Fishback Stock and Options Trading Game

Senior Design Project Fall 2017

Team Members:
Caleb Cornett
Chad Stephenson
Melissa Shankle
Mitchell McClure

Customer:
Fishback Management & Research

1. High-Level Design

Our Options Trading game was designed to simulate the trading of Stock Options in an
effort to educate its users. With a simple, yet intuitive design, users will be able to begin playing
in a virtual stock market by searching for companies, buying options, and viewing their portfolio
and past transactions, all with real-time stock data for each company. To accomplish all of these
feats, the game will have three layers working in unison: User Interface, Data, External. Visually
this will be shown in Figure 1.1 as a High Level Architecture Diagram to display the structure of
the back end. Later on in the document more focused and detailed diagrams will be used to
demonstrate individual components and how they interact.

Userinterface |}

1

User
Interaction

v v

DatalLayer I ExternalLayer |
Data k> Data Access - Extemal Data | > Data Access
interpretation

Figure 1.1: High Level Architecture Diagram of Options Trading App

The High Level structure of our game consists of three layers: User Interface, Data, and
External. Each layer interweaves with each other to provide the user with an experience that
educates them on options trading. The user will pick among screens and depending on the
screen, the User Interface layer will take the data structures extracted from the Data or External
layers and display them in a readable and appealing way. User Input will be broken up into the

four main gameplay loops: searching for a company, buying options, viewing portfolio and
transaction history. Depending on the screen and actions the user has taken, the presentation
of information and the information itself will change. However, for any useful information to be
displayed, it must be retrieved from either the Data or External Layers.

The data layer consists of Data Interpretation, which feeds off of Data Access. As long
as the user has been authenticated with Game Center ID, the Data Access layer will allow the
system to interact with the database and the External Layer. In the Data Interpretation layer, it
will interpret information gathered from the external layer that is relevant when a user completes
a transaction and stores it in a data structure. The Data Interpretation layer also displays the
data structures and External data in a way that the user can then interact with. Depending on
the user’s action and what screen it is on, different data will be retrieved. For example, on the
portfolio page, Available Funds and owned options will be displayed. After the user interacts and
performs further transactions with the data, such as using an option to buy more stock, the data
will be updated in the Database. The transaction data and other data stored in the database will
be based off initial data pulled from the External Layer for a company’s page.

All of the data and information displayed in the app stems from financial data extracted in
the External Layer. When a user views a company page, financial data is retrieved to display
relevant information to the user. If the user decides with this information to purchase an option,
the necessary data is stored or updated within the database. The external data is accessed
through third-party API’s such as Google Finance. To summarize, the User Interface layer
shows information gathered from the External Layer on Company Pages, other pages show
information retrieved from the Database which was also stored from data retrieved from the
External Layer.

2.1 Detailed Class Diagram (Caleb)

The app implements the Model-View-Controller (MVC) design pattern, so most classes
in the program will fall into one of those three categories. “View” classes will provide the app
with user interface elements. “Model” classes will contain information and pull from/push to the
database and financial service. Finally, “Controller” classes act as liaisons between the View
and the Model, updating the Ul and notifying the Model of any changed information. The
separation of these components will ensure the program remains reasonably decoupled while
providing clear responsibilities for each class. Thankfully, Apple has made it fairly
straightforward to use MVC in app development, as evidenced by the built-in and recommended
framework of Views and Controllers.

In fact, the iOS developer tools have been developed such that there may be no need
for proprietary classes to create View elements. By using Apple’s Xcode Interface Builder tool,
each screen (or “View”) in the app is created in a WYSIWYG environment. This ensures the
simple implementation of iOS standards, such as tabbed menu bars, list views, and responsive

design. Given the variety and versatility of the visual editor and built-in Ul elements, we do not
anticipate the need to create new classes for View elements. Most of the object-oriented design
will come with the Controller and Model classes.

Apple’s standard UIKit library includes a basic “ViewController” class, which updates the
view, handles user interaction, and performs state changes. Every screen of an iOS app will
have a dedicated ViewController subclass that performs the necessary work for that screen.
There will be 5 distinct screens in the app (Welcome, Portfolio, Search, Company, History) so
each will be associated with a unique class inheriting from UIKit.ViewController.

On the left is a diagram of one such class,
PortfolioController. It manages the Portfolio View that displays
G the user’s available funds and all of their owned stocks and
options. Accordingly, it has three expandable arrays to hold each
type of stock or option: stocksList, putsList, and callsList. (Stock,
Put, and Call are simple classes or structs that contain all
necessary data about the individual stock item.) The available

UIKit. ViewController|

PortfolioController

“stockeklst:AmraySiookcs: funds are stored in an integer. Since every purchase or sale

- putsList: Array<Put> involves 100 shares of stock and every stock value is at least

- callsList: Array<Call> $0.01, there can never be a non-integer value for user funds or
- availableFunds: Integer transaction amounts. These variables are directly controlled by

the class’s methods.

The PortfolioController methods serve to update the view
+ stockTapped(UITableViewCell) : void | and Model and respond to user input. The refresh() method
+ putTapped(UITableViewCell) : void updates the class’s variables and the view with the latest
+ callTapped(UITableViewCell) : void information from the Model. The stockTapped, putTapped, and
- sellStock(Stock) : void callTapped methods are event handlers for user interaction with
- buyStockFromCall(Call) : void the list elements for stocks, puts, and calls. The final three
methods are called within the event handlers to perform actions
on the stocks, calls, and puts. If a stock is sold, its value is added
to the amount of available funds, it is removed from the
stocksList, the Model is updated to remove the stock and change the available funds, and finally
the View is refreshed. Buying stock from a call works similarly -- it adds stock, subtracts from
funds, and removes the call from the local list and the Model. Selling stock from a put removes
stock, increases funds, and removes the stock and call. Together, these methods provide a
convenient and comprehensive interface for updating the game state and Model.

While each screen requires a unique View and ViewController, the entire app will share
one Model class, called GameModel. This will be a Singleton class that any ViewController
subclass can access through a static reference. GameModel is responsible for all
communication with the database server, saving information locally, and requesting data from
the financial information service.

+ refresh() : void

- seliStockFromPut(Put) : void

GameModel

+ instance: GameModel

- user: GameKit.GKPlayer

+ fetchStockValue(String) : Double

+ fetchCompanyData(String) : Company

+ fetchPastTransactions() : Array<Transaction>
+ fetchOwnedStocks() : Array<Stock>

+ fetchOwnedPuts() : Array<Put>

+ fetchOwnedCalls() : Array<Call>

+ fetchCompanies(String) : Array<Company>
+ fetchUserFunds() : Integer

+ addTransaction(Transaction) : Bool

+ addStock(Stock) : Bool

+ addPut(Put) : Bool

+ addCall(Call) : Bool

+ removeStock(Stock) : Bool

+ removePut(Put) : Bool

+ removeCall(Call) : Bool

+ updateUserFunds(Integer) : Bool

+ authenticateUser() : Bool

The GameModel class has only two variables. The
first is a static reference to its one instance (as part of the
Singleton pattern). In the class constructor, if the static
“instance” variable has not been set, it will refer to this
particular instance of GameModel. The second variable is
a private reference to the current user, stored as a
GKPlayer object. Since the app uses Apple’'s GameKit
framework, user authentication can be performed easily
and the resulting user profile is stored inside the
GKPlayer object. This user variable is used to access the
correct database information through the class methods.

There are many methods in this class, but they
serve primarily two purposes: getting and sending
information to/from the database and financial service.
The methods with the prefix “fetch” retrieve requested
information and return it in a convenient format. The
String parameter of fetchStockValue and
fetchCompanyData should be the stock symbol of the
company / stock value requested. The parameter of
fetchCompanies is a query string -- the method will
search the financial data for any company names or
symbols that match the query.

The “add”, “remove”, and “update” methods update
information in the database. The parameters will
determine the object to add, the object to remove, or the
updated value (only for updateUserFunds). For instance,
remove Stock(Stock) will remove the given stock from the

database and return whether the operation was successful.

The final method in the class is authenticateUser(). This is performed once at the
beginning of each game session to ensure the user is connected to GameCenter and the
database server. This is where the private “user” variable is assigned.

2.2 User Interface Design (Melissa)

eseee Sketch = 9:41 AM 100% - eeeee Sketch T 9:41 AM 100% W— seeee Sketch T 9:41 AM 100% -
Exp Date Strike Price
9128117 $160 $15
9297 $165 $10
930117 $170 $5
piration Date Strike Price Profit
912817 $160 $15 ; . . ,
92917 $165 $10 P $160 $20
93017 $170 $5 T i
93017 $170 $10
Expi n Date trike Price Prof
9/28/17 $200 $20 ¥

This first row of images reflect the main functions for the Portfolio tab. The first one
simply shows the layout of information for a user: their available game fund, a button to view the
leaderboard, and the options they have bought. The Options To tab switches between options
the user can buy and sell which helps the user know that one tab will add to their funds and the
other will subtract from it. Each company the user buys options from will have their own cards,
shown by the gray box outlines. The information for each company includes the symbol, current
stock price, and the options the user has obtained. The option information includes the
expiration date, strike price, and profit/loss margin to be made with an accompanying arrow
reflecting whether it's a profit or loss. The difference shown in the second image reflects when a
user either taps or swipes on an option. A ‘Sell Option! button will appear and become
tappable. The third image shows the pop up message a user will receive after tapping the
button. It confirms with the user their action before finishing the transaction.

eeeee Sietch T 9:41 AM 100% - eeeee Sketch T 9:41 AM 100% - eseee Sietch T 9:41 AM 100% -

Searct Search
[AAPL] e /-\pple o Apple
Symbol Value Symbol Value
Symbol Value AAPL $175 AAPL $175
AAPL $175 Last 30 Days last5Years | | Last30Days
\,/
— OPTIONS —— —— OPTIONS ——
Type Expiration Date Strike Price Type Expiration Date Stiike Price
Call 9/28117 $160 Call 912817 $160
Call 912917 $165 Call 92917 Buy Option!
Put 913017 $170 Put 9/30/17 $170
] o | [B © | [O S]

These three images show the Search functionality. The first one shows a typical search
page where a search has been started. The proposed search only yielded one result. After
tapping a result, a user will see the company page. This page contains necessary company
information including the name, symbol, current stock value, historical chart, and options list.
The historical chart can be switched between last thirty days and last five years using the switch
tab above it. The options list contains the type of option, expiration date, and strike price for
each option of the company. The third image shows the same behavior as the portfolio page
when a user chooses to buy an option.

eeeee Sketch T 9:41 AM 100% M- eeeee Sketch T 9:41 AM 100% - eeeee Sietch 9:41 AM 100% W—
History History History

Company Date Amount _Company Date Amount f ;

APPL 912917 $15 APPL 912917 $15 Pro Its SQO
Mmcst 92717 $30 MCST 927117 $30

WLMT 912517 $15 WLMT 912517 $15 Losses $90

APPL 912017 $10 APPL 92017 $10

G00G 912017 $20 GO0G 9120117 $20

Total Earnings: $0

Total Profit: $90 Total Loss: $90

o o [Tz 9l[E

The last section illustrates the history tab. Here a user can see the previous twenty
transactions for profits and losses. The profits tab will show each option that has produced a
profit, which included the company, date of transaction, and profit amount. The second image is

the same except for losses. The third image is the lifetime history which simply calculates
whether the user has a positive or negative (or in this case neutral) lifetime earnings.

2.3 Design Patterns

User Interface Patterns (Melissa)

As our app is for iOS, our design is meant to imitate the normal navigation and feel of
typical iOS apps. Sketch was used for the design process because it has the ability to create
iOS projects that include normal components which are simple to drag and drop. For our overall
design, we were going for clean and simple that would appeal to the large majority of users. We
went with easy to read fonts and tried to size them as appropriately as possible for each page.
Our goal was to create our app as intuitive as possible since our target segment are elderly
people with a general lack of tech knowledge.

We chose a light blue shade as the main color because it is a typically gender neutral
color, isn’t super bright to irritate our older customer segment nor too dull to detract our younger
target, and is really just an appealing color (since Facebook, Twitter, and LinkedIn all use a form
of blue). Our supporting colors were dark gray for the majority of text, white for titles, green for
profit amounts and red for loss amounts. To help our users easily discern between them winning
profit and losing money we chose to use the green and red which are patterns seen often to
represent good and bad. In addition to the colors, we aided them with up or down arrows for
those who can’t see the difference between green and red.

The navigation is through the bottom menu, which has three tabs: Portfolio, Search, and
History. The three tabs represent the main concerns for a user. Each tab can have multiple
pages, but the flow always begins with the tab landing page. There will be a back button on the
search results page so the user can go back to the searching page to look up another company.
Beyond that instance, the user will switch content within the main navigation tab by switching an
on-page tab. For example, on the portfolio page the user can change between Buy and Sell
simply by changing the tab position. Lastly, on the Portfolio page we have a settings button
space reserved, but we have not decided what will go into there or if it will exist. It seems like for
our MVP it will be unnecessary, so it will most likely be a component we visit later if time
permits.

Programming Patterns (Caleb)

The app makes use of the Model-View-Controller and Singleton design patterns.

1. Model-View-Controller (MVC) is a structural paradigm that separates concerns into three
distinct types of classes: Model (fetching, storing, and sending data), View (displaying Ul
elements), and Controller (reacting to user input, updating the View and Model as
needed). MVC is discussed in more detail in the Detailed Class Diagram section.

2. Singleton is a design pattern in which there is (and can only be) one instance of a
particular class. The class has a static reference to its single instance, so any object in
the program can easily access it. This will be used for our Model class, since it is
imperative the app has only one means of accessing data. If there were multiple

instances of the Model, it would result in inconsistent and incorrect information between
each instance and the remote database.

Since we are creating a video game for our customer, most of our functionality revolves
around what the user can do within the game. With that in mind, we have created test cases in
order to check that all functions we implemented work correctly. We will use the test cases to
determine if the code that we have written does what it was intended to do. Figure 3.1 contains
our test cases, sorted by a case number (and letter to differentiate related cases), the test case,
the conditions that need to be satisfied for the test to be considered a pass, and the conditions
that constitute a fail.

for company based on
company name or
symbol

from the user search
corresponds to the name or
symbol that the user

Case No. | Test Case Pass Conditions Fail Conditions
1 User creates in-game | GameCenter prompt is GameCenter prompt is
account by entering displayed, in-game account [not displayed, or in-game
their Apple ID and is created when user inputs | account is not created
password to sync to correct Apple ID and when user inputs correct
GameCenter when password Apple ID and password
prompted
2 Stocks and options All stock and options that None or some of stocks
owned are displayed are owned are displayed in | and options that are
when on the portfolio their respective “Buy” or owned are displayed in
page “Sell” tabs when the their respective “Buy” or
portfolio page is accessed | “Sell” tabs when the
portfolio page is
accessed
3 Leaderboard is Leaderboard is displayed Leaderboard is not
displayed to compare | when “Leaderboard” button | displayed when
user’s score to other is pressed, and information | “Leaderboard” button is
users playing the in the leaderboard is pressed, or the
game correct and up to date information in the
leaderboard is incorrect
or outdated
4 User is able to search | The company that is output | The company that is

output from the user
search does not
correspond to the name

searched for, or no
company is output if user
searched for an invalid
company name or symbol

or symbol that the user
searched for, or a
company is output if user
searched for an invalid
company name or

symbol
5a Current stock price Company’s page is Company’s page is
and options that can displayed with its correct displayed with an
be bought are current stock price and incorrect stock price, or
displayed on a available options to buy with out all available
company’s page options to buy
5b A graph showing the Graph is rendered showing | Graph fails to render, or
company’s stock price | correct stock price research | shows incorrect stock
as far in the pastas 5 | information as far as five price information, or does
years is displayed on a | years in the past not show information as
company’s page far as five years in the
past
6 Stock options are able | After pressing the “Buy” After pressing the “Buy”
to be bought from the | button by an option, the button by an option, the
list of options available | user is prompted to follow user is not prompted, or if
on a company’s page | through with the transaction | prompted and canceled,
or cancel. If canceled, option is still bought, or if
option is not bought. If accepted the cost of the
accepted, the cost of the option is not deducted
option is deducted from the | from the user’s available
user’s available funds, and | funds, or the option is not
the option is stored in the stored in the user’s
user’s portfolio portfolio
7a Stock controlled by put | The amount of stocks that | The amount of stocks

options can be sold
from the portfolio

are part of the option are
sold successfully at the
strike price agreed upon,
and that money is added to
the user’s available funds.
The transaction will also be
added into the history page

that are part of the option
are not sold successfully,
or the stocks are not sold
at the strike price agreed
upon, or that money is
not added to the user’s
available funds. Or the
transaction is not stored
within the history page

7b

Stock controlled by call
options can be bought
from the portfolio

The amount of stocks that
are part of the option are
bought successfully at the
strike price agreed upon,
and that money is deducted
from the user’s available
funds

The amount of stocks
that are part of the option
are not bought
successfully, or the
stocks are not bought at
the strike price agreed
upon, or that money is
not deducted from the
user’s available funds

7c

Owned stock can be
sold directly at current
value from the portfolio

The amount of stocks to be
sold directly are sold
successfully at the current
stocks’ value, and that
money is added to the
user’s available funds. The
transaction is stored in the
user’s History

The amount of stocks to
be sold directly are not
sold successfully, or the
stocks are not sold at the
current stocks’ value, the
money is not added to
the user’s available
funds, or the transaction
is not added to the user’s
history

8a

A list of all past profits
can be viewed on the
Profits tab on the
History page

A list of all stocks sold for a
profit is displayed when the
Profits tab is pressed, along
with the amount of profit
each stock made and the
total amount of profits
made throughout the user’'s
game lifetime

A list of all stocks sold for
a profit is not displayed
when the Profits tab is
pressed, or the amount
of profit each stock made
is not displayed or is
incorrect, or the total
amount of profits made
throughout the user’s
game lifetime is not
displayed or is incorrect

8b

A list of all past losses
can be viewed on the
Losses tab on the
History page

A list of all stocks sold for a
losses is displayed when
the Losses tab is pressed,
along with the amount of
money each stock lost and
the total amount of losses
had throughout the user’s
game lifetime

A list of all stocks sold for
a loss is not displayed
when the Losses tab is
pressed, or the amount
of money each stock lost
is not displayed or is
incorrect, or the total
amount of losses had
throughout the user’s

game lifetime is not
displayed or is incorrect

8c The total earnings of The total profits, total The total profits, total
the user can be losses and total earnings losses and total earnings
viewed on the Lifetime | are displayed when the are not displayed when
tab on the History Lifetime tab is pressed, and | the Lifetime tab is
page the amounts are all correct | pressed, or the amounts

are incorrect

9 The user clicks on one | The correct page is The button does nothing
of the three buttons at | displayed after pressing or the wrong page is
the bottom of the displayed

screen that can take
you to portfolio,
search, or history

Figure 3.1

We will use the test cases from Figure 3.1 once we have written our code to test the
code’s functionality. If all of the pass conditions for a test case are satisfied, we will consider the
test a pass and the code to be functional. If one or more of the pass conditions for a test are not
satisfied, we will consider the test a fail and will rewrite the code. Then we will use the same test
case on the rewritten code.

1. The app Ul design originally lacked a “Back” button from a Company page to the Search
page.

2. The app Ul design originally lacked alternating colors for rows in tables, making it hard to

determine the physical boundaries between each element in the table.

There were multiple fonts used in the document body text, so they were standardized to

one font type and size.

There was some unclear wording in the High-Level Design section.

There were 4 test cases that needed clarification

There was one test case that needed to be added.

There were 3 minor typos in Section 2.2.

w

N o oA

5. Metrics

Complexity of Overall System (Caleb)

The maximum depth of any inheritance tree in our code will be 2.

Product Size (Chad)

We have planned our game based on three user stories. We have a total of 13 test cases, and
12 classes planned.

Product Effort (Mitchell)

Hours Word Count
Caleb Cornett 10 1141
Chad Stephenson 8 1180
Melissa Shankle 10 792
Mitchell McClure 6 613

Defects (Caleb)

There were 12 noted defects that have been addressed.

6. Web Page and Developer Notebook (Melissa)

Our team chose to use WordPress to keep track of our developer logs. Each team member has
their own page in addition to the team page. Member pages are used to record decisions and
actions of each member while the team page is for group decisions and meeting notes. As the
project progresses, more pages will be created to house documents such as the project plan
and this architecture assignment. Our site also includes our contact information and the project
overview.

Our site can be found at https://stockexchangegame.wordpress.com/

Word Count as of October 1:

Caleb - 274
Chad - 291
Melissa - 1987
Mitchell - 788

