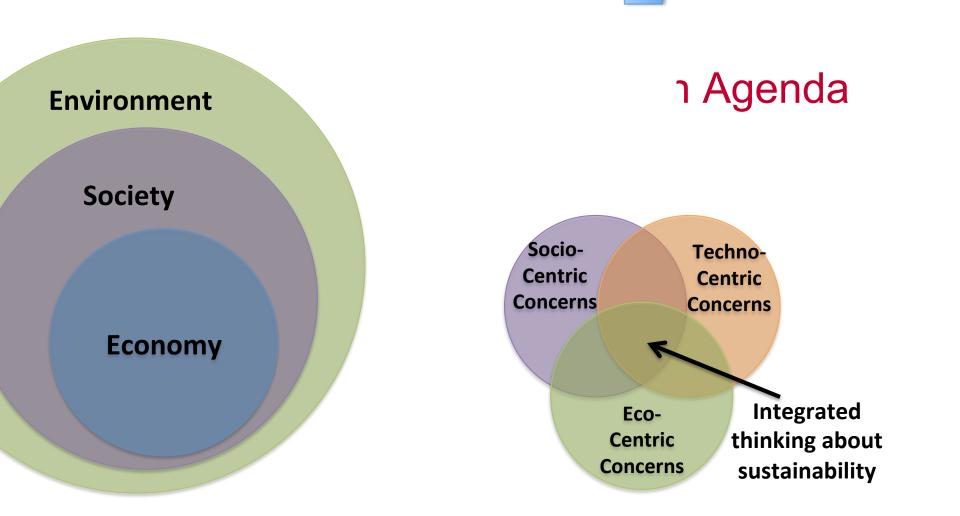


Engineering Sustainability Requirements Ruzanna Chitchyan

Lexington, May 3 2017

What is Sustainability?


(a) Weak Sustainability (adapted from [18])

(b) Strong Sustainability

Ref: *Sustainability Design and Software: Karlskrona Manifesto*, Becker, Chitchyan, Duboc, Easterbrook, Penzenstadler, Seyff, Venters, ICSE SEIS 2015

Manifesto: http://sustainabilitydesign.org/karlskrona-manifesto/

Ref: *Sustainability Design and Software: Karlskrona Manifesto*, Becker, Chitchyan, Duboc, Easterbrook, Penzenstadler, Seyff, Venters, ICSE SEIS 2015

Manifesto: http://sustainabilitydesign.org/karlskrona-manifesto/

How Do Software Professionals Perceive It?

Category	Finding			
Individual	Sustainability as environmental or financial			
findings	Sustainability as separate from SE			
	Sustainability as a nice-to-have quality			
The	Lack of methodological support			
professional	Need for mentality change			
environment	Assumed costs as barrier			
	Concerns of small companies			
	The role of the customer			
	Companies lack time			
	Engineers lack management support for it			
	Doubts about benefits for business			
	Perception of trade-offs and risks			
Norms in	Project success assessed at delivery only			
SE practice	Poor communication of sustainability values			
	Regulations are drivers for sustainability			

Ref: *Sustainability Design in Requirements Engineering: State of Practice?*, Chitchyan, Becker, Betz, Duboc, Penzestadler, Venters, ICSE SEIS 2016

How Do Software Researchers Perceive It?

Corpus- assisted discourse analysis:

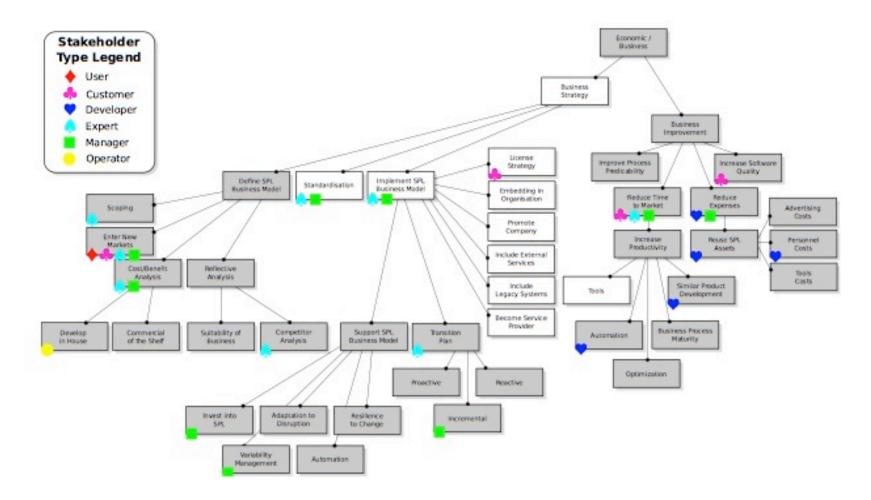
- Defined in terms of 5 Dimensions
 - Environmental, Social, Personal, Technical, Economic
- Interpreted in terms of Orders of Effects
 - Direct, Indirect, Systemic
- Focused on "more sustainable", so remaining unsustainable

Ref: Characterising Sustainability Requirements: A New Species, Red Herring, or Just an Odd Fish?, Venters, Seyff, Becker, Betz, Chitchyan, Duboc, McIntyre, Penzestadler, ICSE SEIS 2017

Differences per Software Research Area

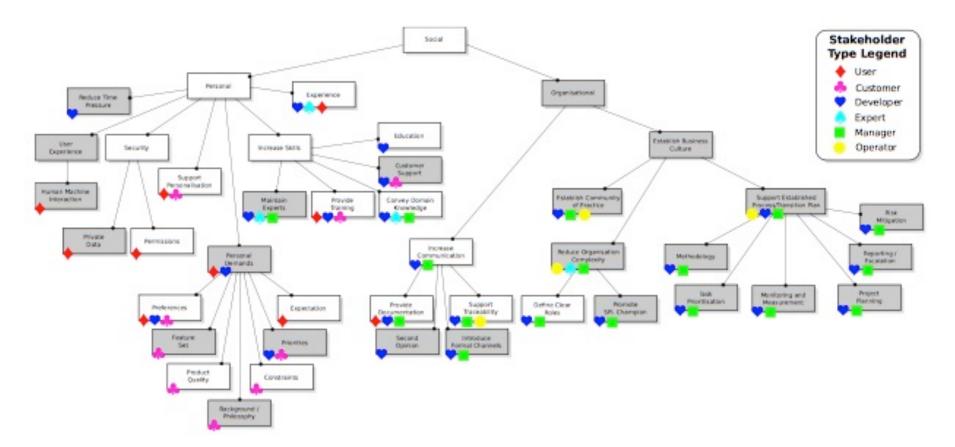
Area	Key concepts	Motivation	Main actors	Sustainability requirement context
IS	Cost effectiveness	Improve cost effective-	Business, Regulators,	Metrics and controls context, "such as
	Process improvement	ness of process, aiming	Customers	operating and capital cost, safety, en-
	Process structuring	for cost reduction.		ergy cons., waste gen., efficiency"
ICT	Optimisation of IT	Improved resource and	Customers, employees,	Environmental sustainability related to
	infrastructure, Green	energy efficiency of	business partners,	energy consumption and performance
	computing, Environmental	ICT	NGOs	
	sustainability, Sustainability			
	of IT services, Longevity of			
	energy systems			
SW	Software development process	Environmental impacts	Software developers,	Implicit non-functional qualities
Eng	models	of ICT	administrators, users	
Sys	Optimize systems considering	Economic expectations	All stakeholders	Sustainability requirements have to be
Eng	sustainability issues	and environmental con-	in context, noting	communicated
		sciousness	they have varying	
			background	
Ergo-	Multi-dimensional understand-	Economic and	Wide range of stake-	Environmental context and long life cy-
nomics	ing with economic, social, and	business-strategic	holders, including all	cles
	environmental	aspects, human factors	designers	
RE	Multi-dimensionality of sus-	Make sustainability	Decision making	Multiple dimensions and trade-offs:
	tainability, Interdependence of	more tangible, Make	households and/or	'Achieve acceptable level of service
	dimensions, Trade-offs, Gen-	related goals explicit,	software professionals,	(), have min. impact on natural env.,
	eral models of sustainability	Assess sustainability	regulators	be socially and economically accept-
				able'

Ref: Characterising Sustainability Requirements: A New Species, Red Herring, or Just an Odd Fish?, Venters, Seyff, Becker, Betz, Chitchyan, Duboc, McIntyre, Penzestadler, ICSE SEIS 2017


Social Sustainability: Case of Equality

Variability	Solutions for equal access to services	Requirements
Technology used	Make the system available in different de-	Users with different devices and different operating systems must have access
(HW, AV, TA, CP,	vices (desktop, tablets, mobile, smart TVs,	to the system by providing compatible versions of the system running on
AGM, PIM.)	kiosks), different operating systems (An-	desktops, tablets, mobiles (AV,TA, PIM), kiosks (HW), smart TVs (AV, AGM),
	droid, iOS, Mac, Windows)	and suitable for android, iOS, Mac and Windows.
Visual Disability	Different format of information (audio,	Users with blindness and visual impairment must be allowed to view informa-
(HW, AV, TA)	video, text)	tion in the system by providing the information in different formats such as
		audio, video, larger text, and text in alternative colours.
Language (HW, AV,	Multilingual interface	Users speaking in different languages must be supported in accessing the in-
AGM,TA)	Withinguar interface	formation in the system by providing multilingual website (languages included
		can be based on the most used language in the world).
Information media	Speech synthesizer	Users can record or query info through voice note that will be analyses through
(HW, TA)	Speech synthesizer	Speech synthesizer.
,	Varde a sul al astronta	
Technical literacy	Keyboard shortcuts	Users with good computer expertise should be able to use the system using
level (PIM)		keyboard shortcuts functions.
Age (HW)	Suitable information details for all ages	Users from different age ranges should be provided with suitable information
		details for all ages.
Gender (HW)	Suitable information without offending any	Users from different genders should be provided with suitable information
	gender	without offending any gender.
Religion (HW)	Acceptable information aligned with reli-	Users from different religions should be provided with acceptable supportive
	gious considerations	information (religious food certificate, health and religious observances (e.g.,
		healthy diet while fasting or lent), advice on medical procedures of religious
		significance (e.g., circumcision or blood transfusion).

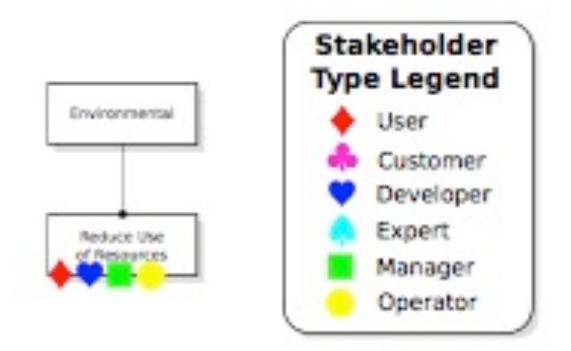
Ref: *Engineering Requirements for Social Sustainability*, Hinai & Chitchyan, ICT4S, 2016


Software Product Lines: Economic Sust.

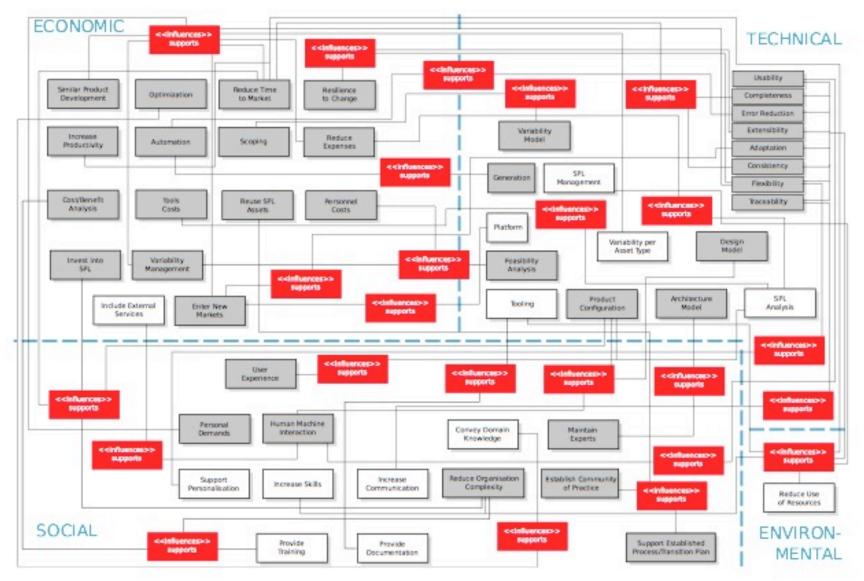
Ref: Uncovering Sustainability Concerns in Software Product Lines, Chitchyan, Groher, & Noppen, Journal of Software: Evolution and Process, 2017


Software Product Lines: Social and Personal

Ref: Uncovering Sustainability Concerns in Software Product Lines, Chitchyan, Groher, & Noppen, Journal of Software: Evolution and Process, 2017


UNIVERSITY OF LEICESTER

Software Product Lines: Technical Sust.


Software Product Lines: Environmental Sust.

Ref: *Uncovering Sustainability Concerns in Software Product Lines*, Chitchyan, Groher, & Noppen, Journal of Software: Evolution and Process, 2017

Software Product Lines: Interdependencies

Ongoing Work

- Sustainability requirements in Energy Systems
 - Peer-to-Peer Energy Trading (EPSRC HoSEM project)
 - Re-factoring Energy System for Sustainability (EPSRC Living with Environmental Change fellowship)
- Sustainability Requirements Interactions
 - Sustainability Debt (with Christoph Becker and Steffi Betz)
 - Requirements Interdependencies (with Ben Secretan)
 - Interdependencies in SPL (with Iris Gropher & Joost Noppen)
- Common Foundations for Sustainability Requirements (with KM Group)
 - Workshop on RE4SuSy at RE 2017 (with Karlskrona Group)

