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Abstract—Automated traceability has been investigated for
over a decade with promising results. However, a human analyst
is needed to vet the generated trace links to ensure their quality.
The process of vetting trace links is not trivial and while previous
studies have analyzed the performance of the human analyst,
they have not focused on the analyst’s information needs. The
aim of this study is to investigate what context information
the human analyst needs. We used design science research, in
which we conducted interviews with ten practitioners in the
traceability area to understand the information needed by human
analysts. We then compared the information collected from
the interviews with existing literature. We created a prototype
tool that presents this information to the human analyst. To
further understand the role of context information, we conducted
a controlled experiment with 33 participants. Our interviews
reveal that human analysts need information from three different
sources: 1) from the artifacts connected by the link, 2) from
the traceability information model, and 3) from the tracing
algorithm. The experiment results show that the content of
the connected artifacts is more useful to the analyst than the
contextual information of the artifacts.

I. INTRODUCTION

Traceability is regarded as important in software and systems

engineering [1], [2]; however, its adoption across many indus-

trial sectors is still quite low [3]. One of the main inhibitors

to adoption is the cost of creating and maintaining traceability

links [4], [5]. To combat this challenge, many automated

techniques for creating and maintaining trace links have been

proposed [6] including techniques based on information

retrieval [7], [8], machine learning [9], deep learning [10], rule-

based [11], and repository mining [12]. Automated techniques

are promising, since they could potentially eliminate the manual

work of creating and updating trace links. However, current

solutions do not yield perfect results in terms of either precision

or recall [8], [13]. Human analysts therefore need to inspect

the generated trace links and make a final decision on their

correctness. We refer to the task of inspecting automatically

generated links to confirm true links and reject false links as

“vetting.” The task of vetting trace links is tedious, and it has

been observed that, in some cases, instead of improving the

accuracy of the generated trace links, human analysts actually

decrease their quality [14].

Researchers have conducted two types of studies on the

traceability vetting process: studies that investigate the impact

of varying the accuracy of the generated traceability model

and studies that build and evaluate tools to support analysts.

Regarding the former line of research, Cuddeback et al. [14]

showed that while human analysts tend to improve the trace

model if it has a low precision and recall, they tend to degrade

the quality of the trace model if it initially has high precision

and recall. Regarding the latter line of research, Hayes et

al. [15], e.g., developed RETRO, a traceability management

tool that generates links automatically and presents them to

a human analyst for vetting. The tool offers features such as

global tracing, local tracing, and filtering the generated links

based on a score from the tracing algorithm. The main focus of

such studies is the usability of the tool and which benefits for

vetting trace links it provides over a manual tracing approach.

However, further empirical studies are needed to understand

which factors influence human analysts’ decisions when vetting

trace links in order to improve this process [16], [17] within

specific software engineering contexts [18].

In this study, we take a different perspective and hypothesize

that the task of vetting automatically generated links can be

improved if the traceability tool provides useful information

to the human analysts. We specifically investigate how context
information can be useful to the human analyst. In our study,

we use the definition of context information from Abowd et

al. [19]: context information refers to any information that can

be used to characterize the development artifact – e.g., the

meta data of an artifact, such as the date it was created or

modified. In contrast, the content of the artifacts, such as the

code in a Java file or the textual description of a requirement,

is not considered context information. Our assumption is that

offering context information together with the content of the

artifacts will improve the decisions made by human analysts.

Our study has two main contributions. First, we conduct an

empirical investigation investigating what context information

is needed by human analysts. We collect data from practitioners

and compare it to existing literature. Second, we investigate the

effect of context information for supporting the human analyst

during the vetting task. The study addresses the following

research questions:
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RQ 1: What context information is useful to human analysts

when vetting trace links?

RQ 2: To what extent does this information help analysts to

make correct decisions?

The remainder of the paper is structured as follows. Section II

provides an overview of the related work in the area of vetting

trace links while Section III describes our research methodology.

Our results are described in Sections IV, V, VI, and VII, while

Section VIII discusses the results with respect to existing

research. We conclude with a discussion of threats to validity

in Section IX and then summarize our findings in Section X.

II. RELATED WORK

Related work primarily falls under the two areas of vetting

trace links and tools for supporting human analysts in the

vetting task. We discuss each of these areas in this section.

A. Performance of human analysts in vetting trace links

Several studies confirm that human analysts make mistakes

when vetting automatically generated trace links. Cuddeback et

al. [14] studied the performance of human analysts in evaluating

the correctness of generated trace links. They showed that

humans often degrade the accuracy of generated links by

accepting wrong links and rejecting correct links. As a result of

these findings, researchers have studied factors that contribute

to human analysts’ decision making in order to design tools

to improve the quality of human-vetted links.

Dekhtyar et al. [20] investigated several factors that may

influence the accuracy of trace links produced as a result of

human decision making. They showed that the quality of the

initial trace link set and the effort in analyzing the links both

made a difference in the final accuracy. Sets of trace links that

started with high recall and precision tended to decrease in both

recall and precision, while sets that started with low recall and

low precision led to improvements in both recall and precision.

Similarly, a starting set with a high precision and low recall led

to improvements in recall but decreases in precision, and vice

versa. They also observed that analysts who reported investing

more effort in vetting the links often ended up reducing recall

by rejecting true links. These findings align with those from

similar experiments reported by Cuddeback et al. [14] and

Kong et al. [21]. One possible explanation for their results

is the presence of gray links, i.e., those links which capture

meaningful associations between artifacts, but are ambiguous

because they are only relevant for certain software engineering

tasks [18].

Additionally, Kong et al. [22], studied how humans make

correct and incorrect decisions by investigating logs recorded

during the vetting process. They identified several strategies

that analysts use to make decisions such as “first good link”

(participants focusing on finding the first good link) and “accept-

focused” (where participants only accepted links and never

explicitly rejected links). This study also showed how the

tracing experience of the analyst and effort spent on vetting

traces affects the quality of the final set of traceability links.

Table I
INTERVIEW SUBJECTS

Subject Role Domain

A Business Analyst Finance
B Software Architect Automotive
C Practice area lead, software and license

handling
Telecommunication

D Software Lead Military
E Requirements engineering researcher IT Consultancy
F Research Fellow Automotive
G System Engineer Software Development
H Requirements engineering researcher IT Consultancy
I Verification and Validation analyst Space
J Senior Software Architect Automotive

Another study reported by Dekhtyar and Hilton [23] investi-

gated the strength and weaknesses of human analysis versus

automated tracing techniques in order to identify how the two

approaches could best complement each other. They proposed

using an automated technique that identifies links which human

analysts would be more likely to miss.

Our study, however, takes a different approach by studying

context information that can be presented to the human analyst

in order to make the decision process easier and more accurate.

Kong et al. [21] already observed that during the vetting task

some analysts go back to review the connected artifacts and

other artifacts in the data set before they decide on a link. This

implies that the analysts seek to understand the artifacts and

how they fit together in the data set in order to make decisions.

B. Tools for vetting trace links

There are several research tools that support the vetting

of trace links. It is important to note that not all tools that

can generate trace links offer functionality for vetting those

links. Many research tools stop at the generation stage (see,

e.g., [24]), because they are focused on presenting or improving

certain automated techniques to generate the links, and are not

interested in further steps such as vetting or utilizing links.

The main functionalities provided by tools that support link

vetting are: generating links, presenting them to the analyst,

and finally allowing the analyst to accept correct links and

to reject incorrect links. Some tools also allow the analyst to

search for missing links [15], [25] and to perform coverage

analysis for completeness of links [26]. To the best of our

knowledge, there are six tools that support vetting of trace

links: RETRO [15], ADAMS [27], Poirot [28], TraCter [29],

TraceME [26], and ART-Assist [30]. A deeper analysis of these

tools is presented in Section V.

III. RESEARCH METHOD

The study was conducted using the design science research

method [31], [32] in which a problem is iteratively investigated

while implementing suitable artifacts to solve the problem

and evaluating the effectiveness of the solution. We utilized

a combination of techniques based on interviews, literature

review, and a series of controlled experiments. The process

was conducted in three distinct iterations.
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A. Interviews and Identification of Existing Tools

In the first iteration, we conducted a series of semi-structured

interviews to investigate what information affects human

analysts’ decisions when vetting traceability links. We first

designed an interview guide1, for which the questions were

reviewed and re-written by four researchers across several

iterations. We then tested this interview guide by conducting

one pilot interview in order to establish its soundness and

to improve the guide. After the pilot, we interviewed ten

practitioners with experience in creating and maintaining

traceability links. We used convenience sampling where our aim

was to interview practitioners with experience in traceability

while maximizing diversity in our interview sample. All the

interviewees were recruited through our personal connections

and were from different domains. Table I provides a summary

of our interviewees, their roles, and the domains in which they

work. The interviews focused on identifying which types of

information analysts used to create traceability links and how

trace links are evaluated in the interviewee’s company. We

assume that this same information should also be available

during the process of vetting automatically generated trace links.

In addition, we asked the interviewees about their experience

with automatic tools for traceability link generation and how

they would expect such tools to work. For each interview,

we summarized a set of information and information sources

discussed by the interviewee in a spreadsheet.

To further strengthen our results, in the second iteration of

our study, we researched existing literature on tools that support

the vetting of trace links that have already been published in

scientific literature. Our aim was to identify if these tools

already offer the information collected from the interviews

and to identify any gaps that might exist. We conducted our

literature search by starting with previously identified papers

on trace link vetting and then using snowballing to extend the

scope. Many of these papers are already discussed in Section

II describing related work.

B. Experimental setup

To validate the usefulness of context information during

the vetting process, we created a prototype by extending an

open source traceability management tool, Eclipse Capra [33].

We chose to extend Eclipse Capra for this study because

it is a customizable open source tool that contains basic

traceability features such as creating and visualizing trace

links. Additionally, two of the authors are developers of the

tool. Details of how Eclipse Capra was extended are provided

in Section VI. Using the prototype we conducted an experiment

with 33 participants in order to understand how various types

of context information affects the human analyst’s decision

making process.

Experiment Variables: The experiment was designed to

investigate whether providing analysts with contextual informa-

tion from connected artifacts would affect their performance in

vetting trace links. Examples of contextual data include meta

1https://tinyurl.com/yauypdhn

data (e.g., date created), attributes (e.g., status or priority),

location (e.g., subsystem), and connectivity to other artifacts.

The independent variable was therefore context information of

the artifacts, where one group was given contextual information

and the other was not. The choice of contextual information to

include in our study was driven by results from our interviews

and literature review as reported in Section IV. We measured

three dependent variables: 1) recall of the final trace links; 2)

precision of the final trace links; and finally 3) the number of

links investigated by the analyst within the allotted time.

To reduce the number of confounding factors, we controlled

three variables: 1) the initial precision of the trace links, 2)

the initial recall of the trace links, and 3) the order in which

the experiment subjects vetted the trace links. All analysts

were instructed to review the provided list of links from top

to bottom as provided to ensure that they inspected the same

links without intentionally skipping any links. This also made

it possible for us to identify links investigated by the analysts

for which they did not indicate a decision.

In the experiment, an analyst who produced trace links with

higher final recall, higher final precision, and who investigated

more links was considered to have outperformed an analyst with

lower final recall, lower final precision, and a lower number

of investigated links.

Based on our research questions, we formulated the following

hypotheses to investigate the three dependent variables:

Ho1 Providing human analysts with context information about

the artifacts connected by trace links has no effect on the

precision of the final set of trace links

Ho2 Providing human analysts with context information about

the artifacts connected by trace links has no effect on the

recall of the final set of trace links

Ho3 Providing human analysts with context information about

the artifacts connected by trace links has no effect on the

number of links investigated during a given time period

These hypotheses guided our evaluation into how and to

what extent context information is useful to the analyst (RQ2).

C. Experiment Materials

We describe the experiment artifacts that the candidates

interacted with as well as the data collection instruments.

Experiment Artifacts: We used Medfleet, a system devel-

oped by Software Engineering graduate students as part of a

five month studio course [34]. We selected this system because

it contains realistic artifacts of a software development project,

and has been used in a previous publication [35] with a set of

verified traceability links. Medfleet enables its users to request

emergency medical kits to be delivered using small Unmanned

Aerial Systems. The project artifacts include requirements,

environmental assumptions, architectural components, code,

and fault descriptions. Requirements, assumptions, and faults

were originally captured in Jira, while code was written in

both Java and Python and stored in GitHub. The trace links

provided by the project served as a gold standard and consisted

of 288 true links. In the experiment we used a subset of the

artifacts – requirements, Java code implementing the mission
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control subsystem, assumptions, and faults to reduce the scope

and make the experiment more manageable. We used the

Vector Space Model with Term Frequency-Inverse Document

Frequency (TF-IDF) technique to generate three types of

traceability links: links from requirements to code, links from

requirements to assumptions, and links from requirements to

faults. TF-IDF is an information retrieval technique that not

only uses text similarity to predict how similar two artifacts

are, but also uses term frequency [36]. The weight of the terms

is calculated as a product of the frequency of the term in a

given document and the inverse of the frequency of the term in

all the documents. This technique gives an indication of how

important a term is in a given document. The total number of

links generated was 1239 with a precision of 42% and recall

of 33%.

Data Collection Instruments: We created two question-

naires to collect data from our experiment: 1) a pre-experiment

questionnaire that collected information about the participants’

experience with software development, use of the Eclipse IDE

(on which Eclipse Capra is based), and experience with trace-

ability, and 2) a post-experiment questionnaire that collected

feedback on the experiment and the different features of the

tool with which users interacted. Additionally, we recorded the

screen during the experiment. To collect information about the

vetted links, we stored all the links that the analyst accepted

in a list of accepted links and all the links that the analyst

rejected in a list of rejected links. These lists were stored as

EMF models in Eclipse Capra.

Experiment Subjects: We used convenience sampling to

identify diverse participants from our personal connections. As

a result, the experiment was conducted with 33 participants

of which six were Bachelor students, eight were Masters

students, twelve were PhD students, and seven were industry

practitioners. The students were all software engineering

students from two universities and therefore had all taken

several courses on software development. The subjects were

randomly divided into two groups, the control group (16

subjects) and the experiment group (17 subjects). Out of the

33 subjects who took part in the experiment, we discarded

the results of five subjects because they did not follow the

instructions of the experiment, for example, by evaluating trace

links in a different order from the instructions or evaluating

only one type of trace links. These results were excluded in

order to avoid bias.

Experiment Groups: The control group was provided with

a version of the tool which did not display context information,

while the experiment group was provided with a version of

the tool with context information of the connected artifacts.

This means that the control group had features F1 to F8 and

the experiment group had features F1 to F8 and additionally

features F9 and F10 (cf. Section VI).

Experiment Procedure: All experimental sessions began

with one of the researchers giving a scripted brief introduction

to traceability and automated techniques of generating trace

links. This was followed by explaining the Medfleet system

and the vetting task to the participants. During this session,

participants were allowed to ask questions. The instructions

of the experiment were also distributed in paper format for

participants to read 2. Before the experiment, participants filled

in the pre-experiment questionnaire. The participants were then

given 45 minutes to vet as many links as they could. At the end

of the experiment, we collected the final traceability models the

participants produced as well as video recordings of the screen

for the entire 45 minute vetting session. The participants also

filled in a post-experiment questionnaire containing questions

about the task and which features of the tool they found useful.

The questionnaires for each group are available online 34

IV. INTERVIEW RESULTS

From the interviews, we learned that the task of vetting trace

links is conducted in companies, even when trace links are

created manually. In safety-critical domains, trace links must

be carefully reviewed before submission to the certification

body [37] . The information used to evaluate the correctness

of a trace link is therefore used during both the link creation

and the link assessment processes. As a result, information

collected from the interviews was derived from two activities,

that of creating and reviewing the links. We categorized the

information that the interviewees reported into three main

categories of information derived from 1) connected artifacts

(Section IV-A), 2) the traceability information model showing

connections between artifact types (Section IV-B), and 3)

results from the tracing algorithm (Section IV-C). Additionally,

interviewees reported how they would like this type of

information to be represented or displayed (Section IV-D).

From these results we ultimately selected specific contextual

and content-based elements to be included in our tool and used

in the evaluation.

A. Information from the connected artifacts

Six out of ten interviewees reported that they create trace

links based on their knowledge of the system. They use

their experience to determine if two artifacts (e.g., a specific

requirement and a specific Java class) should be connected or

not. However, when asked what information they would need

if they did not have such system experience, they reported the

following:

• The content of the connected artifacts: this refers to the

information that makes up the artifacts, e.g., the content

of the Java file represented by the actual lines of code,

or content of a requirement represented by its textual

description.

• The meta data of the connected artifacts, such as who

created it, when it was modified, and who modified it.

• Other artifacts connected to the artifacts: This refers to

other development artifacts that already have established

links with the investigated artifacts, e.g., when deciding

if requirement X is connected to a Java file Y, one may

2https://tinyurl.com/y98jpdtg
3https://goo.gl/forms/zdY23Gqjk1rixF4U2
4https://goo.gl/forms/jMRKW9yWitHDj4JI3
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first want to know which other requirements are related

to requirement X or to the Java file Y.

• The location of the artifacts in a project, system, or

subsystem.

B. Information from the traceability information model

Before creating or reviewing trace links, all the interviewees

reported that it is necessary to understand how the different

artifacts in the project are related to each other. For instance,

interviewee E reported that the company has a metamodel

that specifies how the artifacts should be connected. Such a

metamodel or traceability information model (TIM) contains

information indicating specifically which types of artifacts may

be linked together within a given project. For example, a link

might be allowed from an acceptance test to a requirement,

but not directly from the acceptance test to code. In summary,

users need the following information from the TIM:

• A definition of which links are allowed and which

are disallowed. The TIM may also contain additional

information about cardinality constraints.

• The type of link that is being created or reviewed. For

TIMs that contain diverse link types (e.g., tests, refines,

describes), the analysts need to understand the type of

link they are currently vetting before making a decision.

C. Information from the tracing algorithm

While many interviewees were aware of techniques for

automatically generating trace links, only three had actually

used such tools and had first-hand experience of tracing

algorithms. For interviewees that had no experience with

these tools, the interviewer carefully described how they

worked. We then asked all participants what information they

would expect to see if they used an automated tool to create

links. This was first asked as an open question, and if the

interviewees did not have any ideas, we suggested options.

All the interviewees agreed that a confidence score for each

link would be useful. Additionally, some of the interviewees

agreed that for information retrieval techniques that use text

matching, seeing which exact words or phrases from the

source artifacts matched words or phrases in the target artifact

would be beneficial. Therefore we concluded that the following

information should be available for evaluating trace links:

• A score representing the similarity of two artifacts. This

score is calculated by the information retrieval algorithm

that is used to generate the links.

• Words or phrases from the source artifact that matched

words or phrases in the target artifact.

D. Presentation of the information

Especially for large projects, the number of artifacts and

trace links can be overwhelming and therefore tool support

is critical for creating and reviewing links. Our interviewees

reported that when reviewing trace links, they would like to

search for artifacts and filter the links that they are reviewing.

Additionally, it was reported that being able to review one

Table II
CONTEXT INFORMATION

Context
Information

Description Example
(w.r.t. Requirement (RQ-01))

Meta data This refers to data describing
the artifact e.g., who created
the artifact, when it was cre-
ated, when it was modified

created on: May 19, 2016,
createdBy: SMaro

Location Where the artifact is located
and in which system

MedFleet/Requirements.xlxs

Connected
artifacts

Other artifacts linked to the
artifact in question

Assumption (A-01),
Fault (F-01)

type of trace link (e.g., requirements to code) is beneficial,

compared to viewing all the trace link types at once.

Two out of ten interviewees reported that they would like

to have a graphical representation of the trace links. However,

they noted that since a large amount of trace links can lead

to large graphs which are complex to read, the traceability

management tool should allow filtering of the links to display

manageable graphs.

From this category, we identified two features that should

be included:

• Ability to search for and filter trace links.

• Ability to view trace links in a graphical representation.

E. Context information

Since the interviewees reported generally on what informa-

tion is useful when vetting links, we collected this information

and used our definition of context information (information

that can be used to characterize the development artifact) to

derive context information relevant for trace links vetting. This

information is summarized and exemplified in Table II.

V. INVESTIGATION OF EXISTING TOOLS

We compared the results from the interviews to available liter-

ature on vetting traceability links. Specifically, we investigated

research tools that support vetting of traceability links. Our

literature search started with a few papers that are prominent

in the field, e.g., [15], [14], [20] and used snowballing to

acquire more papers. We found six tools described in scientific

literature that support traceability link generation and the

activity of vetting traceability links. These tools and their

features are summarized in Table III along with the extended

Eclipse Capra. Our investigation was focused on features that

provide information to the human analyst and did not focus on

analyzing the different tracing strategies provided by the tools.

We used this knowledge from the existing tools as inspiration

for our own implementation of features that were suggested

by the interviewees. The implementation decisions and details

are discussed in the next section.

VI. PROTOTYPE IMPLEMENTATION

In order to perform our evaluation using a controlled exper-

iment, our prototype needed to automatically generate trace

links given a set of development artifacts and then to present
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Table III
INFORMATION PROVIDED BY EXISTING TOOLS THAT SUPPORT TRACE LINKS VETTING. “YES”: INFORMATION/FEATURE PRESENT; “NO”:

INFORMATION/FEATURE NOT PRESENT, “N/A”: NOT APPLICABLE; “UNK.”: NOT ENOUGH INFORMATION AVAILABLE TO DETERMINE IF FEATURE PRESENT.

Information RETRO Poirot TraceME AdamsTrace TraCter ART-Assist Eclipse Capra

Navigation to full artifact content Yes No Unk. Unk. Yes Yes Yes
Score from the tracing algorithm (Similarity measure) Yes Yes Yes Yes No No Yes
Matching terms from the source in the target artifact Yes Yes No Yes No No Yes
Text search Yes Yes Unk. Yes Unk. Unk. No
Trace link type N/A No Yes Yes Yes Yes Yes
Graphical representations No Yes Yes No No No Yes
Accepted links Yes Yes Yes Yes Yes Yes Yes
Location of the artifact Unk. No Unk. Unk. Yes Yes Yes
Summary of the artifacts (e.g., Java class documentation) No No No No No Yes No

these links for vetting, together with context information, to

the human analyst. To generate the initial set of trace links,

we extended Eclipse Capra to use the Vector Space Model –

Term Frequency–Inverse Document Frequency (TF-IDF) [36].

This technique is proven useful in previous studies [30].

To provide the ability to vet the generated traceability links,

we implemented ten features identified through the interviews.

Features 1 to 8 provided basic functionality for vetting links,

while features 9 and 10 presented context information. Our

choice of what context information to include and evaluate is

based on the results of the interviews. Three of our interviewees

reported that meta data of the connected artifact was useful,

four mentioned location of artifacts (e.g., artifact X and Y are

both from the same subsystem or package) and five mentioned

relationship to other artifacts. Because our aim was to study

whether a type of information, and not its exact representation,

was important, we made every effort to select a simple solution

for each type of information. We provide the rationale for the

way each feature was implemented below and illustrate some

of these features in Figure 1.

F1: A list of trace links generated from the tool: We

displayed trace links in the form of a tree list where

the parent of the tree represents the source artifact and

the children of the tree represent the target artifact. This

type of display is what is known as local tracing, where

the user can view links related to one artifact at a time.

We chose this implementation since it was preferred by

users in a previous study reported by Hayes et al. [15].

F2: Ability to open the artifacts connected by the links:

To make sure that users can access the content of the

connected artifacts, we implemented functionality to open

the connected artifact for each of the artifacts This

feature is present in some of the tools, e.g., in RETRO,

TraCter, and ART-Assist. In RETRO, the content of the

requirements are displayed as text. In TraCter and ART-

Assist, connected Java files are opened in a pop-up window.

In our case, we decided to use the native environments

of the tools that were used to create the artifacts. For

instance, all Java files are opened in a Java editor so that

features such as syntax highlighting are available.

F3: A display of similarity scores generated by the tracing
algorithms: With the exception of TraCter and ART-

Assist, the rest of the tools display the similarity score

from the trace generation algorithm. This feature has

also been highly ranked by user studies performed on

RETRO [15] and ADAMS [7]. There were two possibili-

ties to display this score. One way is to display the raw

value (or a percentage) and the other way is to translate

this into a confidence value as done in Poirot [28]. We

chose to display the values as raw numbers since this has

been shown to work and was highly rated [7], [15] while

there are no user studies on the alternative by Poirot.

F4: A graphical representation of the links: We imple-

mented a graphical representation of the links that displays

trace links as a graph. The source of the trace link was the

root node of the graph, while the targets of the trace link

were the child nodes. We did not implement any transitive

links, i.e., displaying more than one level of traceability,

because three of our interviewees had indicated that for

the purpose of vetting the trace links, they could only

deal with one level of trace links at a time.

F5: A view of the Traceability Information Model (TIM):
This feature was requested by all interviewees. Addition-

ally, since we wanted our tool to support diverse link

types, displaying the TIM to the user gives information

on which links are allowed and the different constraints

on the different link types. Several tools such as RETRO,

only support one type of trace link, i.e., tracing high level

requirements to low level requirements, and therefore

displaying the TIM was not a required feature.

F6: Ability to see the link type: This feature is related to

feature F5. When vetting the trace links, the user should

be able to know which link type they are currently vetting.

We implemented this by adding the link type name, e.g.,

“satisfies,” “realizes,” or “requirements to code” depending

on how the TIM is defined for the project.

F7: Ability to see terms from the source artifacts that
matched terms from the target artifacts: This feature

enables the user to see which term in the source artifact

matched terms in the target artifact. The most common

way of implementing this is through highlighting these

terms in the source artifact and in the target artifact [15],

[28]. In our case, due to technical limitations (it is tricky

to implement multiple highlighting in the Java editor),we
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Table IV
SOFTWARE DEVELOPMENT EXPERIENCE OF THE EXPERIMENT SUBJECTS

<6
months

6-12
months

1-3
years

3-6
years

>6
years

Experience with software
development

2 2 11 5 8

Experience with Eclipse 9 2 9 3 5

followed a simpler solution and used markers to indicate

lines where these terms occurred. Since there can be many

terms, we only displayed the top three terms according to

their TF-IDF weights. This feature was only implemented

for Java files.

F8: Ability to accept a link and reject a link: This feature

was implemented to allow the analyst to accept and reject

links by using the trace link list provided. The analyst

could accept/reject one target for a link at a time or could

accept/reject all suggested targets at once. This kind of

implementation has been shown to work in RETRO and

TraceME. When an analyst accepts a link, it is removed

from the candidate trace link list and added to a list of

confirmed links. When an analyst rejects a trace link as

incorrect, the link is removed from the candidate trace

links and added to a separate list of rejected links. Storing

both the list of accepted links and rejected links enables

the tool to keep track of what the analyst has already

vetted in order not to show these links to the analyst

again for vetting.

F9: Ability to hover over the connected items and see
context information for the artifacts: Displaying context

information (e.g., date created, date modified, who created

and modified the artifact, and the location of the file) was

a new feature that has not been implemented in existing

tools, with the exception of the location of the artifact in

ART-Assist. We implemented the display of the context

information based on the suggestion by the interviewees

and show the context information in a tooltip when the

mouse hovers over an artifact.

F10: The ability to see already accepted links: Other links

that have already been accepted and contain the artifact

that is currently being inspected are additional context

information. When analyzing links related to requirement

X, e.g., the analyst would like to know if other links to

requirement X already exist. While the existing tools that

allow the analyst to view accepted links show the entire

list, in our case the user can see only accepted links related

to the artifacts the user is currently inspecting. If the user

is vetting links related to requirement X, then the user

can only see accepted links that contain requirement X

either as a source or a target. This implementation is due

to the fact that, in our case, the accepted links are a form

of context information while other tools show accepted

links to indicate progress to the user.

VII. EXPERIMENT RESULTS

In this section, we report results for all participants who

successfully completed the study (i.e., 14 in the control group,

and 14 in the experiment group). The results of the pre-

experiment questionnaire are shown in Table IV. Most of

our participants had at least one year of experience with both

software development and Eclipse. However, only eight of our

participants had experience with traceability activities.

We recorded the total number of accepted links, total number

of rejected links, number of correct accepts, number of correct

rejects, and the total number of links investigated. We also

computed the final recall and precision.

As can be seen from the results in Table V, the performance

of the two groups was quite similar. Since the data was not

normally distributed, we used the Wilcoxon-Mann-Whitney

U Test [38] with an alpha of 0.05 to determine if there was a

statistically significant difference between the two groups for

the following three variables: 1) the recall of the final trace

link set, 2) the precision of the final trace link set, and 3) the

number of links investigated by the analyst in the given time.

The results show that for all three variables, the difference is

not statistically different between the two groups. Therefore

we cannot reject the null hypotheses (cf. Section III).

To get a better understanding of why there was no significant

difference between the two groups, we further analyzed the

post-experiment questionnaire results. Each group had a post-

experiment survey that asked about the different information

provided in the tool and their perception of how useful this

information was for the vetting task. Since the experiment group

had the contextual information, we analyzed their perception

on this extra information. The survey included three questions

related to the extra information given to the test group. The

first two questions were on the metadata of the connected

artifacts. All the questions were to be answered on a 5-point

Likert scale, where 1 is strongly disagree, 2 is disagree, 3 is

neutral, 4 is agree, and 5 is strongly agree. The first statement

was “Knowing who created the connected artifacts was useful

when vetting the trace links.” For this statement, eight of

the respondents said they strongly disagree, three disagreed,

only one responded with agree, and two did not answer the

question. A similar trend was seen for the second statement

which was “Knowing when the connected artifacts were created

was useful when vetting the trace links.” For this statement,

eight respondents stated that they strongly disagree, three stated

that they disagreed, while only two agreed to the statement,

and one was neutral (cf. Figure 2). We were able to ask some

participants why they thought this information was not useful

during their vetting task. Most of them responded that since

they did not know the system or the people involved in creating

the system, this information was not useful. However, they

noted that if they were involved in the development of the

system and knew the participants, then this information might

have been useful. This corresponds to what our interviewees

reported, that their experience with the system is important

when vetting trace links.
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Figure 1. A screen shot of the trace links vetting tool with indicators for the different features.

Figures 2 and 3 show that three features were perceived as

most useful during the vetting task: 1) the ability to open the

connected artifacts, 2) the ability to know which link type is

being vetted, and 3) knowing the similarity score of the link

from the algorithm. This information also explains why our

null hypotheses could not be rejected since the content of the

connected artifacts was considered more useful than contextual

information of the connected artifacts.

We conducted further analysis on our data to understand if

there was a significant difference between the performance of

industry participants and the performance of students. Due to a

lower sample size of industry participants (four in the control

group and one in the test group), we could only compare this

for the control group. For both the precision and total number of

links vetted, using the Wilcoxon-Mann-Whitney U Test, there is

no statistically significant difference between the performance

of the two groups. However, for recall, we found that there is

a significant difference between the groups, where the student

group had slightly higher recall (see Table VI). Going back to

the definition of recall (the number of correct links identified

over the total number of correct links present in that set of

links vetted), we can see that the students that had higher recall

are those that vetted a small number of links. Subject F (in

Table VI), e.g., did not reject any links. This therefore does

not mean that the students had better performance, only that

they vetted a smaller number of links and therefore reduced

their chances of rejecting correct links.

Analyzing the post-experiment questionnaire for the industry

participants and student participants, we see the same trend in

the top three features that were found to be useful during the

vetting process: 1) the ability to open the connected artifacts,

2) the ability to know which link type is being vetted, and 3)

knowing the similarity score of the link from the algorithm

(cf. Figure 4).

VIII. DISCUSSION

In this section, we discuss the results of our study with

respect to our research questions. As previously stated, our

interviews revealed that three sources of information are useful

during trace link vetting: 1) information from the connected

artifacts, 2) information from the traceability metamodel, and

Table V
EXPERIMENT RESULTS

Test Group Control Group

Subject ID Accepted Rejected Investigated Precision (%) Recall (%) Subject ID Accepted Rejected Investigated Precision (%) Recall (%)

TS01 100 33 149 13 87 CI01 54 81 135 19 56
TS02 79 85 164 14 61 CS01 49 44 98 20 67
TS03 27 38 66 33 60 CS02 12 2 19 25 100
TS04 60 13 95 20 92 CS03 111 49 160 10 61
TS05 58 39 128 19 92 CS04 17 67 84 47 53
TS06 49 128 177 14 39 CI02 46 92 138 20 50
TS07 130 207 337 13 63 CS05 47 84 134 21 56
TI01 73 61 134 16 67 CS06 103 56 159 16 87
TS08 14 57 71 29 27 CS07 42 0 42 24 100
TS09 37 20 57 32 80 CI03 73 36 109 19 82
TS10 40 55 95 28 69 CS08 210 113 323 11 92
TS11 98 1 99 16 100 CS09 17 19 36 29 56
TS12 82 26 108 16 76 CS10 47 7 54 32 100
TS13 270 53 323 9 96 CSI04 64 120 184 16 50

Average 79.79 58.29 143.07 19.50 72.02 Average 63.71 55 119.64 22.04 72.23
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Figure 2. Results of the test group from the post-experiment questionnaire

Figure 3. Results of the control group from the post-experiment questionnaire

3) information from the tracing algorithm. We designed an

experiment to validate how context information affects the

analyst’s performance when vetting trace links. The context

information we studied came from the first source of infor-

mation i.e., the connected artifacts. Our experiment showed

that there is no statistically significant difference between the

group that was provided with context information and the group

that was not. The experiment also showed that the analysts

Table VI
PERFORMANCE OF INDUSTRY SUBJECTS VS. STUDENT SUBJECTS

Industry Subjects

Subject Accepted Rejected Investigated Precision Recall
A 54 81 135 19 56
B 64 120 184 16 50
C 111 49 160 10 61
D 46 92 138 20 50

Average 68.75 85.5 154.25 16.25 54.25
Student Subjects

A 49 44 98 20 67
B 12 2 19 25 100
C 17 67 84 47 53
D 47 84 134 21 56
E 103 56 159 16 89
F 42 0 42 24 100
G 73 36 109 19 82
H 210 113 323 11 92
I 17 19 36 29 56
J 47 7 54 32 100

Average 61.7 42.8 105.8 24.4 79.5

spent more time investigating the content of the artifacts than

investigating the context information provided. This could be

due to unfamiliarity with the system and its context, analysts

tried to understand the artifacts by looking at their content rather

than their context information. This behaviour of the analyst

is also supported by what was reported by the interviewees.

A majority reported that familiarity and experience with the

system is important when vetting trace links.

While there are some differences between industry and

student participants (cf. Table VI), the difference is not

statistically significant. We believe that it is experience with the

particular system that plays a larger role in the performance of

the analyst instead of general software development experience.

The study by Dehtyar et al. [20] also shows neither experience

with software development nor tracing experience had an

influence on the analysts’ performance. We therefore suggest
that analysts who have system experience be assigned to the
task of vetting traceability links. Developers should, e.g., be

assigned to vet links between requirements and code and safety

analysts should be assigned to vet links between requirements

and faults. However, further research is needed to support this.

Regarding the second source of information, i.e., the trace-

ability information model, participants from both the control

and the experiment group thought that knowing the link type of

the trace link was useful, but having the entire TIM visible to

them at all times was not very useful. This could be because the

experiment only included four types of elements (requirements,

code, assumptions, and faults) and therefore the TIM was small.

The analysts only had to see the TIM once to understand which

links were possible. The information from the third source, i.e.,
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Figure 4. Comparison of Industry participants vs. student participants

the tracing algorithm, such as the similarity score was also

perceived as useful by the experiment participants which is in

line with the study by Hayes et al. [15].

IX. THREATS TO VALIDITY

In this section we discuss the threats to validity that are

relevant to our study. Since we used multiple research methods

we discuss the threats in a combined manner.

Construct Validity: We selected interviewees who had

experience with tracing and explained the study prior to

the interview. For the experiment, a preliminary session

introduced traceability and the aim of the study. However, some

participants did not follow the instructions of the experiment.

To limit this threat to construct validity, we viewed the screen

videos of all participants to exclude these participants.

Internal Validity: The aim of the experiment was to

evaluate if the context information makes the analyst more

effective. There are four confounding factors that could affect

the results of the experiment: tracing experience of the analyst,

implementation of link vetting features in Eclipse Capra, the

tracing strategy used by the analyst, and the system used for

the experiment (MedFleet). While the study by Dekhtyar et

al. [20] shows that tracing experience has no effect on the

performance of the analyst, it also used students with limited

tracing experience. In our study, only eight of the experiment

participants had experience with tracing. Conducting the

experiment with traceability experts could lead to different

results. Regarding Eclipse Capra, we made sure that we only

implemented features that were requested by the interviewees

and also evaluated existing tools to see how these features were

previously implemented. Regarding the tracing strategy, the

experiment participants were asked to vet the list of trace

links from top to bottom. This ensured that the analysts

did not skip any links without investigating them. However,

the tracing strategies still varied as some analysts skipped

the links they did not understand immediately, while others

investigated the link for a longer time before making the

decision of skipping the links. This resulted in a variation

on the number of links investigated.Regarding the system used

for the experiment, we selected a system containing artifacts

that are as close to reality as possible. Even though MedFleet

was developed by students, it was in a course where students

learned software development skills and had to follow proper

software development procedures just like in industry. However,

this does not guarantee that the system selected had no effect

on the study. To properly rule out this internal validity threat,

further experiments are needed with different systems.

External Validity: We took several steps to ensure that our

study included diverse participants. We interviewed practition-

ers with different roles, from different companies, and different

countries. However, since not all interviewed participants had

experience with trace links vetting, we cannot generalize

that we elicited all possible context information. Additionally,

since the number of interviewees we had was low, we cannot

generalize the results. In the experiment, we used participants

from different companies and two different universities, with

different levels of education and development experience.

Reliability: We documented our process in the research

method section (Section III) and have also published our

interview guide to make sure that our study can be repeated. Our

prototype tool is also accessible as a virtual machine, meaning

that the experiment can be repeated by other researchers.

X. CONCLUSION

In this study, we investigated what information is useful to

human analysts when vetting automatically generated traceabil-

ity links. We specifically investigated if context information

can improve the analyst’s vetting performance when vetting

traceability links. Our interview results reveal three sources

of information that can be useful to the analyst. However, our

experiment presents evidence to support the conclusion, though

not statistically significantly, that context information does not

make the analyst more effective during the vetting process. The

experiment also shows that analysts made their decisions on

trace links by reading the content of the artifacts rather than

using context information. Our study shows that the experience

of the analyst with the particular system matters more than their

general software development experience or tracing experience.

We conclude that since the vetting process is a human-centric

process, further studies are needed to investigate how this

process can be improved by traceability tools to make the

analyst more effective.
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A. Zisman, “Software traceability: trends and future directions,” in
Proceedings of the on Future of Software Engineering. ACM, 2014,
pp. 55–69.

[4] C. Ingram and S. Riddle, “Cost-benefits of traceability,” in Software and
Systems Traceability. Springer, 2012, pp. 23–42.

[5] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher, “Determining the
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based generation of requirements traceability relations,” Journal of
Systems and Software, vol. 72, no. 2, pp. 105–127, 2004. [Online].
Available: https://doi.org/10.1016/S0164-1212(03)00242-5

[12] R. Michael, R. Jacob, G. Jin L.C., C. Jane, and M. Patrick, “Traceability
in the wild: Automatically augmenting incomplete trace links,” in
Proceedings of the 40th ACM/IEEE International Conference on Software
Engineering (ICSE ’18), 2018.

[13] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, “Information
retrieval methods for automated traceability recovery,” in Software and
systems traceability. Springer, 2012, pp. 71–98.

[14] D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated requirements
traceability: The study of human analysts,” in 18th IEEE International
Requirements Engineering Conference (RE’ 10). IEEE, 2010, pp. 231–
240.

[15] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadlamudi,
and A. April, “Requirements tracing on target (retro): improving software
maintenance through traceability recovery,” Innovations in Systems and
Software Engineering, vol. 3, no. 3, pp. 193–202, 2007.

[16] J. H. Hayes and A. Dekhtyar, “Humans in the traceability loop: can’t live
with’em, can’t live without’em,” in Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering
(TEFSE ’05). ACM, 2005, pp. 20–23.

[17] A. Mahmoud, “Toward an effective automated tracing process,” in 20th
IEEE International Conference on Program Comprehension (ICPC ’12),
June 2012, pp. 269–272.

[18] N. Niu, W. Wang, and A. Gupta, “Gray links in the use of requirements
traceability,” in Proceedings of the 24th International Symposium on
Foundations of Software Engineering, 2016, pp. 384–395.

[19] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in International Symposium on Handheld and Ubiquitous
Computing (HUC ’99). Springer, 1999, pp. 304–307.

[20] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and
W.-K. Kong, “On human analyst performance in assisted requirements
tracing: Statistical analysis,” in 19th IEEE International Requirements
Engineering Conference (RE’ 11). IEEE, 2011, pp. 111–120.

[21] W.-K. Kong, J. Huffman Hayes, A. Dekhtyar, and J. Holden, “How
do we trace requirements: an initial study of analyst behavior in trace
validation tasks,” in Proceedings of the 4th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE ’11).
ACM, 2011, pp. 32–39.

[22] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and O. Dekhtyar, “Process
improvement for traceability: A study of human fallibility,” in 20th IEEE
International Requirements Engineering Conference (RE’ 12). IEEE,
2012, pp. 31–40.

[23] A. Dekhtyar and M. Hilton, “Human recoverability index: a tracelab
experiment,” in Proceedings of the 7th International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE ’13).
IEEE, 2013, pp. 37–43.

[24] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability
with topic modeling,” in Proceedings of the 32nd ACM/IEEE international
conference on Software Engineering (ICSE ’10). ACM, 2010, pp. 95–
104.

[25] Y. Shin and J. Cleland-Huang, “A comparative evaluation of two user
feedback techniques for requirements trace retrieval,” in Proceedings of
the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento,
Italy, March 26-30, 2012, 2012, pp. 1069–1074. [Online]. Available:
http://doi.acm.org/10.1145/2245276.2231943

[26] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, and
A. Panichella, “Traceme: traceability management in eclipse,” in 28th
IEEE International Conference on Software Maintenance (ICSM ’12).
IEEE, 2012, pp. 642–645.

[27] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Adams re-trace:
A traceability recovery tool,” in 9th European Conference on Software
Maintenance and Reengineering (CSMR ’05). IEEE, 2005, pp. 32–41.

[28] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B. Khadra, C. Duan, and X. Zou, “Poirot: A distributed
tool supporting enterprise-wide automated traceability,” in 14th IEEE
International Requirements Engineering Conference (RE’ 06). IEEE,
2006, pp. 363–364.

[29] A. Mahmoud and N. Niu, “Tracter: A tool for candidate traceability
link clustering,” in 19th IEEE International Requirements Engineering
Conference (RE’ 11). IEEE, 2011, pp. 335–336.

[30] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, “Departures
from optimality: Understanding human analyst&#039;s information
foraging in assisted requirements tracing,” in Proceedings of the 2013
International Conference on Software Engineering (ICSE ’13), ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 572–581. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486864
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