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Abstract
In a common use case for cloud computing, clients upload
data and computation to servers that are managed by a third-
party infrastructure provider. We describe MrCrypt, a sys-
tem that provides data confidentiality in this setting by exe-
cuting client computations on encrypted data. MrCrypt stat-
ically analyzes a program to identify the set of operations
on each input data column, in order to select an appropriate
homomorphic encryption scheme for that column, and then
transforms the program to operate over encrypted data. The
encrypted data and transformed program are uploaded to the
server and executed as usual, and the result of the compu-
tation is decrypted on the client side. We have implemented
MrCrypt for Java and illustrate its practicality on three stan-
dard benchmark suites for the Hadoop MapReduce frame-
work. We have also formalized the approach and proven sev-
eral soundness and security guarantees.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
Restructuring, reverse engineering, and reengineering; D.3.1
[Programming Languages]: Formal Definitions and Theory

Keywords cloud computing; data confidentiality; homo-
morphic encryption; encryption scheme inference

1. Introduction
A common use case for cloud computing involves clients up-
loading data and computation to servers managed by third-
party infrastructure providers. Since the data and programs
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are no longer in an environment controlled by the client,
private client data may be exposed to adversarial clients in
the cloud server, either by accidental misconfigurations or
through malicious intent. Publicized incidents involving the
loss of confidentiality or integrity of customer data [20] only
heighten these concerns. The threat of potential violations
to the confidentiality and integrity of customer data is a key
barrier to the adoption of cloud computing based on third-
party infrastructure providers.

One way to alleviate these concerns is to store encrypted
data on the cloud and decrypt it as needed during the cloud
computation. However, this approach is insufficient to pro-
tect against adversaries who can potentially view the mem-
ory contents of the server, for example a curious cloud ad-
ministrator or a malicious client running on the same ma-
chine. Therefore, all computations must be performed on the
client side [22, 23], which severely reduces the attractive-
ness of the cloud model. Theoretically, fully homomorphic
encryption schemes [14, 34] offer the possibility of upload-
ing and storing encrypted data on the cloud and performing
arbitrary operations on the encrypted data. Unfortunately,
current implementations of fully homomorphic encryption
schemes are still prohibitively expensive [15, 16].

In this paper we present MrCrypt, a system that automat-
ically transforms programs in order to enforce data confi-
dentiality. Our key insight is that many useful cloud compu-
tations only perform a small number of operations on each
column of the data. While fully homomorphic encryption is
expensive, there are efficient encryption schemes that sup-
port common subsets of operations. Thus, instead of en-
coding each column using a fully homomorphic encryption
scheme, one can encrypt it using a more efficient scheme
that supports only the necessary operations. For example,
suppose that the client program sums all the elements of a
column. Instead of a fully homomorphic encryption scheme,
one can encrypt the column using the Paillier cryptosys-
tem [29], which guarantees that

Paillier(x) · Paillier(y) = Paillier(x+ y)



for any x, y, where Paillier(x) denotes the encryption of x
using the scheme, and the multiplication of the codewords
on the left is modulo a public key. Thus to compute on the
encrypted data, the program must simply take the product
of all codewords. When the result is decrypted on the client
side, the sum of all the numbers is recovered. Similarly, the
El Gamal cryptosystem [10] is homomorphic for multiplica-
tion:

ElGamal(x) · ElGamal(y) = ElGamal(x · y)

In this way, MrCrypt reduces the problem of securing
cloud computations to that of identifying the subset of prim-
itive operations (such as addition, multiplication, equality
checks, and order comparisons) performed on each column
of the input, in order to determine the most efficient encryp-
tion scheme that can be used for the column. We have de-
veloped a static analysis to perform this task, which we call
encryption scheme inference, on imperative programs. We
formalize the problem and our solution as a variant of type
qualifier inference [11], where each qualifier lattice element
represents a particular homomorphic encryption scheme.

We have implemented MrCrypt for Java. Given a Java
program and a lattice of encryption schemes, MrCrypt first
performs encryption scheme inference to determine the most
efficient scheme for each input data column, based on the op-
erations performed by the program on that column. MrCrypt
then performs a source-to-source transformation of the pro-
gram to compute on the encrypted data rather than the orig-
inal plaintext. Finally, the transformed program can be sent
to the cloud and run on an encrypted version of the original
data.

In our experiments, we evaluate MrCrypt’s practicality
by applying it to Java programs that run on the MapRe-
duce framework [9] in Hadoop1. MapReduce is a natural
target because it is a popular programming model for cloud
computing, and the Hadoop implementation of MapReduce
is widely used. Further, many useful MapReduce programs
require only a small number of operations on each data
column and so fit the requirements of our approach. The
transformed programs produced by MrCrypt are compliant
Hadoop MapReduce programs and so can run directly on
unmodified Hadoop infrastructure in the cloud.

We have evaluated MrCrypt on three standard MapRe-
duce benchmark suites [1, 27, 31] and evaluated our system
on large datasets (up to 50GB) provided with the PUMA
benchmarks [1]. On 24 of 36 benchmarks, MrCrypt can
identify encryption schemes to support the necessary func-
tionality without requiring fully homomorphic encryption.
For the large dataset examples, encrypted execution takes
2.61 times as long on average as the plaintext versions and
requires 3.92 times as much space for input data. However,
ignoring one outlier benchmark, the benchmarks take only

1 http://hadoop.apache.org/

1.57 times as long on average as the plaintext versions and
require 2.88 times as much space.

The closest related work to MrCrypt is CryptDB [32],
a system that interposes between a trusted application and
an untrusted database server. CryptDB dynamically rewrites
each SQL query generated by an application to work over
homomorphically encrypted data. MrCrypt also relies on
homomorphic encryption for security, but in the setting of
cloud computing, which demands several important design
differences. Specifically, MrCrypt must perform encryption
scheme inference statically, must rewrite an entire applica-
tion to work over encrypted data, and must be able to handle
imperative Java code rather than declarative SQL. We com-
pare with CryptDB and other related work in more detail in
Section 7.

Like CryptDB, MrCrypt only considers threats against
data confidentiality. In particular, MrCrypt does not pro-
vide guarantees of data integrity or completeness of results,
which are orthogonal issues and topics for future work.

The rest of the paper is structured as follows. In the next
section we provide necessary background on homomorphic
encryption as well as the MapReduce programming model.
Section 3 overviews MrCrypt and provides an illustrative ex-
ample. In Section 4, we formalize the encryption scheme in-
ference problem and present soundness and security guaran-
tees. We explain our implementation in Section 5 and present
the evaluation results in Section 6. Finally, we present related
work and conclusions.

2. Background
2.1 Homomorphic Encryption Schemes
A (public-key) encryption scheme consists of three algo-
rithms (K,E,D) for key-generation, encryption, and de-
cryption. The key-generation procedure K is a randomized
algorithm that takes a security parameter λ as input and out-
puts a secret key sk and public key pk . The encryption pro-
cedure E is a randomized algorithm that takes pk and a
plaintext m as input and outputs a ciphertext ψ. The decryp-
tion procedure D takes sk and ψ as input and outputs the
plaintext m, i.e., D(sk , E(pk ,m)) = m. The computational
complexity of all of these algorithms must be polynomial in
λ.

Given a binary operation f , an encryption scheme is
homomorphic for f if there exists a (possibly randomized)
polynomial-time algorithm Evalf , which takes as input the
public key pk and a pair of ciphertexts (ψ1, ψ2) such that

D(sk ,Evalf (pk , ψ1, ψ2)) = f(D(sk , ψ1), D(sk , ψ2))

Informally, if ψ1 and ψ2 are respectively encryptions of
plaintexts m1 and m2 under pk , then Evalf (pk , ψ1, ψ2) is
an encryption of f(m1,m2) under pk . For a set of operations
F , an encryption scheme is homomorphic for F if it is
homomorphic for each f ∈ F . An encryption scheme is said
to be fully homomorphic if it is homomorphic for {+,×}.
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Figure 1. A lattice of encryption schemes.

It is easy to see that in this case, any polynomial-sized
arithmetic circuit can be evaluated purely on the ciphertext.

In addition to homomorphic encryption schemes, we shall
also consider encryption schemes with a related property in
which the result of an operation can be computed (in clear
text) directly on the ciphertext:

Evalf (pk , ψ1, ψ2) = f(D(sk , ψ1), D(sk , ψ2))

For example, using a deterministic encryption scheme, one
can check if two values are equal simply by comparing the
ciphertexts for equality, without requiring any information
about the original values. In the following, we abuse notation
and call such encryption schemes “homomorphic” as well.

Given a set of operations F , one can arrange encryption
schemes in a partial order: an encryption scheme E1 is “less
than” a scheme E2 if E1 is homomorphic for F1 ⊆ F , E2 is
homomorphic for F2 ⊆ F , and F2 ⊆ F1. A fully homomor-
phic encryption scheme is the unique minimal element in
this ordering, and a random encryption scheme is the maxi-
mal element (it is not homomorphic for any operation). Typ-
ically, one expects that encryption schemes “higher” in the
ordering (i.e., supporting fewer operations) will have more
efficient implementations.

MrCrypt’s implementation is parameterized by a lattice
of encryption schemes. Our experiments in Section 6 em-
ploy several forms of encryption, which are shown as a lat-
tice in Figure 1 along with the set of operations that each
scheme supports. RAND (random) supports no homomor-
phic operations [40];DET (deterministic) supports equality
testing [40]; OP (order-preserving) supports comparisons
[5, 6]; AH (additive homomorphic) supports addition [29];
MH (multiplicative homomorphic) supports multiplication
[10]; FH (fully homomorphic) supports all operations [14].
The DET and OP schemes produce their results in clear
text, while the other schemes are homomorphic in the strict
sense. Because fully homomorphic encryption is not cur-
rently practical, MrCrypt does not include an implementa-
tion of it, but we show that it is rarely required in our bench-
mark programs.
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Figure 2. Architecture of MrCrypt; solid boxes show im-
plemented components .

2.2 MapReduce
MapReduce [9] is a popular distributed programming model
introduced by Google for processing large data sets on clus-
ters. In this model, the computation is divided into three
stages. The map stage invokes a user-defined map function
in parallel over the data and produces a list of intermediate
key/value pairs. A shuffle stage in the MapReduce frame-
work then sorts all the resulting records based on the keys
and groups together all values associated with the same key.
Finally, the reduce stage invokes a user-defined reduce func-
tion in parallel to combine the values associated with each
key in some fashion, typically producing just zero or one fi-
nal values per key. Hadoop MapReduce is an open-source
implementation of MapReduce that is widely used by both
researchers and major corporations (e.g., Facebook, Twitter)
to perform large-scale distributed computations.

3. Overview
3.1 MrCrypt Architecture and Threat Model
The architecture of MrCrypt is shown in Figure 2. Given a
Java program and a data set, MrCrypt performs static anal-
ysis on the program to determine an encryption scheme for
each input column, program variable, and program constant
such that each program operation can be performed homo-
morphically on encrypted data. We call this analysis en-
cryption scheme inference. The analysis first generates con-
straints based on how operations in the program are used,
and then it solves the constraints to determine the most ef-
ficient (i.e., highest in the lattice) encryption scheme to use
for each part of the program.

Next the results of the encryption scheme inference are
used to transform the program. Specifically, each call to a
primitive operation f in the program is replaced by a call
to EvalEf , where E is the encryption scheme inferred for the
arguments to f . Similarly, each program constant c is re-
placed by its encrypted value EE(c), where E is the encryp-
tion scheme inferred for c. The data set is also encrypted
according to the inferred encryption schemes on the client
side.



Program 1 An example MapReduce program.

1 Integer map(Integer entryDate , Integer

entryMonth , Integer entryYear , Integer

caloriesBurnt) {

2 if (entryYear > 2012)

3 return caloriesBurnt;

4 else

5 return 0;

6 }

7 Integer reduce(List <Integer >

caloriesBurntList) {

8 Integer sum = 0;

9 for (Integer caloriesBurnt :

caloriesBurntList)

10 sum += caloriesBurnt;

11 return sum;

12 }

Finally, the encrypted data and the transformed program
are uploaded to the (untrusted) server, where the program is
executed. The result is sent back to the client, where it is
decrypted.

We assume a passive (honest-but-curious) adversary
model. That is, the adversary can view all the data uploaded
to the server, the program that is uploaded, as well as the
entire execution trace of the program. However, we assume
that the adversary does not change the data, the program, or
the result of the program (i.e., no integrity attacks).

3.2 Applications
MrCrypt is potentially useful for any cloud computation, but
we expect it to be especially applicable to scenarios where
a small set of computations are run iteratively over a large
evolving data set. In these cases, the client-side encryption
required by MrCrypt can be performed incrementally as the
data is generated, and the encryption costs are amortized
over multiple runs of the cloud computations.

A broad class of applications have these characteristics.
For example, health-monitoring systems continuously up-
load vital statistics of a user to the cloud, where running
computations are performed on the data to alert users or
caregivers when certain conditions hold. Companies such
as FitBit, Jawbone, and Nike have devices in the market
which track several metrics such as distance walked, calories
burnt, and sleep patterns and upload them continuously to
the cloud in order to compute aggregates. As another exam-
ple, these characteristics apply to sensor networks in which
a distributed set of sensors continually upload data to the
cloud in order to run analytics.

3.3 Example
Program 1 is inspired by wireless fitness trackers. Users con-
tinually upload fitness information such as the number of
calories burnt during a workout to the cloud. This program

uses the MapReduce programming model to compute the to-
tal number of calories burnt by a user since the beginning of
the year 2013. This result can be used further to compute
statistics such as the average calories burnt per day. Every
record includes the number of calories burnt and the date as-
sociated with the event (given by year, month and day fields).
For expository purposes we omit some implementation de-
tails required by MapReduce frameworks, for example the
need to parse input data from a file and to produce key-value
pairs as results. However, the example is illustrative of com-
mon MapReduce use cases.

The user-defined map function is executed on each row of
the data, and it has the effect of producing all entries from the
caloriesBurnt column for which the associated entry year
is greater than 2012. The MapReduce framework collects the
values returned by the map function invocations and passes
the resulting list to the user-defined reduce function, which
sums the calories.

Encryption Inference Consider our example in Program 1.
For a variable x, let σ(x) denote the encryption scheme
for x, and similarly for a constant c. When necessary to
disambiguate, we subscript a variable or constant with
the name of the function in which it appears. From line
2, it is concluded that σ(entryYear) = σ(2012) and that
σ(entryYear) should support at least >. From lines 3 and 5,
σ(caloriesBurntmap) = σ(0map). From line 8, σ(sum) =
σ(0reduce). From line 10, σ(sum) = σ(caloriesBurntreduce)
and σ(sum) should support at least +. Finally, the seman-
tics of the MapReduce framework requires that the result
from the map function must use the same encryption scheme
as the data items in the argument list to the reduce func-
tion. Given the lattice of encryption schemes from Figure 1,
the best solution to these constraints maps σ(entryYear)
and σ(2012) to OP , σ(entryDate) and σ(entryMonth) to
RAND (since there are no constraints on these variables),
and everything else to AH .

Given the results of encryption scheme inference, it is
straightforward to produce the translated program that will
be sent to the cloud along with the encrypted data. The
translated program for the example is shown in Program 2.
First, the primitive> function is replaced by the correspond-
ing operation in the order-preserving encryption scheme,
which we denote OP_GT, and similarly + is replaced by
AH_PLUS. Second, each constant is replaced by an appropri-
ately encrypted version of that constant. For example, we use
[[OP_E(2012)]] to denote the encrypted value of the con-
stant 2012 under the order-preserving encryption scheme.
Note that this value is computed statically and inserted into
the transformed program in place of the original constant.

3.4 Properties
As described in the next section, we have formalized the
constraint generation phase of encryption scheme infer-
ence. (The constraints can be solved using well-known tech-



Program 2 Translated Program

1 AH_Integer map(RAND_Integer entryDate ,

RAND_Integer entryMonth , OP_Integer

entryYear , AH_Integer caloriesBurnt)

{

2 if (OP_GT(entryYear , [[OP_E (2012) ]])

3 return caloriesBurnt;

4 else

5 return [[AH_E (0) ]];

6 }

7 AH_Integer reduce(List <AH_Integer >

caloriesBurntList) {

8 AH_Integer sum = [[AH_E (0)]];

9 for (AH_Integer caloriesBurnt :

caloriesBurntList)

10 sum = AH_PLUS(sum , caloriesBurnt);

11 return sum;

12 }

niques [11].) We have proven that the generated constraints
are sound: any solution to the constraints ensures that an en-
cryption scheme is only asked to perform operations that it
supports and that the operands to a homomorphic operation
are encrypted with that same encryption scheme. We have
also proven that the generated constraints are complete, so in
particular they are compatible with the unique most efficient
mapping that satisfies the above properties, according to the
given lattice.

By design our approach never sends plaintext data or pro-
gram constants to the server. Additionally, we can prove a
strong security guarantee for MrCrypt. Informally, our re-
sult says that a polynomial-time adversary gets no advan-
tage by having access to the transformed program and its
(encrypted) inputs over and above having access to the en-
crypted input data alone. Therefore, the security guarantees
of our framework are equivalent to those provided by the
underlying homomorphic encryption schemes.

The semantic security of encryption schemes is formal-
ized using notions of indistinguishability [17]. Intuitively,
these guarantees say that an adversary cannot recover which
one of two plaintexts a given ciphertext corresponds to, with
better odds than flipping a fair coin. The RAND, AH , and
MH schemes ensure this strong indistinguishability prop-
erty. The DET and OP schemes provide weaker guaran-
tees. For example, given an input column encrypted with
DET , an attacker can easily determine whether two rows
hold the same value or not. However, DET satisfies a nat-
ural weakening of indistinguishability ensuring that the re-
sults of such equality tests are the only things revealed to
an adversary. The situation for the OP scheme is analogous.
While these schemes offer weaker guarantees, in practice us-
ing them on data of high entropy provides a useful level of
confidentiality. We show a multicast security result, follow-
ing [2], that an adversary can learn no more facts about the

original input than can be learnt from the encryption of any
individual input value (i.e., there is no additional security
loss in our system).

4. Encryption Scheme Inference
This section formally defines the encryption scheme infer-
ence problem on an extended simply-typed lambda calculus,
formalizes our solution to the problem, and proves various
correctness and security properties of the approach. The full
formal details are available in a companion technical report
[21].

Our formalism is parameterized by a setM of arithmetic
operations and a setR of logical predicates, whose union we
denoteO. The formalism is also parameterized by a lattice L
of encryption schemes, each of which supports some subset
of the operations in O, with associated partial order v. We
assume that if l1 v l2 and encryption scheme l2 supports
some operation ⊕ ∈ O, then l1 also supports that operation.
Also, for each operation⊕ ∈ O we assume there is a unique
maximal element of L that supports ⊕, which we denote l⊕.
In our implementation,M = {+,×} andR = {<,=, >}.

4.1 Syntax
The syntax of expressions is as follows:

e ::= v | x | e1 e2 | e1 ⊕ e2 Program
v ::= λx:ρ.e | n | nl Value

where ⊕ ∈ O. Metavariable x ranges over variables and n
over integer constants. The value nl denotes the value result-
ing from encrypting integer n with the encryption scheme l.

The set of types is defined as follows:

ρ ::= κ τ Qualified Type
κ ::= l | ◦ | γ Qualifier
τ ::= Int | α | ρ→ ρ Type

Types are qualified with a lattice element l, which tracks
the encryption scheme used for each program expression.
Metavariable γ ranges over qualifier variables and α over
type variables. For uniformity we use ◦ to denote the qual-
ifier for unencrypted data. Since any operation is supported
on unencrypted data,v is extended such that ∀l ∈ L : ◦ v l.

4.2 Operational Semantics
We define two operational semantics for the language: one
for programs that expect plaintext inputs and another for pro-
grams that expect encrypted inputs. The former semantics
models execution of the original programs while the latter
semantics models execution of those programs after being
transformed by MrCrypt. The reduction contexts for both
semantics are standard and defined as follows:

R ::= [ ] | R e | v R | R ⊕ e2 | v ⊕ R

The plaintext and ciphertext operational semantics rela-
tions, respectively denoted →p and →, are shown in Fig-
ures 3 and 4. We use [[⊕]] to denote the mathematical func-
tion corresponding to operation ⊕, with the relational oper-



APP-TRANS
R[(λx:ρ.e) v]→ R[e[x 7→ v]]

MATH-TRANS
n [[⊕]] n′ = n′′ ⊕ ∈M
R[n ⊕ n′]→p R[n′′]

REL-TRANS

n′′ =

{
1 if (n [[⊕]] n′)
0 if ¬(n [[⊕]] n′)

⊕ ∈ R

R[n ⊕ n′]→p R[n′′]

Figure 3. Plaintext Operational Semantics

Q-APP-TRANS

R[(λx:ρ.e) v]→ R[e[x 7→ v]]

Q-MATH-TRANS

n [[⊕]] n′ = n′′ ⊕ ∈M
l v l⊕

R[nl ⊕ n′l]→ R[n′′l]

Q-REL-TRANS

n′′ =

{
1 if (n [[⊕]] n′)
0 if ¬(n [[⊕]] n′)

⊕ ∈ R

l v l⊕
R[nl ⊕ n′l]→ R[n′′]

Figure 4. Ciphertext Operational Semantics

ations in R returning the integer 1 to denote true and 0 to
denote false. The plaintext semantics requires the operands
to a mathematical operation to be unencrypted. In contrast,
the ciphertext semantics requires the operands to a mathe-
matical operation ⊕ to be encrypted with the same encryp-
tion scheme l, requires that l supports ⊕, and specifies that
the operations inM result in encrypted values.

4.3 Typing and Type Inference
Figure 5 defines the typing judgment of the form Γ ` e : ρ,
where as usual the type environment Γ maps variables to
(qualified) types. The rules are mostly standard. The key
new requirements are that the operands to an operation ⊕
have the same encryption scheme (qualifier) and that this
encryption scheme supports the operation. The type qualifier
for a lambda abstraction is ◦ because we never encrypt
functions (but rather just the numeric data manipulated by
those functions).

Finally, we formalize the encryption scheme inference
problem as a form of type inference with qualifiers. We
define a judgment of the form2 Γ ` e : ρ;C where C is a
set of constraints of the following form:

C ::= {τ1 = τ2} | {κ1 = κ2} | {γ v l} | C1 ∪ C2

We treat equality constraints of the form κ1 τ1 = κ2 τ2 as
shorthand for the two constraints {κ1 = κ2, τ1 = τ2}.

The type inference rules are shown in Figure 6. The rules
“produce” constraints on the qualified types of all program
expressions. A substitution σ, which maps type and qual-
ifier variables to types and qualifiers, is a solution to con-
straints C if σ(c) is satisfied for each c ∈ C. A solution to
the constraints produced by type inference therefore repre-
sents a solution to the encryption scheme inference problem:
it determines the encryption scheme needed for each pro-
gram expression in order to make the program typecheck.

2 In our technical report [21], the judgment also records the set of generated
type and qualifier variables, which is necessary for the formal proof of
completeness; we elide this here for presentation purposes.

The constraints have a unique best solution (maximal in the
lattice L) and can be solved using standard techniques [11].
Note that while constants in our formalism are explicitly an-
notated with their encryption scheme, this is no loss of gen-
erality since we can always model program constants instead
as extra parameters to the program.

4.4 Soundness Properties
We have proven several correctness properties for our for-
malism. First, we have proven type soundness through the
standard “progress and preservation” style [42]:

Lemma 1 (Progress). If ∅ ` e : ρ, then either e is a value
or there is some e′ such that e→ e′.

Lemma 2 (Preservation). If Γ ` e : ρ and e → e′ then
Γ ` e′ : ρ.

Type soundness ensures that a well-typed program never
gets stuck at run time, which in our setting implies that an
encryption scheme is only asked to perform operations that
it supports and operations are always applied to operands
that use the same encryption scheme.

Second, we have proven that execution of a transformed
program in the ciphertext semantics is equivalent to execu-
tion of the original program in the plaintext semantics. Given
an expression e we define decr(e) to be the expression iden-
tical to e but with each occurrence of a value of the form nl
replaced by n. Intuitively, decr(e) is the plaintext version of
e. The following result formalizes this intuition.

Theorem 1. 1. [Encryption Domain Soundness] If e →
e′, then decr(e)→p decr(e

′).
2. [Encryption Domain Completeness] If ∅ ` e1 : ρ, e′1 =
decr(e1) and e′1 →p e

′
2, then there is some e2 such that

e1 → e2 and e′2 = decr(e2).

Finally, we have proven that our type inference rules are
sound and complete with respect to our typing rules, which
means the generated constraints are compatible with only
and all valid types of the program.



Q-LAM

Γ[x 7→ ρ1] ` e : ρ2

Γ ` λx:ρ1.e : ◦ (ρ1 → ρ2)

Q-MATH

Γ ` e′ : κ Int Γ ` e′′ : κ Int
κ v l⊕ ⊕ ∈M
Γ ` e′ ⊕ e′′ : κ Int

Q-APP

Γ ` e1 : κ (ρ1 → ρ2) Γ ` e2 : ρ1

Γ ` e1 e2 : ρ2

Q-REL

Γ ` e′ : κ Int Γ ` e′′ : κ Int
κ v l⊕ ⊕ ∈ R

Γ ` e′ ⊕ e′′ : ◦ Int

Q-INT-L

Γ ` nl : l Int

Q-INT

Γ ` n : ◦ Int

Q-VAR

Γ(x) = ρ

Γ ` x : ρ

Figure 5. Typing Rules

Q-LAM-INF

Γ[x 7→ ρ1] ` e : ρ2;C
C ′ = C ∪ {γ = ◦, α = ρ1 → ρ2}

γ, α fresh
Γ ` λx:ρ1.e : (γ α);C ′

Q-APP-INF

Γ ` e1 : ρ1;C1 Γ ` e2 : ρ2;C2

C = C1 ∪ C2 ∪ {ρ1 = γ′ (ρ2 → (γ α))}
γ, γ′, α′ fresh

Γ ` e1 e2 : (γ α);C

Q-MATH-INF

⊕ ∈M
Γ ` e1 : (κ1 τ1);C1 Γ ` e2 : (κ2 τ2);C2

C = C1 ∪ C2 ∪ {κ1 = κ2 = γ, γ v l⊕, τ1 = τ2 = Int = α}
γ, α fresh

Γ ` (e1 ⊕ e2) : (γ α);C

Q-REL-INF

⊕ ∈ R
Γ ` e1 : (κ1 τ1);C1 Γ ` e2 : (κ2 τ2);C2

C = C1 ∪ C2 ∪ {κ1 = κ2, γ = ◦, κ1 v l⊕, τ1 = τ2 = Int = α}
γ, α fresh

Γ ` (e1 ⊕ e2) : (γ α);C

Q-VAR-INF

Γ(x) = ρ

Γ ` x : ρ; ∅

Q-INT-L-INF

C = {γ = l, α = Int} γ, α fresh
Γ ` nl : (γ α);C

Q-INT-INF

C = {γ = ◦, α = Int} γ, α fresh
Γ ` n : (γ α);C

Figure 6. Type Inference Rules

Theorem 2. 1. [Soundness of Type Inference] If Γ `
e : ρ;C and σ is a solution toC, then σ(Γ) ` σ(e) : σ(ρ).

2. [Completeness of Type Inference] If Γ ` e : ρ;C and
there is a substitution σ such that σ(Γ) ` σ(e) : ρ′, then
there is a solution σ′ to C such that σ′(ρ) = ρ′.

4.5 Security Guarantees
We assume an honest-but-curious adversary model, where
the server observes the data, the program, and the program
execution and can perform polynomial-time computation
over the observations. However, the server does not change
the data or the computation. One caveat is that the server
should run in polynomial time in the size of the data and the
input, but not in the potentially exponential program trace.
If we allow the adversary to run in time polynomial in the
program trace, it may be able to execute an exponentially
long computation in the security parameter, and so to decrypt
all the encrypted values trivially.

We formalize our security guarantees in terms of indistin-
guishability [17]. Indistinguishability is formalized using an
adversaryA = (A1, A2), performing a sequence of two (po-
tentially randomized) polynomial-time algorithms. Initially
keys (pk , sk) = K(λ) are generated based on a security
parameter λ. First, algorithm A1 takes as input the public
key pk and outputs two plaintext messages x0 and x1, to-
gether with some additional state information s. Next, a bit
b ∈ {0, 1} is chosen at random, and message xb is encrypted
as a challenge ciphertext y using pk . Finally, algorithm A2

runs on (y, s) and has to guess the bit b. The advantage of
the adversary is defined as

AdvE(A) = Pr[A2(y, s) = b]− 1

2
where the random variables are distributed uniformly.

An encryption scheme E = (K,E,D) satisfies single-
use indistinguishability against chosen plaintext attacks



(IND-CPA) if for each adversary A we have that AdvE(A)
is negligible (recall that a function f(n) is negligible if
|f(n)| < 1

poly(n) for all sufficiently large n). Intuitively,
a polynomial-time adversary cannot identify the plaintext
from a ciphertext with advantage significantly better than
that obtained by flipping a coin. For example, it is known
that the El Gamal and Paillier cryptosystems satisfy IND-
CPA.

Unfortunately, IND-CPA is too strong a requirement for
deterministic encryption schemes: for example, the adver-
sary can store the encryptions of x0 and x1 and compare the
challenge ciphertext y against the stored ciphertexts. Simi-
larly, IND-CPA is too strong for order-preserving schemes.
Thus, one defines weaker notions of indistinguishability for
such schemes. We omit detailed definitions (see, e.g., [3, 5,
6]), but assume that each individual encryption scheme E has
an associated indistinguishability property IND(E).

In our context, we have a set of inputs x1, . . . , xn to
the program and use possibly different encryption schemes
E1, . . . , En for them. We ask, given that each scheme Ei sat-
isfies IND(Ei), what we can guarantee about the full en-
crypted data. To do this, we define the notion of program-
indistinguishability for a tuple of encryption schemes (see
our companion technical report [21] for full details). Intu-
itively, the adversary now chooses two sequences of plain-
texts, according to possible restrictions placed by the IND
conditions. Now one of the two is chosen at random and
componentwise encoded using its encryption scheme. The
adversary has to guess which of the two sequences was en-
coded by looking at the encrypted vector. Notice that we
do not consider the encrypted program in the definition,
since the adversary can perform an arbitrary polynomial-
time computation; in particular, it can run the program for a
polynomial number of steps. The following theorem restates
a result from [2].

Theorem 3. Given encryption schemes Ei satisfying IND(Ei)
for i = 1, . . . , n, (E1, . . . , En) is program-indistinguishable.

Thus, MrCrypt provides a security guarantee that is as strong
as the individual encryption schemes used for each data item.

5. Implementation
We have implemented our encryption scheme inference and
transformation algorithms for Java programs.

5.1 Encryption Schemes
We briefly describe the encryption schemes that are currently
supported in MrCrypt. Since there is no efficient scheme for
FH currently, our system throws an exception if FH is re-
quired. (Our experimental evaluation shows that this is rarely
the case.) In general, we follow the security parameters from
prior work [32].

RAND is a probabilistic encryption scheme that guarantees
IND-CPA but which does not support any operations on the

encrypted data. We implement RAND using Blowfish [39]
for 32-bit integers and AES [8] for strings in CBC mode and
with a random initialization vector. Blowfish produces a 64-
bit ciphertext and AES outputs ciphertext as 128-bit blocks.
DET is a deterministic encryption scheme: the same plain-
text generates the same ciphertext. Thus, DET allows
checking for equality on the encrypted values. We make the
standard assumption that Blowfish and AES block ciphers
are pseudorandom permutations and use these encryption
schemes in ECB mode. For values up to 64 and 128 bits,
we use Blowfish and AES respectively after padding smaller
plaintexts to at least 64 bits. For longer strings, we use AES
with a variant of CMC mode [18] with a zero initial vector,
as is done in CryptDB [32].
OP is an order-preserving encryption scheme that allows
checking order relations between encrypted data items. We
use the implementation of OP in CryptDB, which follows
the algorithm in [5]. Since we only do order operations on
32-bit integers, we use a ciphertext size of 64 bits for each
value.
AH allows performing addition on encrypted data. We use
CryptDB’s implementation of the Paillier cryptosystem [29]
to support AH . We generate 512 bits of ciphertext for each
32-bit value.
MH allows performing multiplication on encrypted data. We
use the El Gamal cryptosystem [10] to support MH . We use
1024-bit ciphertext for each 32-bit integer.

5.2 Encryption Scheme Inference
MrCrypt is built as an extension to the Polyglot compiler
framework [26]. Polyglot is designed to allow language ex-
tensions and analysis tools to be written on top of a base
compiler for Java. MrCrypt is written in Scala and inter-
faces with Polyglot’s intermediate representation of the Java
bytecode. The tool takes as input a Java program and an
encryption-scheme lattice and outputs a translated Java pro-
gram which runs on the encrypted domain. It uses Polyglot
compiler’s dataflow framework and soundly handles imper-
ative updates, aliasing, and arbitrary Java control flow in the
standard way. We omit them from the formalism to isolate
the key novelties of our approach.

We have extended our inference algorithm in several
ways to handle Java programs that employ the Hadoop
MapReduce framework; most of these extensions would
also be useful in conjunction with other cloud computing
frameworks. First, the user-defined map function in Hadoop
is given a portion of a file representing the input data and
must perform custom processing based on the file format
to parse the data into columns. We require programmers to
annotate the parsing code so MrCrypt can understand which
variables get values from which columns, which are identi-
fied by number. For example, the user should annotate the
following statement, which gets the fifth field in a line of
input, with @getColumn(5):



x = Library.splitLine(input , ‘ ’).get(5);

Similarly, the statement that outputs x as the sixth field in a
record should be annotated with @putColumn(6,x).

Second, we have extended the inference algorithm to han-
dle common data structures. The map function returns a list
of key-value pairs and the reduce function accepts a list of
values as an argument. Further, programmers often use con-
tainer data structures such as hashmaps and hashsets to re-
move duplicates, order elements, etc. Our implementation
recognizes these data structures by type and encrypts their
elements rather than the data structures themselves. In gen-
eral our implementation uses a single logical variable for
the purpose of encryption-scheme inference for a data struc-
ture’s elements, ensuring that all elements are encrypted with
the same scheme. However, we introduce two logical vari-
ables to handle lists of key-value pairs, so that keys and val-
ues can use different encryption schemes from one another.
We also require data structures to be annotated with the op-
erations they perform on their elements, in order to preserve
these operations in the encrypted domain. Specifically, the
standard Java hashmap and hashset classes are annotated to
require the equality operation on elements.

Third, the shuffle phase of MapReduce sorts the inter-
mediate keys produced by the map phase, thereby requir-
ing support for order comparisons. However, in many cases
the final output does not depend on the keys being sorted,
instead just requiring that intermediate values be grouped
by their key. Therefore, we allow programmers to anno-
tate that sorting is not required for correctness of the pro-
gram, allowing MrCrypt to choose deterministic encryption
for the keys (which preserves equality, necessary for group-
ing values by key) rather than order-preserving encryption.
The shuffle phase will be performed as usual by the Hadoop
framework but will no longer guarantee that the underlying
plaintext keys are in sorted order.

5.3 Optimizations
In order to scale to large datasets, we implemented a number
of optimizations to the translator and runtime which can be
categorized as follows:

Data serialization. Textual formats are very commonly
used for MapReduce programs, with numbers represented
as decimal strings. This encoding is highly inefficient for
the mostly binary ciphertext data. Hence we use a binary
serialization system, Avro3, to store ciphertext.

Tuning Hadoop framework parameters. We tune Hadoop
framework parameters such as the number of simultane-
ous map and reduce tasks, heap size, RAM used for shuf-
fle phase, total number of reduce tasks, block size for the
distributed file system, etc. based on the hardware on which
they run. This is a manual process which depends on the
program, data size as well as the cluster resources. These

3 http://avro.apache.org

optimizations apply equally well to both the plaintext and ci-
phertext programs as they have similar data access patterns.

Efficient encoding of constants. We implemented a simple
optimization for the case when the map function emits con-
stant integer values. For example, in the standard MapRe-
duce implementation of word count the map function emits
the tuple 〈w, 1〉 for every wordw in the input, and the reduce
function sums up the numbers in the second component of
each tuple. While this is efficient in the plaintext, the AH
ciphertext for the number 1 in the translated program is 512
bits long. This causes significant slowdowns as the map’s
output is saved to the disk and read back and the entire data
is kept in memory while sorting.

Our tool applies an optimization whenever either a con-
stant integer value or a final variable initialized to an con-
stant integer value is emitted by the map function. The op-
timization creates a dictionary in the translated program
which associates symbols (represented by integers) with
their ciphertexts. In the word count example, the plain-
text map function contains @putColumn(col0, word) and
@putColumn(col1, 1) for every word and the translated
map function contains @putColumn(col1, S) and the re-
duce function has access to the dictionary which maps S to
the AH ciphertext of 1.

6. Evaluation
This section describes the experimental evaluation of Mr-
Crypt. We have applied encryption scheme inference to all
programs in three MapReduce benchmark suites, in order to
illustrate the applicability of the approach. We have also ex-
ecuted programs from one of the three suites on a cluster
at scale to determine the run-time overhead of executing on
encrypted data. Finally, we have used a set of microbench-
marks to isolate the client-side and server-side costs of en-
cryption.

6.1 Benchmark Programs
The three benchmark suites are respectively listed in Tables
1, 2 and 3. For each benchmark, we list the number of source
lines of code determined by the SLOCCount tool4.

PIGMIX25 is a set of 17 benchmark programs written for
the Pig framework, which provides a high-level language for
writing large-scale data analysis programs called Pig Latin
[27]. The framework compiles Pig Latin scripts into MapRe-
duce programs and the runtime manages the evaluation of
these programs. The PIGMIX2 benchmarks each come with
Pig Latin scripts as well as hand-written MapReduce pro-
grams which the authors believe are efficient ways to ex-
ecute the scripts. The programs run on a dataset primarily
comprised of two tables: the PageViews table has 9 columns
and the Users table has 6 columns.

4 http://www.dwheeler.com/sloccount/
5 https://cwiki.apache.org/PIG/pigmix.html



Pavlo et al. [31] compare the performance of parallel
databases that accept SQL queries with equivalent MapRe-
duce programs. Their evaluation employs a standard word-
search task [9] along with five other MapReduce bench-
marks that perform various analytics queries6, which we
hereafter refer to as “the Brown suite.”

The Purdue MapReduce Benchmarks (PUMA) Suite [1]
contains 13 diverse MapReduce programs dealing with dif-
ferent computational and data patterns. In addition to per-
forming encryption scheme inference, we also run these
benchmarks on the large datasets that are provided with
the benchmarks: 50GB Wikipedia documents for the Word
Count, Grep, Inverted Index, Term Vector, and Sequence
Count benchmarks; 27GB movies data for the Histogram
Movies and Histogram Ratings benchmarks; and upwards
of 28GB of synthetic data for the rest of the benchmarks.

We made a few modifications to the benchmarks to work
around current limitations of MrCrypt:

• The supported encryption schemes do not handle floating-
point numbers, so we have converted all benchmarks that
use floating-point numbers to instead use integers.

• Our implementation of OP supports comparisons for in-
tegers but not for strings, necessitating modifications to
three benchmarks. First, we modified the Aggregate Vari-
ant benchmark in the Brown suite to represent an IP ad-
dress as four integers rather than a single string. Second,
Self Join in the PUMA suite takes as input alphanumeri-
cally sorted text consisting of the string “entryNum” fol-
lowed by 10 digits. We modified the input dataset to only
include the numbers. Finally, Tera Sort in the PUMA
suite sorts a column for which the input data consists of
10 random characters. We restrict the input data for this
column to be populated by numeric characters.

• Three benchmarks in PIGMIX2 — L8, L15, and L17 —
compute an average over some columns, which requires
support for division. We modified these benchmarks to
instead return a pair of the sum and the element count.

6.2 Experimental Setup
The experiments were run on the compute cluster at Max
Planck Institute for Software Systems. The MapReduce
computations were run on two Dell R910 rack servers each
with 4 Intel Xeon X7550 2GHz processors, 64 x 16GB Quad
Rank RDIMMs memory and 174GB storage. Our experi-
ments ran on a total of 64 cores and had access to 1TB of
RAM and 348GB of permanent storage. The machines were
a shared resource and were under light load from other re-
search projects. The Hadoop framework was configured to
run 60 map and reduce tasks in parallel across the 64 avail-
able computational units.

In addition we used four Dell R910 rack servers (each
with 2 Intel Xeon X5650 2.66GHz processors, 48GB RAM

6 http://database.cs.brown.edu/projects/mapreduce-vs-dbms

and 1TB hard disks) to host the distributed file system. No
MapReduce computations were run on these machines and
they were only used to serve input data and to store results.
These machines were also a shared resource under regular
load from other researchers.

6.3 Experimental Results
We are interested in three key metrics:

1. Annotation burden: How much extra work must the pro-
grammer do to make the existing MapReduce programs
run securely?

2. Inference effectiveness: Does MrCrypt find the most ef-
ficient encryption scheme? How often is fully homomor-
phic encryption required?

3. Time and space overhead: How much runtime and stor-
age cost does encrypted execution incur?

6.3.1 Annotation Burden
As mentioned in the implementation section, MrCrypt re-
quires programmers to annotate parsing code to correlate
variables with the input columns from which they are read.
Our simple getColumn and putColumn annotations were
sufficient to cover all of the file formats used in the bench-
marks.

The encryption inference can otherwise be accomplished
without any user annotations. However, as mentioned earlier,
we allow users to annotate the fact that keys in a MapReduce
program’s output need not be in sorted order. We found that
sorting is unnecessary in 29 of the 36 benchmarks because
the specification does not require sorted output, so we in-
cluded the associated annotation for these programs.

On average we added 12 annotations to each benchmark,
which amounts to 7% of the lines of code.

6.3.2 Encryption Scheme Inference
Since FH is inefficient in practice, the utility of our tool
depends on whether it is able to find efficient encryption
schemes for real-world MapReduce programs. We present
the results for the three benchmark suites in Tables 1, 2 and
3. For each benchmark, we measure the source lines of code
by using the SLOCCount tool7 along with the encryption
schemes inferred for the input columns. For each encryption
scheme the number of columns for which that scheme was
inferred is mentioned in parenthesis. For each benchmark,
the analysis time was less than 1 second, and the entire
compilation time (including analysis and translation) was
less than 5 seconds.

On 24 of 36 benchmarks, MrCrypt can identify encryp-
tion schemes to support the necessary functionality without
requiring fully homomorphic encryption. Hence 66.7% of
the programs can be executed securely through the system.

7 http://www.dwheeler.com/sloccount/



We also manually analyzed each benchmark to verify the
correctness of these results.

In the four cases of the PIGMIX2 suite where FH is re-
quired, the programs perform both equality and addition on
the same column of data, for example to obtain a sum of
all distinct values in the column. One of the benchmarks in
the Brown suite (UDF) invokes performs string operations
that MrCrypt does not support, one (Search) requires reg-
ular expression evaluation, and the other benchmark (Join)
performs a sort on data obtained by computing a sum over
some column. We are not aware of any homomorphic en-
cryption scheme other than FH supporting both order com-
parisons and addition. In the PUMA suite, FH is required
for regular-expression evaluation (Grep) and for computing
cosine similarity (K-means and Classification).

Finally, MrCrypt determines that two benchmarks in the
PUMA suite require FH for intermediate data produced by
the map function. First, Term Vector counts all occurrences
of words in documents and sort them by their frequency.
This is implemented by using the map function to output
〈doc-name, word, 1〉 for every word, and the reduce to sum
up all the 1s for each word in a document and then sort the
words using the sums. Hence the numbers are both summed
up and compared for order which results in FH for that
variable. However, since we need to use DET to encrypt the
input words to preserve equality, the number of occurrences
of each (encrypted) word is already being leaked to the
adversary. Hence leaving the integers in plaintext would
not entail any extra loss of confidentiality, so in fact the
benchmark can be executed securely without FH .

Second, Histogram Movies uses the map function to cal-
culate the average rating of each movie rounded to the near-
est 0.5. The reduce function then counts the number of
movies with the same average rating. This functionality re-
quires addition, division, and rounding operations and hence
requires FH . However, we observe that we can refactor the
benchmark into two different MapReduce programs to avoid
FH . We refer to these two programs as Histogram Movies
1 and Histogram Movies 2, and they are also listed in Ta-
ble 3. Histogram Movies 1 performs just the map phase of
the original benchmark, with a trivial reduce, outputting the
sum of all ratings of each movie along with their count. His-
togram Movies 2 takes as input the average rating of each
movie and performs just the reduce phase of the original
benchmark, counting the number of movies with each av-
erage rating. MrCrypt infers encryption schemes for each of
these benchmarks that allows them to execute securely with-
out requiring FH .

To achieve the functionality of the original Histogram
Movies benchmark, the client must decrypt the AH cipher-
text output from Histogram Movies 1, re-encrypt it to use
DET after computing the average and rounding it to the
nearest 0.5 (and then doubling it to make it an integer),
and provide the resulting ciphertext as input to Histogram

Movies 2. While the client must perform some extra work,
it does so on a small amount of data. On our input dataset,
Histogram Movies 1 operates on 27GB of movie-rating data
while Histogram Movies 2 only operates on 4MB of data
that results from summing those ratings per movie (Table 4).

6.3.3 Time and Space Overhead
Our approach incurs two main sources of performance over-
head, which we evaluate separately.

Client-side Overhead The client-side overhead consists of
the need to encrypt the input data before sending it to the
cloud and decrypt the output data from the computation. We
evaluated this cost by measuring the time taken for encrypt-
ing and decrypting 500 random 32-bit integers. The OP ,
AH , and MH schemes take an average of 10ms, 4ms, and
1.5ms to encrypt each integer, respectively, and less than
0.5ms per decryption. Blowfish (the basis for RAND and
DET ) has much less overhead of 200ns for each encryp-
tion and decryption operation. Thus, for example, encrypt-
ing one million data items with AH requires a bit more than
one hour. However, in our target application domains the en-
cryption can be performed incrementally as data is gener-
ated, and the encryption cost is amortized across multiple
runs of the cloud computations.

Server-side Overhead The server-side overhead consists of
the need to perform homomorphic operations on encrypted
data rather than the original operations on the plaintext data.
To isolate this overhead we developed a set of microbench-
marks, each of which performs a single operation one mil-
lion times on the input data. For each operation we have
one version of the microbenchmark that accepts plaintext
integers and another version that uses the appropriate ho-
momorphic encryption scheme to operate on ciphertext. We
use a corpus of 10,000 32-bit integers and their correspond-
ing ciphertexts as the input data. The performance overhead
for encrypted execution is significant: slowdowns of 2× for
DET , 4× for OP , 500× for AH , and 75× for MH .

Fortunately, the overheads on real MapReduce bench-
marks are much lower, since the homomorphic operations
contribute only a small percentage of the overall time. To
evaluate the overhead of encryption on real-world data, we
ran the PUMA benchmarks at scale on large data on a cluster.
For each benchmark, we report the runtime for the original
program, and the runtime for the transformed program. We
also report the plaintext size and ciphertext size of the input
data. We tabulate the results in Table 4.

The homomorphic operations add an insignificant over-
head and the size of the ciphertext is the main factor in deter-
mining the runtime of the translated programs. On average
the translated programs take 2.61× as long to execute as the
original programs. However, Histogram Movies 1 is an out-
lier due to the need forAH , which uses 512 bits of ciphertext
for each 32-bit integer, on a large amount of data. Excluding



this benchmark the translated programs take an average of
1.57× as long to execute as the original programs.

In the three benchmarks where the program operating on
ciphertext runs faster than the plaintext program (Adjacency
List, Self Join, and Tera Sort), the speedup is due to using
binary formats for encoding the encrypted numbers while
the plaintext input uses a particularly inefficient textual for-
mat to encode numbers. In these benchmarks, numbers are
padded with zeros to keep the length of each column the
same so as to make use of the built-in sorting algorithm in
the shuffle phase. Hence the number 1 would be represented
as 0000000001. This approach uses 10 bytes to encode the
range of 32-bit integers while the encrypted data uses at most
8 bytes to store the resulting 64-bit OP ciphertext. The bi-
nary format uses variable-length encoding and hence might
use fewer than 8 bytes in some cases.

6.4 Discussion
Space Efficiency. Encryption schemes like AH require a
significant blowup in space, which has a direct impact on
execution time as well. We can reduce the overhead for Pal-
lier encryption (our implementation of AH) using a packing
optimization [13].
Avoiding Fully Homomorphic Encryption. We showed
earlier how refactoring the Histogram Movies benchmark
can make it amenable to our approach, and we believe there
are additional opportunities along these lines. For example,
four benchmarks that currently require FH require a “sum
of distinct elements” functionality, which typically looks as
follows:

1 Integer f(List <Integer > revenues) {

2 HashSet <Integer > hs = new HashSet <

Integer >();

3 for (Integer r: revenues) hs.add(r);

4 int sum = 0;

5 for(Integer r: hs) sum += r.intValue ();

6 return new Integer(sum);

7 }

The revenues column has two operations performed on it:
equality (from the hashset) and addition. Hence our tool
infers FH in this case. However, this program can be run
securely by keeping two copies of the revenues column,
one for equality and the other for addition, and keeping a
correspondence between them (we use the class P2 for pairs,
along with associated operations, from the Java library fj8):

1 Integer f(List <Integer > erevenues ,

2 List <Integer > arevenues) {

3 HashSet <Integer > hs = new HashSet <

Integer >();

4 List <Integer > distincts = list();

5 for (P2 <Integer , Integer > p:

6 erevenues.zip(arevenues)) {

7 if (!hs.contains(p._1())) {

8 http://functionaljava.org/

8 hs.add(p._1());

9 distincts.cons(p._2());

10 }

11 }

12 int sum = 0;

13 for(Integer r: distincts)

14 sum += r.intValue ();

15 return new Integer(sum);

16 }

It would be interesting to explore performing such prepro-
cessing automatically in order to extend the applicability of
our approach.

7. Related Work
Computing over encrypted data. The problem of (fully)
homomorphic encryption was posed by Rivest, Adleman,
and Dertouzos [34], and the first fully homomorphic scheme
was discovered by Gentry [14]. Implementations of Gentry’s
construction remains prohibitively expensive [16]. A more
efficient encryption scheme [25] can perform unbounded
additions but only a bounded number of multiplications.
Cryptographically secure multi-party computations are also
theoretically possible for general circuit evaluation [37, 43].
Homomorphic encryption schemes have been proposed to
protect data security in several applications including secure
financial transactions [4], secure voting [19], and sensor
networks [7].

As discussed in Section 1, the work closest to our own is
the CryptDB project [32], which uses homomorphic encryp-
tion to run queries securely on relational databases. CryptDB
encrypts the data in all possible encryption schemes, layered
on top of each other in a structure resembling our lattice.
A trusted proxy stands between clients and the database
system, analyzes the SQL queries on the fly, and decrypts
the relevant columns to the right encryption layers so that
the query can be executed. The key difference between
these two efforts is that MrCrypt performs static analy-
sis of imperative Java programs while CryptDB performs
analysis on database queries and so is limited to computa-
tions that are expressible in pure SQL (i.e., no user-defined
functions). Further, because MrCrypt has up-front access
to the programs, it can statically determine the best en-
cryption schemes to use, avoiding the need to encrypt data
with multiple schemes and to employ a trusted proxy. How-
ever, encrypting data with multiple schemes allows some
queries to be executed using CryptDB that cannot be han-
dled by our system. Finally, we have formalized our ap-
proach and proven its correctness and security guarantees,
while CryptDB provides only informal guarantees.

Other work in the database community has used homo-
morphic encryption for particular kinds of queries. For ex-
ample, SADS [33] allows encrypted text search and other
work uses additive homomorphic schemes to support sum
and average queries [13]. These systems do not support gen-
eral imperative computations.



Benchmark Lines Of Encryption Schemes
Code Inferred for Inputs

L1 137 DET(2), RAND(7)
L2 148 DET(1), RAND(8)
L3 185 AH(1), DET(1), RAND(7)
L4 141 DET(2), RAND(7)
L5 169 DET(1), RAND(8)
L6 139 DET(3), FH(1), RAND(5)
L7 158 DET(1), OP(1), RAND(7)
L8 170 AH(2), RAND(7)
L9 196 OP(1), RAND(8)
L10 245 OP(3), RAND(6)
L11 184 DET(1), RAND(8)
L12 218 AH(1), DET(3), OP(1), RAND(4)
L13 182 DET(1), RAND(8)
L14 183 DET(1), RAND(8)
L15 188 DET(2), FH(2), RAND(5)
L16 134 DET(1), FH(1), RAND(7)
L17 259 FH(5), OP(20)

Table 1. Inference results on the PIGMIX2 benchmarks.

Benchmark Lines of Encryption Schemes
Code Inferred for Inputs

Search 109 FH(1)
Select 71 OP(1), RAND(2)
Aggregate 99 AH(1), DET(1), RAND(7)
Aggregate Variant 162 AH(1), DET(3), RAND(7)
Join 518 AH(1), DET(2), FH(1), OP(1), RAND(4)
UDF 58 AH(1), DET(1), FH(1), RAND(6)

Table 2. Inference results on benchmarks from the Brown suite.

Cryptographic schemes have been used to provide pri-
vacy and integrity in systems running on untrusted servers
[22, 23]. However, these systems have so far required appli-
cation logic to be executed purely on the client. Our goal,
on the other hand, is to enable computations to run directly
on untrusted servers. It may be possible to incorporate ideas
from these systems in order to augment our approach to
guarantee integrity in addition to confidentiality.

Mitchell et al. formalize a domain-specific language
(DSL) whose type system ensures that programs can be
translated to run securely using either FH or secure mul-
tiparty computation [24]. They also describe an implemen-
tation of their DSL embedded in Haskell. This approach can
potentially be more expressive than ours but requires pro-
grammers to write programs in a specialized language, while
MrCrypt handles existing Java programs with minimal code
annotations. Finally, Mitchell et al. do not consider the use
of partially homomorphic encryption schemes.

Static and dynamic analysis for security. There is a large
body of work on static and dynamic techniques for enforcing
security policies or for finding security vulnerabilities. Most
language-based approaches to enforcing confidentiality are

based on the notion of secure information flow [36]. These
approaches are less applicable to the setting of cloud com-
puting, where the adversary can have direct access to the
machine on which a computation is being performed. For
example, a common threat model in the context of secure
information flow assumes the adversary has access only to
the public inputs and outputs of a computation. Researchers
have augmented traditional information-flow type systems to
reason about confidentiality in the presence of cryptographic
operations [12, 41], but these approaches require program-
mers to manually employ cryptography in their programs.

MrCrypt also leverages static analysis techniques, but for
a different purpose — to identify the most efficient encryp-
tion schemes to use for each input column of data. As de-
scribed in our formalism, this analysis is similar to tech-
niques for flow-insensitive type qualifier inference [11, 28].

Computing in untrusted environments. The Excalibur
system [38] uses trusted platform modules (TPMs) to guar-
antee that privileged cloud administrators cannot inspect or
tamper with the contents of a VM. While this approach pro-
vides the same security guarantees as MrCrypt, it requires
additional investment from the cloud companies to install



Benchmark Lines Of Encryption Schemes
Code Inferred for Inputs

Word Count 88 DET(1)
Inverted Index 126 DET(1)
Term Vector* 187 DET(1)
Self Join 136 OP(1)
Adjacency List 157 OP(2)
K-Means 428 DET(1), FH(1), OP(1)
Classification 228 DET(1), FH(1), OP(1)
Histogram Movies* 132 AH(1), RAND(2)
Histogram Movies 1 113 AH(1), RAND(2)
Histogram Movies 2 98 AH(1), DET(1)
Histogram Ratings 115 DET(1), RAND(2)
Sequence Count 124 DET(1)
Ranked Inverted Index 127 DET(4), OP(1)
Tera Sort 192 OP(1), RAND(1)
Grep 55 FH(1)

Table 3. Inference results on the PUMA benchmark suite. An asterisk denotes that FH was inferred for an intermediate
variable in the benchmark. The Histogram Movies 1 and Histogram Movies 2 benchmarks were created by us and are discussed
in Section 6.3.2.

Benchmark Original Program Transformed Program Plaintext Size Ciphertext Size
Runtime (sec) Runtime (sec) (GB) (GB)

Word Count 528 1064 50 79
Inverted Index 395 658 50 79
Term Vector 556 1114 50 79
Self Join 252 234 28 26.1
Adjacency List 823 769 28 26.5
Histogram Movies 1 138 1801 27 388
Histogram Movies 2 22 32 0.004 0.067
Histogram Ratings 214 427 27 36
Sequence Count 492 1006 50 79
Ranked Inverted Index 305 525 37.8 60.3
Tera Sort 1080 1062 28 26.9

Table 4. Performance results on the PUMA benchmark suite

special TPM chips on each node in the cloud and for man-
aging keys. CLAMP [30] prevents web servers from leaking
sensitive user data by isolating code running on behalf of
one user from that of other users. However, CLAMP does
not protect user confidentiality against honest-but-curious
cloud administrators. Finally, work on differential privacy
for MapReduce (e.g., [35]) is dual to our concern: in that set-
ting the server is trusted but information exposed to clients
is minimized.

8. Conclusion
Data confidentiality is a key challenge for shared comput-
ing infrastructures such as cloud computing. We have pre-
sented MrCrypt, a practical solution to ensure confidentiality
through the use of homomorphic encryption.

MrCrypt performs a static analysis on Java programs to
identify the most efficient homomorphic encryption scheme
supporting the necessary operations on each column of input

data, and it then automatically rewrites the program to exe-
cute on encrypted data. We have formalized the approach
and proven strong correctness and security guarantees. Our
experimental results on three Hadoop MapReduce bench-
mark suites indicate that fully homomorphic encryption is
unnecessary most of the time, and as a result a rewritten pro-
gram provides strong confidentiality guarantees while incur-
ring only a modest execution-time slowdown.
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