Analysis Modeling Walkthrough – Version 1.0
We make a first attempt at a domain model, only considering the classes and relationships. We go through each use case, creating an event trace and updating our domain model as we go.
Domain Model Version 1.0
[image:]
This is our first pass, based on reviewing the requirements and our experience with the use cases thus far. It is incomplete and incorrect, but that is the nature of an iterative process.
We know that we have a Borrower class. We start with that class on the left-hand side.
Next, let’s consider our MediaItem class. We know that we will have different types of MediaItems, but for now we don’t break out the subclasses. The Catalog class will manage the MediaItems from the library, similar to the way that a card catalog can be used in the library to find items in the library. There is only one catalog, so we note this for now.
Our requirements state that we must track all transactions. The transaction class will hold the details of this information. The TransactionLog class will provide an interface to find and manage these classes, similar to the card catalog’s relationship with the media items.
The Transaction requires at least two pieces of information, a Borrower and one or more MediaItems. We model these relationships as well.
Aside- Multiplicity, Aggregation and Composition
We specify the multiplicity of the MediaItem in the Catalog MediaItem relationship as 0..*. It is perfectly legitimate to have a catalog with no media items in it, even though it is not very useful. The diamond indicates aggregation. An open diamond such as the one shown here is appropriate. A filled diamond (as we will see later) is specified for a stronger type of aggregation referred to as composition. Aggregation is the “has a” relationship. Composition can be thought of as an “is a part of” relationship, where the upper level object controls the instantiation, storage and deletion of the other object.
For example, a car “has” wheels. It can exist without the wheels, it is still a car. Pages are a part of a book, but if you take away all the pages, you don’t have a book any more. It is a grey line but this is a good guideline. Consequently, the multiplicity value for the bookpages example would be 1..*.
[image:]In addition to aggregation or composition there is a weaker form of reference. The transaction has a reference to a Borrower and a reference to one or more MediaItems, but it does not “have” either of these, it knows about them. It is also not a composition relationship, because destroying the transaction should have no effect on the borrower or media item.
We explain the multiplicity labels used in our domain model in the following annotated diagram. Each end of the connector has a multiplicity label. That end should have the value for that object’s contribution to the relationship. For example, Borrower is labeled with a 1 because each transaction must have at least one borrower. Conversely, Transaction is labeled with 0..* because a Borrower does not necessarily have a Transaction, but can also have many.
Add a New Borrower
We create an event trace for Add New Borrower. An event trace is a type of sequence diagram. Once we get to a detailed level, it will show classes and the method calls used to accomplish a scenario. For now it gives a higher level view of interaction. It is useful to do this now in a model where it is easier to change and understand.
We neglect details about user interfaces in the event traces. We are attempting to capture the behavior in the context of the domain, so the interface logic adds details that we will expand upon later. The analysis model should stay as design and implementation agnostic as possible.
[image:]
We immediately find that we need a class to manage the borrowers in the system. We add a PersonManager to serve this role. The PersonManager will serve as a central point for creating, requesting and storing information about borrowers.
1. A request is made to Add Borrower (parameters will contain the borrower information)
2. The data that is passed is validated against rules for adding new borrowers.
3. A new Borrower instance is created.
4. The Borrower instance is updated with the data that was passed in
5. The Borrower instance is saved.
6. This return call indicates to the PersonManager that the operation is complete.
7. This return call indicates that the PersonManager has completed the operation.
Note that we do not include “return calls” for every message. We put them at the end to increase readability (especially when we start showing multiple scenarios in a single diagram).
NOTE: From this scenario we update our domain model with a PersonManager class.
Remove Borrower
Remove Borrower is another operation for the PersonManager class. The PersonManager class will fetch the appropriate instance of a Borrower, then call the Remove method. Recall that Remove means that we mark the Borrower as someone who can no longer borrow from the library. We do not actually delete the borrower’s record. Doing so would invalidate any transactions that included that Borrower.
There may also need to be a Delete operation that removes a Borrower as long as they were not involved in any transactions.
[image:]
1. The Remove operation is called with an identifier for the Borrower to be removed.
2. The PersonManager will Fetch the Borrower, loading the data and creating an instance of the Borrower.
3. The PersonManager calls Remove on the Borrower.
Checkout Media to Borrower
The first two event traces were fairly quite forward. Outside of adding the PersonManager class, we were able to trace through the events by translating responsibilities in the use case’s main scenario onto the event trace. Sometimes it takes more than one pass to do this correctly, as this scenario demonstrates.
[image:]
This trace follows the logic of the main success scenario fairly well. The PersonManager is responsible for fetching the borrower, the Catalog is responsible for fetching the MediaItem and the TransactionLog becomes the natural choice to coordinate the checkout transaction. There are a couple of problems here , however. First, the Librarian is making multiple calls. This is a problem because the Librarian represents an external entity. We do not want the sequence of calls controlled by an external entity.
By putting the Checkout operation in the TransactionLog class, we are basically assigning that responsibility to the TransactionLog class. We can now rearrange the sequence of calls in order to make the TransactionLog class the coordinator of the Checkout operation. In addition, TransactionLog is a good name for a simple data store of transactions, but we are now assigning it important responsibilities. It makes sense to rename the class as well. The following diagram shows the next iteration of the Checkout event trace.
[image:]
We make the TransactionLog in charge and change its name to TransactionManager. We split up validation and delegate it to the validation of the Borrower and the validation of the MediaItem. The rules may still reside in the TransactionManager, but they will require information from the borrower and Media Item at a minimum. We can go into more detail on this validation later in the design. We add a Save at the end to save the state of the transaction to emphasize that the record is persisted.
This delegates responsibilities more evenly. The TransactionManager is “in charge” of the Checkout, and it “uses” the PersonManager and Catalog to retrieve the other participants in the Transaction.
Checkin Media
We use a similar approach for the Checkin operation. The TransactionManager manages the operation, coordinating the update of information on the Transaction, Borrower and Media.
[image:]
One question that comes to mind is “How does the TransactionManager determine which MediaItem and Borrower instance to Fetch?” Good question, but we will delay the answer until design. When a database is used it is a common practice to have an internal identifier that can be used to reference values from other tables. For example, a long integer named MediaItemId might serve as an internal Primary Key for the MediaItems table in the database and a foreign key in the Transactions table.
 Add New Media Item
The sequence diagram for adding a new media item is very similar to our sequence diagram for adding a new Borrower.
[image:]
The validation rules and data will be dramatically different, but the interaction is very similar, where the Catalog replaces the PersonManager and a MediaItem instance is created instead of a new Borrower instance. It is easy to show, so we add the diagram even though it hasn’t taught us anything new. After all, it might evolve differently than the Add Borrower example.
Revisiting Media Items and Media Copies
Up until now we have put off the decision of how we will represent extra copies of media in the library. We know that the concept of “copy information” exists, but we don’t yet know what data exists there. Those requirements are still outstanding, but we can make a couple of early decisions and keep going.
First, when we search for items we expect to see one entry, even if there are multiple copies of the item. Any one of the copies could eventually be lost, even the original. Therefore, it makes the most sense to have a copy instance for each and every copy, even the original. In addition, any Media Item must have at least one copy. A section of the updated Domain model shows this change, with a composition relationship. This relationship basically says, without at least one copy, the Media Item does not exist.
[image:]
Given this new understanding of the relationship between the MediaItem class and the MediaCopy class, we must revise our sequence diagram for adding a new media item.
Add New Media Item (updated)
Since the Catalog will need to validate data for a MediaCopy or a MediaItem we separate the validation functions. We perform the validation upfront before we create any instances of either class.
[image:]
In order to enforce our 1..* multiplicity relationship, we require an instance of the MediaCopy class to be passed to the constructor of the MediaItem constructor. This also requires us to make the default constructor private. We add this to the domain model so we don’t lose track of it.
In addition, the MediaItem class owns and manages its MediaCopy classes. Therefore, when we save a MediaItem we also perform a save on each of the MediaCopy classes. We can use a dirty flag to determine whether we should actually do anything when the save operation is called, but that is drifting into low level design again, so we will hold off.
Add New Media Copy
Now that we have worked out the relationship between the MediaItem and MediaCopy classes, modeling the behavior for adding a new media copy is a piece of cake.
[image:]
We simply fetch the MediaItem, create a new instance of MediaCopy and update the instance with the data provided. Then we add the newly created instance to the MediaItem and save the change.
Remove Media Copy
As expected, removing a Media Copy is very similar to adding the copy in the first place. Recall, however that we don’t actually delete the copy, we simply mark it as removed.
[image:]
The Catalog fetches the MediaItem, then requests the copy that must be altered. The MediaItem retrieves the MediaCopy and returns a reference to the Catalog.
Remove Media Item
When we remove a Media Item from the library, that implies that we remove all copies.
[image:]
The Catalog receives the call to remove the media item. It fetches the MediaItem and calls the Remove function. The Media Item marks itself as removed from the catalog, but also loops through each of its MediaCopy instances and removes them as well.
Create Overdue Notices
There are a number of considerations for the creation of overdue notices. Most of them however, are related to performance. For our purposes at this point, we present the simplest approach to creating the overdue notices. We will loop through each borrower, determine the amount due and create a notice for the borrower if the amount due is greater than zero.
[image:]
Add Borrower Payment
The final use case to analyze in this iteration is to add a Borrower Payment. The PersonManager class provides the interface to add a payment. The PersonManager fetches the Borrower instance, creates a Payment with the provided information and adds it to the Borrower. The Borrower adds the Payment instance to its collection of payments and updates the amount that is due from the Borrower.
[image:]
Updated Domain Model
Our domain model after completing one iteration of event traces is provided below. We add the changes for MediaItem and MediaCopy that we discussed earlier in the analysis. We also add the Payment information for the Borrower. Our next iteration requires more information about the data we should track for each class. We can address this by getting answers to our questions from use case analysis.
[image:]
image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image1.emf

image2.png

image3.emf

image4.emf

