

Fishback Stock and Options Trading Game

Senior Design Project Fall 2017

Team Members:
Caleb Cornett

Chad Stephenson
Melissa Shankle
Mitchell McClure

Customer:

Fishback Management & Research

1. High-Level Design
Our Options Trading game was designed to simulate the trading of Stock Options in an

effort to educate its users. With a simple, yet intuitive design, users will be able to begin playing
in a virtual stock market by searching for companies, buying options, and viewing their portfolio
and past transactions, all with real-time stock data for each company. To accomplish all of these
feats, the game will have three layers working in unison: User Interface, Data, External. Visually
this will be shown in Figure 1.1 as a High Level Architecture Diagram to display the structure of
the back end. Later on in the document more focused and detailed diagrams will be used to
demonstrate individual components and how they interact.

Figure 1.1: High Level Architecture Diagram of Options Trading App

The High Level structure of our game consists of three layers: User Interface, Data, and

External. Each layer interweaves with each other to provide the user with an experience that
educates them on options trading. The user will pick among screens and depending on the
screen, the User Interface layer will take the data structures extracted from the Data or External
layers and display them in a readable and appealing way. User Input will be broken up into the

four main gameplay loops: searching for a company, buying options, viewing portfolio and
transaction history. Depending on the screen and actions the user has taken, the presentation
of information and the information itself will change. However, for any useful information to be
displayed, it must be retrieved from either the Data or External Layers.

The data layer consists of Data Interpretation, which feeds off of Data Access. As long
as the user has been authenticated with Game Center ID, the Data Access layer will allow the
system to interact with the database and the External Layer. In the Data Interpretation layer, it
will interpret information gathered from the external layer that is relevant when a user completes
a transaction and stores it in a data structure. The Data Interpretation layer also displays the
data structures and External data in a way that the user can then interact with. Depending on
the user’s action and what screen it is on, different data will be retrieved. For example, on the
portfolio page, Available Funds and owned options will be displayed. After the user interacts and
performs further transactions with the data, such as using an option to buy more stock, the data
will be updated in the Database. The transaction data and other data stored in the database will
be based off initial data pulled from the External Layer for a company’s page.

All of the data and information displayed in the app stems from financial data extracted in
the External Layer. When a user views a company page, financial data is retrieved to display
relevant information to the user. If the user decides with this information to purchase an option,
the necessary data is stored or updated within the database. The external data is accessed
through third-party API’s such as Google Finance. To summarize, the User Interface layer
shows information gathered from the External Layer on Company Pages, other pages show
information retrieved from the Database which was also stored from data retrieved from the
External Layer.

2. Detailed Design

2.1 Detailed Class Diagram (Caleb)
The app implements the Model-View-Controller (MVC) design pattern, so most classes

in the program will fall into one of those three categories. “View” classes will provide the app
with user interface elements. “Model” classes will contain information and pull from/push to the
database and financial service. Finally, “Controller” classes act as liaisons between the View
and the Model, updating the UI and notifying the Model of any changed information. The
separation of these components will ensure the program remains reasonably decoupled while
providing clear responsibilities for each class. Thankfully, Apple has made it fairly
straightforward to use MVC in app development, as evidenced by the built-in and recommended
framework of Views and Controllers.

In fact, the iOS developer tools have been developed such that there may be no need
for proprietary classes to create View elements. By using Apple’s Xcode Interface Builder tool,
each screen (or “View”) in the app is created in a WYSIWYG environment. This ensures the
simple implementation of iOS standards, such as tabbed menu bars, list views, and responsive

design. Given the variety and versatility of the visual editor and built-in UI elements, we do not
anticipate the need to create new classes for View elements. Most of the object-oriented design
will come with the Controller and Model classes.

Apple’s standard UIKit library includes a basic “ViewController” class, which updates the
view, handles user interaction, and performs state changes. Every screen of an iOS app will
have a dedicated ViewController subclass that performs the necessary work for that screen.
There will be 5 distinct screens in the app (Welcome, Portfolio, Search, Company, History) so
each will be associated with a unique class inheriting from UIKit.ViewController.

On the left is a diagram of one such class,

PortfolioController. It manages the Portfolio View that displays
the user’s available funds and all of their owned stocks and
options. Accordingly, it has three expandable arrays to hold each
type of stock or option: stocksList, putsList, and callsList. (Stock,
Put, and Call are simple classes or structs that contain all
necessary data about the individual stock item.) The available
funds are stored in an integer. Since every purchase or sale
involves 100 shares of stock and every stock value is at least
$0.01, there can never be a non-integer value for user funds or
transaction amounts. These variables are directly controlled by
the class’s methods.

The PortfolioController methods serve to update the view
and Model and respond to user input. The refresh() method
updates the class’s variables and the view with the latest
information from the Model. The stockTapped, putTapped, and
callTapped methods are event handlers for user interaction with
the list elements for stocks, puts, and calls. The final three
methods are called within the event handlers to perform actions
on the stocks, calls, and puts. If a stock is sold, its value is added
to the amount of available funds, it is removed from the

stocksList, the Model is updated to remove the stock and change the available funds, and finally
the View is refreshed. Buying stock from a call works similarly -- it adds stock, subtracts from
funds, and removes the call from the local list and the Model. Selling stock from a put removes
stock, increases funds, and removes the stock and call. Together, these methods provide a
convenient and comprehensive interface for updating the game state and Model.

While each screen requires a unique View and ViewController, the entire app will share
one Model class, called GameModel. This will be a Singleton class that any ViewController
subclass can access through a static reference. GameModel is responsible for all
communication with the database server, saving information locally, and requesting data from
the financial information service.

The GameModel class has only two variables. The
first is a static reference to its one instance (as part of the
Singleton pattern). In the class constructor, if the static
“instance” variable has not been set, it will refer to this
particular instance of GameModel. The second variable is
a private reference to the current user, stored as a
GKPlayer object. Since the app uses Apple’s GameKit
framework, user authentication can be performed easily
and the resulting user profile is stored inside the
GKPlayer object. This user variable is used to access the
correct database information through the class methods.

There are many methods in this class, but they
serve primarily two purposes: getting and sending
information to/from the database and financial service.
The methods with the prefix “fetch” retrieve requested
information and return it in a convenient format. The
String parameter of fetchStockValue and
fetchCompanyData should be the stock symbol of the
company / stock value requested. The parameter of
fetchCompanies is a query string -- the method will
search the financial data for any company names or
symbols that match the query.

The “add”, “remove”, and “update” methods update
information in the database. The parameters will
determine the object to add, the object to remove, or the
updated value (only for updateUserFunds). For instance,
removeStock(Stock) will remove the given stock from the

database and return whether the operation was successful.
The final method in the class is authenticateUser(). This is performed once at the

beginning of each game session to ensure the user is connected to GameCenter and the
database server. This is where the private “user” variable is assigned.

2.2 User Interface Design (Melissa)

This first row of images reflect the main functions for the Portfolio tab. The first one

simply shows the layout of information for a user: their available game fund, a button to view the
leaderboard, and the options they have bought. The Options To tab switches between options
the user can buy and sell which helps the user know that one tab will add to their funds and the
other will subtract from it. Each company the user buys options from will have their own cards,
shown by the gray box outlines. The information for each company includes the symbol, current
stock price, and the options the user has obtained. The option information includes the
expiration date, strike price, and profit/loss margin to be made with an accompanying arrow
reflecting whether it’s a profit or loss. The difference shown in the second image reflects when a
user either taps or swipes on an option. A ‘Sell Option!’ button will appear and become
tappable. The third image shows the pop up message a user will receive after tapping the
button. It confirms with the user their action before finishing the transaction.

These three images show the Search functionality. The first one shows a typical search

page where a search has been started. The proposed search only yielded one result. After
tapping a result, a user will see the company page. This page contains necessary company
information including the name, symbol, current stock value, historical chart, and options list.
The historical chart can be switched between last thirty days and last five years using the switch
tab above it. The options list contains the type of option, expiration date, and strike price for
each option of the company. The third image shows the same behavior as the portfolio page
when a user chooses to buy an option.

The last section illustrates the history tab. Here a user can see the previous twenty

transactions for profits and losses. The profits tab will show each option that has produced a
profit, which included the company, date of transaction, and profit amount. The second image is

the same except for losses. The third image is the lifetime history which simply calculates
whether the user has a positive or negative (or in this case neutral) lifetime earnings.

2.3 Design Patterns

User Interface Patterns (Melissa)
As our app is for iOS, our design is meant to imitate the normal navigation and feel of

typical iOS apps. Sketch was used for the design process because it has the ability to create
iOS projects that include normal components which are simple to drag and drop. For our overall
design, we were going for clean and simple that would appeal to the large majority of users. We
went with easy to read fonts and tried to size them as appropriately as possible for each page.
Our goal was to create our app as intuitive as possible since our target segment are elderly
people with a general lack of tech knowledge.

We chose a light blue shade as the main color because it is a typically gender neutral
color, isn’t super bright to irritate our older customer segment nor too dull to detract our younger
target, and is really just an appealing color (since Facebook, Twitter, and LinkedIn all use a form
of blue). Our supporting colors were dark gray for the majority of text, white for titles, green for
profit amounts and red for loss amounts. To help our users easily discern between them winning
profit and losing money we chose to use the green and red which are patterns seen often to
represent good and bad. In addition to the colors, we aided them with up or down arrows for
those who can’t see the difference between green and red.

The navigation is through the bottom menu, which has three tabs: Portfolio, Search, and
History. The three tabs represent the main concerns for a user. Each tab can have multiple
pages, but the flow always begins with the tab landing page. There will be a back button on the
search results page so the user can go back to the searching page to look up another company.
Beyond that instance, the user will switch content within the main navigation tab by switching an
on-page tab. For example, on the portfolio page the user can change between Buy and Sell
simply by changing the tab position. Lastly, on the Portfolio page we have a settings button
space reserved, but we have not decided what will go into there or if it will exist. It seems like for
our MVP it will be unnecessary, so it will most likely be a component we visit later if time
permits.

Programming Patterns (Caleb)
The app makes use of the Model-View-Controller and Singleton design patterns.

1. Model-View-Controller (MVC) is a structural paradigm that separates concerns into three
distinct types of classes: Model (fetching, storing, and sending data), View (displaying UI
elements), and Controller (reacting to user input, updating the View and Model as
needed). MVC is discussed in more detail in the Detailed Class Diagram section.

2. Singleton is a design pattern in which there is (and can only be) one instance of a
particular class. The class has a static reference to its single instance, so any object in
the program can easily access it. This will be used for our Model class, since it is
imperative the app has only one means of accessing data. If there were multiple

instances of the Model, it would result in inconsistent and incorrect information between
each instance and the remote database.

3. Testing (Chad, Mitchell)
Since we are creating a video game for our customer, most of our functionality revolves

around what the user can do within the game. With that in mind, we have created test cases in
order to check that all functions we implemented work correctly. We will use the test cases to
determine if the code that we have written does what it was intended to do. Figure 3.1 contains
our test cases, sorted by a case number (and letter to differentiate related cases), the test case,
the conditions that need to be satisfied for the test to be considered a pass, and the conditions
that constitute a fail.

Case No. Test Case Pass Conditions Fail Conditions

1 User creates in-game
account by entering
their Apple ID and
password to sync to
GameCenter when
prompted

GameCenter prompt is
displayed, in-game account
is created when user inputs
correct Apple ID and
password

GameCenter prompt is
not displayed, or in-game
account is not created
when user inputs correct
Apple ID and password

2 Stocks and options
owned are displayed
when on the portfolio
page

All stock and options that
are owned are displayed in
their respective “Buy” or
“Sell” tabs when the
portfolio page is accessed

None or some of stocks
and options that are
owned are displayed in
their respective “Buy” or
“Sell” tabs when the
portfolio page is
accessed

3 Leaderboard is
displayed to compare
user’s score to other
users playing the
game

Leaderboard is displayed
when “Leaderboard” button
is pressed, and information
in the leaderboard is
correct and up to date

Leaderboard is not
displayed when
“Leaderboard” button is
pressed, or the
information in the
leaderboard is incorrect
or outdated

4 User is able to search
for company based on
company name or
symbol

The company that is output
from the user search
corresponds to the name or
symbol that the user

The company that is
output from the user
search does not
correspond to the name

searched for, or no
company is output if user
searched for an invalid
company name or symbol

or symbol that the user
searched for, or a
company is output if user
searched for an invalid
company name or
symbol

5a Current stock price
and options that can
be bought are
displayed on a
company’s page

Company’s page is
displayed with its correct
current stock price and
available options to buy

Company’s page is
displayed with an
incorrect stock price, or
with out all available
options to buy

5b A graph showing the
company’s stock price
as far in the past as 5
years is displayed on a
company’s page

Graph is rendered showing
correct stock price research
information as far as five
years in the past

Graph fails to render, or
shows incorrect stock
price information, or does
not show information as
far as five years in the
past

6 Stock options are able
to be bought from the
list of options available
on a company’s page

After pressing the “Buy”
button by an option, the
user is prompted to follow
through with the transaction
or cancel. If canceled,
option is not bought. If
accepted, the cost of the
option is deducted from the
user’s available funds, and
the option is stored in the
user’s portfolio

After pressing the “Buy”
button by an option, the
user is not prompted, or if
prompted and canceled,
option is still bought, or if
accepted the cost of the
option is not deducted
from the user’s available
funds, or the option is not
stored in the user’s
portfolio

7a Stock controlled by put
options can be sold
from the portfolio

The amount of stocks that
are part of the option are
sold successfully at the
strike price agreed upon,
and that money is added to
the user’s available funds.
The transaction will also be
added into the history page

The amount of stocks
that are part of the option
are not sold successfully,
or the stocks are not sold
at the strike price agreed
upon, or that money is
not added to the user’s
available funds. Or the
transaction is not stored
within the history page

7b Stock controlled by call
options can be bought
from the portfolio

The amount of stocks that
are part of the option are
bought successfully at the
strike price agreed upon,
and that money is deducted
from the user’s available
funds

The amount of stocks
that are part of the option
are not bought
successfully, or the
stocks are not bought at
the strike price agreed
upon, or that money is
not deducted from the
user’s available funds

7c Owned stock can be
sold directly at current
value from the portfolio

The amount of stocks to be
sold directly are sold
successfully at the current
stocks’ value, and that
money is added to the
user’s available funds. The
transaction is stored in the
user’s History

The amount of stocks to
be sold directly are not
sold successfully, or the
stocks are not sold at the
current stocks’ value, the
money is not added to
the user’s available
funds, or the transaction
is not added to the user’s
history

8a A list of all past profits
can be viewed on the
Profits tab on the
History page

A list of all stocks sold for a
profit is displayed when the
Profits tab is pressed, along
with the amount of profit
each stock made and the
total amount of profits
made throughout the user’s
game lifetime

A list of all stocks sold for
a profit is not displayed
when the Profits tab is
pressed, or the amount
of profit each stock made
is not displayed or is
incorrect, or the total
amount of profits made
throughout the user’s
game lifetime is not
displayed or is incorrect

8b A list of all past losses
can be viewed on the
Losses tab on the
History page

A list of all stocks sold for a
losses is displayed when
the Losses tab is pressed,
along with the amount of
money each stock lost and
the total amount of losses
had throughout the user’s
game lifetime

A list of all stocks sold for
a loss is not displayed
when the Losses tab is
pressed, or the amount
of money each stock lost
is not displayed or is
incorrect, or the total
amount of losses had
throughout the user’s

game lifetime is not
displayed or is incorrect

8c The total earnings of
the user can be
viewed on the Lifetime
tab on the History
page

The total profits, total
losses and total earnings
are displayed when the
Lifetime tab is pressed, and
the amounts are all correct

The total profits, total
losses and total earnings
are not displayed when
the Lifetime tab is
pressed, or the amounts
are incorrect

9 The user clicks on one
of the three buttons at
the bottom of the
screen that can take
you to portfolio,
search, or history

The correct page is
displayed after pressing

The button does nothing
or the wrong page is
displayed

Figure 3.1

We will use the test cases from Figure 3.1 once we have written our code to test the
code’s functionality. If all of the pass conditions for a test case are satisfied, we will consider the
test a pass and the code to be functional. If one or more of the pass conditions for a test are not
satisfied, we will consider the test a fail and will rewrite the code. Then we will use the same test
case on the rewritten code.

4. Review (Group)
1. The app UI design originally lacked a “Back” button from a Company page to the Search

page.
2. The app UI design originally lacked alternating colors for rows in tables, making it hard to

determine the physical boundaries between each element in the table.
3. There were multiple fonts used in the document body text, so they were standardized to

one font type and size.
4. There was some unclear wording in the High-Level Design section.
5. There were 4 test cases that needed clarification
6. There was one test case that needed to be added.
7. There were 3 minor typos in Section 2.2.

5. Metrics

Complexity of Overall System (Caleb)
The maximum depth of any inheritance tree in our code will be 2.

Product Size (Chad)
We have planned our game based on three user stories. We have a total of 13 test cases, and
12 classes planned.

Product Effort (Mitchell)

 Hours Word Count

Caleb Cornett 10 1141

Chad Stephenson 8 1180

Melissa Shankle 10 792

Mitchell McClure 6 613

Defects (Caleb)
There were 12 noted defects that have been addressed.

6. Web Page and Developer Notebook (Melissa)
Our team chose to use WordPress to keep track of our developer logs. Each team member has
their own page in addition to the team page. Member pages are used to record decisions and
actions of each member while the team page is for group decisions and meeting notes. As the
project progresses, more pages will be created to house documents such as the project plan
and this architecture assignment. Our site also includes our contact information and the project
overview.

Our site can be found at https://stockexchangegame.wordpress.com/

Word Count as of October 1:

● Caleb - 274
● Chad - 291
● Melissa - 1987
● Mitchell - 788

