
(ICSE’2014), 2014.

[6] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella
Settimi, and Eli Romanova. Best practices for automated
traceability. IEEE Computer, 40(6):27–35, 2007.

[7] Jane Cleland-Huang, Olly Gotel, and Andrea Zisman, editors.
Software and Systems Traceability. Springer, 2012.

[8] David Cuddeback, Alex Dekhtyar, and Jane Huffman Hayes.
Automated requirements traceability: The study of human an-
alysts. In RE 2010, 18th IEEE International Requirements
Engineering Conference, Sydney, New South Wales, Australia,
September 27 - October 1, 2010, pages 231–240, 2010.

[9] David Cuddeback, Alex Dekhtyar, Jane Huffman Hayes, Jeff
Holden, and Wei-Keat Kong. Towards overcoming human
analyst fallibility in the requirements tracing process. In
Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, pages 860–863, 2011.

[10] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by
latent semantic analysis. JASIS, 41(6):391–407, 1990.

[11] Alex Dekhtyar, Olga Dekhtyar, Jeff Holden, Jane Huffman
Hayes, David Cuddeback, and Wei-Keat Kong. On human
analyst performance in assisted requirements tracing: Statistical
analysis. In RE 2011, 19th IEEE International Requirements
Engineering Conference, Trento, Italy, August 29 2011 - Septem-
ber 2, 2011, pages 111–120, 2011.

[12] Tom Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006.

[13] O. Gotel and A. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of the 1st IEEE Interna-
tional Conference on Requirements Engineering, pages 94 —-
101, April 1994.

[14] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sun-
daram, and Sarah Howard. Helping analysts trace requirements:
An objective look. In 12th IEEE International Conference on
Requirements Engineering (RE 2004), 6-10 September 2004,
Kyoto, Japan, pages 249–259, 2004.

[15] J.H. Hayes, A. Dekhtyar, and S.K.Sundaram. Advancing can-
didate link generation for requirements tracing: The study of
methods. IEEE Transactions of Software Engineering, 32(1):4
– 19, 2006.

[16] Albert Kalim, Satrio Husodo, Jane Huffman Hayes, and Erin
Combs. Multi-user input in determining answer sets (MIDAS).
In Proceedings of the International Conference on Requirements
Engineering (RE’2018), August 2018.

[17] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin,
E. Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. H.
Hayes, A. Dekhtyar, D. Manukian, S. Hossein, and D.Hearn.
Tracelab: An experimental workbench for equipping researchers
to innovate, synthesize, and comparatively evaluate traceabil-
ity solutions. In Proceedings, 34th International Conference
on Software Engineering (ICSE’2012, pages 1375–1378, June
2012.



[18] A. Marcus and J. I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing. In
25th International Conference on Software Engineering, 2003.
Proceedings., pages 125–135, May 2003.

[19] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and An-
drea De Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In The 18th
IEEE International Conference on Program Comprehension,
ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010,
pages 68–71, 2010.

[20] Stephen E. Robertson and Karen Spärck Jones. Relevance
weighting of search terms. JASIS, 27(3):129–146, 1976.

[21] Stephen E. Robertson, C. J. van Rijsbergen, and Martin F.
Porter. Probabilistic models of indexing and searching. In
Proc. Joint ACM/BCS Symposium in Information Storage and
Retrieval, pages 35–56, 1980.

[22] J.J. Rocchio. Relevance feedback in information retrieval.
In The SMART Retrieval System: Experiments in Automatic
Document Processing, pages 313–323. Prentice Hall, 1971.

[23] Stefan Winkler and Jens von Pilgrim. A survey of traceability
in requirements engineering and model-driven development.
Software and System Modeling, 9(4):529–565, 2010.


