

Fishback Stock and Options Trading Game

Senior Design Project Fall 2017

Team Members:

Caleb Cornett
Chad Stephenson
Melissa Shankle
Mitchell McClure

Customer:

Fishback Management & Research

1. Implementation
1.1 Source Code Listing

Our team is using GitHub to store our source code for the project. It can be found at the
following link:

https://github.com/TheSpydog/FishbackOptions.git

1.2 Quality Review (Melissa)

To strive for the best overall code review, we combined two of the example checklists
given. The first was from MIT[1] and seemed to cover more of the overarching ideas of the code.
It included three sections of what to test: function, form, and economy. The function section
focused on the inner working of the code, whether the function was clearly implemented, that
the idea could easily be recognized, and that it would be protected from misuse. The form
section focused on the coding pattern. It looked at whether the code could be easily traced
through comments and repeated style to make it understandable by those unfamiliar with it. The
last second on economy checked the cost of the code, where the emphasis was placed on
redundancy, storage, and changeability.

The second was from the Toolbox website[2] where it covered specifics of each variable
and line of code. This checklist also had overall sections including data reference, data
declaration, computation, comparison, control flow, interfaces, input/output, and miscellaneous.
Once all sections were covered, all variables would be checked for initialization and declaration,
loop indexes would be checked for off-by-one errors, computations would be correct with the
appropriate type, parameters would be fitting for their function calls, and inputs/outputs would be
checked for consistency and validation.

1.3 User’s Manual (Melissa)
1.3.0 Introduction (Mitchell)

Before a user can play this game, they need to learn what an “option” is. Stock Market
Brokers have more ways to trade stocks than buying and selling. One such way is the idea of
options. Instead of buying or selling individual quantities of stock, an option gives the trader the
right to buy or sell stock at an agreed upon price during a period of time before an expiration
date. An options contract is the agreement that specifies how many stocks, the strike price (the
price of the stock when it will be bought/sold), expiration date, company, and cost to purchase.

1.3.1 Beginning the Game

This app will begin by automatically logging in a user using their Game Center
information once opened for the first time. A loading screen will be shown as the app connects
and information is received.

https://github.com/TheSpydog/FishbackOptions.git

The user will start the game with $25,000 of available funds to use for buying options.
They are able to continuously buy and sell as they please until they run out of funds and
options, in which the game will end.

The game saves automatically after each transaction, so no user saving is necessary.

1.3.2 Navigation

This game consists of three main screens: Portfolio, Search, and History. Additionally,
the Search screen will take the user to a Company page. The navigational menu will always be
available at the bottom on the screen. The icon and words in blue show which screen the user is
currently on.

1.3.3 Portfolio

The user will then land on their portfolio page. It will start by
showing their available game fund which is updated after each
transaction. The amount will be green as long as the user still has money.

The second item is a button to view the leaderboard. This will be
linked to the leaderboard created by Game Center.

The last section on the screen contains options they have bought.
The Options To tab switches between call and put options which helps
the user know that one tab will add to their funds and the other will
subtract from it based on the type of option. Each company the user buys
options from will have their own cards, shown by the gray box outlines.
The information for each company includes the symbol, current stock
price, and the options the user has obtained. The option information
includes the expiration date, strike price, and profit/loss margin to be
made with an accompanying arrow reflecting whether it’s a profit or loss.

The difference shown in the second image reflects when a user
either taps or swipes on an option. A ‘Sell Option!’ button will appear and
become tappable.

The third image shows the pop up message a user will receive after tapping the button. It
confirms with the user their action before finishing the transaction.

1.3.3 Search

The user is able to use this search to find companies to buy
their options or compare them to other companies. A user will land on
an empty search page initially. They will just tap on the search bar to
enter the company’s name or symbol for their search. As they begin
typing, results will start automatically appearing and will update with
each new letter so the user will not have to type the complete name.
Once the search icon or the return key has been tapped, the search
results will be shown and the user can tap one to view its company
page.

1.3.4 Company Page

The company page contains necessary company information including the name,
symbol, current stock value, historical chart, and options list. The historical chart can be
switched between last thirty days and last five years using the switch tab above it. The options
list contains the type of option, expiration date, and strike price for each option of the company.
The third image shows the same behavior as the portfolio page when a user chooses to buy an
option.

To return their search, a user can tap the arrow in the upper left corner or tap the search
menu icon again.

1.3.5 History

Here a user can see up to 20 previous transactions for profits and losses. The profits tab
will show each option that has produced a profit, which includes the company, date of
transaction, and profit amount. The second image is the same except for losses. The third
image is the lifetime history which simply calculates whether the user has a positive or negative
(or is this case neutral) lifetime earnings.

The profits will all have green amounts, the losses will all be red, and in the case of an
even profit to loss the amount will be blue.

This page is view only as there are no actions to be done other than switching the tabs.

1.4 Administrator’s Manual (Caleb)
Once the app has been released to the App Store, it can be downloaded on any

consumer iPhone running iOS 9.0 or above. An internet connection is required for use. For login
and authentication purposes, a user must have a GameCenter account connected to their Apple
ID.

2. Testing
2.1 Test Plan (Chad)

Our test cases were created to cover both functional and nonfunctional requirements.
This would help ensure that we have the app functioning correctly behind the scenes and that a
user would have the experience they want and expect.

We have mostly focused on testing the functionality as code was implemented, taking a
unit testing approach. This way we could check to see if it worked and didn’t interfere with
previously implemented code. This relates to our regression testing - as code was added, we
verified that it didn’t interfere with code written before it.

As features were implemented, we tested the overall app acting as a user would. By
doing so, we can get a feel for the flow of the app and hopefully think as a user would to make
sure our product also meets the non-functional requirements.

2.2 Test Cases and Results - Acceptance Testing (Chad)

We will use the test cases from Figure 2.2 (below) once we have written our code
pertaining to a test case to test the code’s functionality. If all of the pass conditions for a test
case are satisfied, we will consider the test a pass and the code to be functional. If one or more
of the pass conditions for a test are not satisfied, we will consider the test a fail and will rewrite
the code. Then we will use the same test case on the rewritten code.

Case
No.

Test Case Pass Conditions Fail Conditions Result

1 User creates in-game
account by entering
their Apple ID and
password to sync to
GameCenter when
prompted

GameCenter prompt is
displayed, in-game
account is created
when user inputs
correct Apple ID and
password

GameCenter
prompt is not
displayed, or
in-game account
is not created
when user inputs
correct Apple ID
and password

Fail: Apple
Developer
access has not
yet been
granted, so
GameCenter
ID
authentication
is not
accessible

2 Stocks and options
owned are displayed
when on the portfolio
page

All stock and options
that are owned are
displayed in their
respective “Buy” or
“Sell” tabs when the
portfolio page is
accessed

None or some of
stocks and
options that are
owned are
displayed in their
respective “Buy”
or “Sell” tabs
when the portfolio
page is accessed

Pass

3 Leaderboard is
displayed to compare
user’s score to other
users playing the
game

Leaderboard is
displayed when
“Leaderboard” button is
pressed, and
information in the
leaderboard is correct
and up to date

Leaderboard is
not displayed
when
“Leaderboard”
button is pressed,
or the information
in the leaderboard
is incorrect or
outdated

Fail: Refer to
Case No. 1

4 User is able to search
for company based
on company name or
symbol

The company that is
output from the user
search corresponds to
the name or symbol that
the user searched for,
or no company is output
if user searched for an
invalid company name
or symbol

The company that
is output from the
user search does
not correspond to
the name or
symbol that the
user searched for,
or a company is
output if user
searched for an
invalid company
name or symbol

Pass

5 Current stock price
and options that can
be bought are
displayed on a
company’s page

Company’s page is
displayed with its
correct current stock
price and available
options to buy

Company’s page
is displayed with
an incorrect stock
price, or with out
all available
options to buy

Pass

6 Stock options are
able to be bought
from the list of

After pressing the “Buy”
button by an option, the
user is prompted to

After pressing the
“Buy” button by an
option, the user is

Fail: The
option that is
selected will

options available on a
company’s page

follow through with the
transaction or cancel. If
canceled, option is not
bought. If accepted, the
cost of the option is
deducted from the
user’s available funds,
and the option is stored
in the user’s portfolio

not prompted, or if
prompted and
canceled, option
is still bought, or if
accepted the cost
of the option is not
deducted from the
user’s available
funds, or the
option is not
stored in the
user’s portfolio

be added to
the user’s
portfolio, but
the cost of the
option is not
yet deducted
from the user’s
available funds

7a Stock controlled by
put options can be
sold from the portfolio

The amount of stocks
that are part of the
option are sold
successfully at the
strike price agreed
upon, and that money is
added to the user’s
available funds. The
transaction will also be
added into the history
page

The amount of
stocks that are
part of the option
are not sold
successfully, or
the stocks are not
sold at the strike
price agreed
upon, or that
money is not
added to the
user’s available
funds. Or the
transaction is not
stored within the
history page

Fail:
Functionality
not yet
implemented

7b Stock controlled by
call options can be
bought from the
portfolio

The amount of stocks
that are part of the
option are bought
successfully at the
strike price agreed
upon, and that money is
deducted from the
user’s available funds

The amount of
stocks that are
part of the option
are not bought
successfully, or
the stocks are not
bought at the
strike price
agreed upon, or
that money is not
deducted from the

Fail:
Functionality
not yet
implemented

user’s available
funds

8a A list of all past
profits can be viewed
on the Profits tab on
the History page

A list of all stocks sold
for a profit is displayed
when the Profits tab is
pressed, along with the
amount of profit each
stock made and the
total amount of profits
made throughout the
user’s game lifetime

A list of all stocks
sold for a profit is
not displayed
when the Profits
tab is pressed, or
the amount of
profit each stock
made is not
displayed or is
incorrect, or the
total amount of
profits made
throughout the
user’s game
lifetime is not
displayed or is
incorrect

Fail:
Transactions
can be added
with already
implemented
code, but the
functionality
for options
actually
bought to
show on
screen on the
history tab is
not yet
implemented

8b A list of all past
losses can be viewed
on the Losses tab on
the History page

A list of all stocks sold
for a losses is displayed
when the Losses tab is
pressed, along with the
amount of money each
stock lost and the total
amount of losses had
throughout the user’s
game lifetime

A list of all stocks
sold for a loss is
not displayed
when the Losses
tab is pressed, or
the amount of
money each stock
lost is not
displayed or is
incorrect, or the
total amount of
losses had
throughout the
user’s game
lifetime is not
displayed or is
incorrect

Fail:
Functionality
not yet
implemented

8c The total earnings of
the user can be
viewed on the

The total profits, total
losses and total
earnings are displayed
when the Lifetime tab is

The total profits,
total losses and
total earnings are
not displayed

Fail:
Functionality
not yet
implemented

Lifetime tab on the
History page

pressed, and the
amounts are all correct

when the Lifetime
tab is pressed, or
the amounts are
incorrect

9 The user clicks on
one of the three
buttons at the bottom
of the screen that can
take you to portfolio,
search, or history

The correct page is
displayed after pressing

The button does
nothing or the
wrong page is
displayed

Pass

Figure 2.2

2.3 Test Cases and Results - Unit Testing (Chad)

We did unit testing on each of the functions as we created them. These tests help to
ensure working code before the developer moved on to a new feature. Figure 2.3 (below) shows
some of the test cases and their results.

Case
No.

Test Case Pass Conditions Fail Conditions Result

1 func populateTable() Table on the portfolio
page of options is
correctly filled.

Table on the portfolio
page of options is
incorrectly filled or not
at all.

Pass

2 func getUserData() Function gets the
correct user data from
the database.

Function gets the
incorrect user data
from the database.

Pass

3 func tableView(_
tableView:
UITableView,
cellForRowAt
indexPath:
IndexPath)

The table view on the
History page is
formatted correctly with
the correct data.

The table view on the
History page is either
formatted incorrectly
or populated with
incorrect data.

Pass

4 func
goBackPressed(_
sender: UIButton)

The GoBack button is
pressed and the app
goes back to the search
page.

The GoBack button is
pressed and the app
goes to an incorrect
page or does nothing.

Pass

5 func
getFinancialData()

Function gets the
options listed for the
company the user has
searched.

Function gets the
wrong options or
doesn’t return for the
listed company.

Pass

6 func
searchBarIsEmpty()

Returns true if the text
is empty or nil.

Returns false if the
text is empty or nil.

Pass

7 func
filterContentForSearc
hText(_ searchText:
String, scope: String
= "All")

Queries database
correctly for searching
companies with
searchText and updates
the cell appropriately.

Queries database
incorrectly for
searching companies
with searchText or
does not update cell
appropriately.

Pass

8 func isFiltering() Returns true if a user is
searching and typing in
the search bar.

Returns false if a user
is searching and
typing in the search
bar.

Pass

Figure 2.3
Note: many of the screens use tables and have very similar code. We tested each individually

but only added test cases here for one instance.

2.4 Quality Review (Melissa)

As we stated in 2.1 Test Plan, we chose our test cases by both a user perspective and a
developer perspective. By doing so, we were able to cover the app and test all four levels: unit,
integration, system, and acceptance. We used our designs for brainstorming about how it would
be used to find how the app should react, our story points, and our technical background in
databases for our initial test cases.

Since creating the original test cases, we have discovered that the nature of Swift and
the third-party libraries in our project provide new testable material. Additionally, some features
listed in the test cases have yet to be fully implemented, so we can not test them effectively.

We also were planning to do regression testing during each new sprint, however our
schedule didn’t allow for it very often. Instead, we relied mostly on unit and system testing to
detect bugs developed from previous sprints.

2.4.1 Issues (Caleb)

To ensure the app works as intended, the code has been reviewed and defects have
been corrected on an as-needed basis throughout development. Some notable issues have
included:

1. Incorrect / unnecessary Swift code style, such as using an extension for a class to
implement a behavior instead of implementing it in the class itself. Changing this saved
several lines of code and improved readability while retaining the same desired behavior.

2. The Search screen would turn entirely black under the following circumstances: (1) the
user taps the search bar and enters text, (2) the user then transitions to another tab, (3)
the user returns to the Search screen. This bug was fixed by implementing the
UITabViewControllerDelegate protocol and dismissing the search bar controller upon
transitioning to another tab.

3. Purchasing an option from a Company page would update the database but the Portfolio
screen would not display the newly purchased option until the app was restarted. This
was because the app only populated the Portfolio view when it first loaded, not
whenever the user returned to the page. This was fixed by overriding a UIViewController
function called viewWillAppear() and calling the populating method there.

3. Technical Metric Collection
3.1 Estimated Story Points (Melissa)
To help cover each area of the app when writing user stories, we sorted stories into categories
that covered each epic or large feature. Note however that some stories are a blend between
two categories. The following user stories each have an assigned value, an epic value (the sum
of all user story values for a given epic), and a total project value.

Design - 3 SP
As an elderly user, I want big and easy to read font so that I can easily see what I’m doing in the
game. - 1
As an iOS user, I want typical iOS conventions so that I am already familiar with the layout and
flow of an app. - 2

Account - 2 SP
As a user, I want an account linked to my Game Center ID so that I can use the leaderboard
features. - 2 SP

Game Structure - 10 SP
As a user, I want to be able to restart the game so that I can try again. - 3 SP
As a user, I want to be able to view how much money I have so that I can buy/sell accordingly. -
1 SP
As a user, I want to be asked for permission to enable push notifications after the tutorial so that
the timing is convenient and I know what is happening on the app. - 2 SP
As a mid-twenties aged user, I want stock trading to be as realistic as possible so that I can
practice and prepare for stock trading in the future. - 3 SP

As a newcomer to the stock market, I want an easily traversable learning curve in the app such
as a tutorial so that I can learn quickly and efficiently about stocks and options. - 1 SP

Searching - 8 SP
As a user, I want to be able to search for companies via their name so that I can easily find
them without knowing their symbols. - 4 SP
As a user already familiar with the stock market, I want to be able to search for companies via
their stock symbol so that I can quickly find them. -2 SP
As a user, I want to be able to type in part of a company’s name so that I can still find them
without knowing the full name. - 2 SP

Buying Options - 26 SP
As a user, I want to be able to see a chart of historical data so that I can make an informed
decision for whether I want to buy the stock or not. - 8 SP
As a user, I want to see a list of options for a company so that I can choose the option I think will
return the most profit. - 8 SP
As a user, I want an error message when I try to buy an option I cannot afford so that I do not
accidentally believe I have made a purchase. - 2 SP
As a user, I want to be able to buy both Call and Put type options so that I can strategize for
buying and selling as the market rises and falls. - 8 SP

Bought Options - 4 SP
As a user, I want be notified that an option is about to expire so that I have the chance to utilize
it. - 2 SP
As a user, I want to see recently expired options so that I can be filled with regret. - 2 SP

Selling - 5 SP
As a user, I want to view my stocks’ current prices so that I can determine if I want to sell them. -
3 SP
As a user, I want to be able to sell my stock so that I can make a profit. - 2 SP

Portfolio - 11 SP
As a user, I want to see a list of past transactions so I can improve my future game decision
making. - 3 SP
As a user, I want to see my earnings so that I will know how much money I have made. - 1 SP
As a user, I want to view my profits and losses so that I can evaluate my progress. - 3 SP
As a user, I want to see how many shares of each stock I own so that I can know how many I
have to sell/buy. - 2 SP
As a user, I want to see the price I bought a stock at compared to its current value so that I
know whether I will make a profit or loss. - 2 SP

Multiplayer - 5 SP

As a competitive user, I want to be able to see a leaderboard so that I can compete with others.
- 5 SP

The total story points estimated is 74.

3.2 Actual Lines of Code (Mitchell)
The total actual number of lines of code is 1006.
PHP Scripts

Query.php - 97
 SearchCompanies.php - 83
newUser.php - 69
insertTransaction.php - 85
insertOption.php - 85
updateCurrentFunds.php - 68

Swift Code
Views

PortfolioViewCell.swift - 17
CompanyViewCell.swift - 17
HistoryViewCell.swift - 17

Controllers
CompanyViewController.swift - 90
HistoryViewController.swift - 64
SearchViewController.swift - 154
PortfolioViewController.swift - 82
GCViewController.swift - 78

3.3 Complexity of Each Module (Caleb)
Using the CK Metric of Weighted Methods Per Class:

SearchViewController: 12
CompanyViewController: 7
HistoryViewController: 4
PortfolioViewController: 6

3.4 Complexity of Overall System (Caleb)
The maximum depth of any inheritance tree in our code is 2.

3.5 Product Size (Chad)

We have planned our game based on three user stories. We have a total of 13 test cases, and
12 classes planned.

3.6 Product Effort
 Hours Word Count

Caleb Cornett 25+ 259

Chad Stephenson 25+ 1615

Melissa Shankle 14 2562

Mitchell McClure 25+ 92

3.7 Defects (Mitchell)

1. Minor typo (Section 1.2)
2. Reworded for Brevity and Clarity (Section 1.3.0)
3. Switched Issues and Defect Sections because of miscommunication (Sections 2.4.1 and

3.7)
4. Moved Issue Section (Section 1.2 to Section 2.4.1)

 4. Web Page and Developer Notebook (Melissa)
Our team chose to use WordPress to keep track of our developer logs. Each team member has
their own page in addition to the team page. Member pages are used to record decisions and
actions of each member while the team page is for group decisions and meeting notes. Other
pages house documents such as the project plan and architecture assignment. Our site also
includes our contact information and the project overview.

Our site can be found at https://stockexchangegame.wordpress.com/

Word Count as of November 12th:

● Caleb - 932
● Chad - 291
● Melissa - 2352
● Mitchell - 1343

5. References (Melissa)
[1] Checklist for Code Walkthroughs - http://www.mit.edu/~mbarker/ideas/checkcode.html
[2] Systems Development: Code Walkthrough Checklist -
http://it.toolbox.com/blogs/enterprise-solutions/systems-development-code-walkthrough-checklis
t-49283

https://stockexchangegame.wordpress.com/
http://www.mit.edu/~mbarker/ideas/checkcode.html
http://it.toolbox.com/blogs/enterprise-solutions/systems-development-code-walkthrough-checklist-49283
http://it.toolbox.com/blogs/enterprise-solutions/systems-development-code-walkthrough-checklist-49283

