Updating the Domain Model (to 1-2)
We get answers to our questions. We use the info to update the domain model and create a revised version of the requirements.
From Add a New Borrower Use Case
What are the rules for determining that a borrower is a member of the department?
When entering the Borrower information the Librarian will use the employee directory. The department is listed.
We add a department to the Borrower class.
What information should be entered for each borrower?
University Id. First, Middle and Last Name. Title, Status (Faculty, Staff, Undergraduate, Graduate), Phone, Email address, Address, City, State and Zip Code.
We add the appropriate attributes to the Borrower class.
Outstanding Questions: We need appropriate data formats and lengths for all of these.
How do we determine whether a borrower is a duplicate? Name? SSN? Is there an employee ID?
The University Id cannot be duplicated, it is a unique identifier.
We add a Contains function that accepts a long identifier. We assume a long integer for the Id.
From Remove a Borrower Use Case
Can a borrower be removed if they have outstanding fines?
Yes. They should still receive updates about outstanding fines. Removal should only flag the user as ineligible to borrow.
We add an Active flag to the Borrower class.
Any other rules on when they can be removed?
	No. A user that has outstanding fines cannot be re-activated, however.
We add a Remove and IsActive and SetActive function. A Remove function will trigger a SetActive(false) call. We will add a constraint for the SetActive call. We know from our Create Overdue Notices use case that we will have a GetAmountDue function and we use it for the constraint.
Outstanding: We should add a reactivate use case to cover this condition.
From Checkout Media to Borrower Use Case
Do we need a Find Borrower use case? What method or methods should be available for finding a borrower?
	Search by UniversityId, Last Name, First Name and a browse function.
Search criteria are one of those things that often change. We will create a Search Criteria class that we can pass to the PersonManager. That will give us some flexibility.
What is the borrowing threshold? Does it vary?
	The borrowing threshold varies based on status.
· Faculty – 7
· Staff – 7
· Undergraduate – 3
· Graduate – 5
Who should be responsible for this rule? It is clearly based on the Borrower’s status, but it is not a rule about a person, but a transaction. We add a method to TransactionManager to get the Borrowing Threshold. We pass a Borrower, that way if the rules change and use some other data for rules, we don’t have to change the signature of the method, just the logic.
How do we calculate the due date of the item? Is it different for different media types? Is it different for newer books? Certain categories?
Due dates are 60 days from checkout. Right now all media types are the same. The date can fall on a holiday or weekend when the library is not open. The Borrower will get credit for an on-time return as long as it is in the drop box on the first day of business after the due date.

NOTE: This means we must be able to check in with a previous date.
The logic for determining the time may come into play when we create the transaction, but we will put the attribute and Operation to access the date in the Transaction class. We also realize that the Transaction should connect to a copy, not the Media Item, so we change the relationship. A copy should have access to its Media Item information, so we will add a function to retrieve its parent MediaItem.
From Add Media Item Use Case
What validation is performed on the information for the media item? What are the required fields? What if a similar media item exists? How do we determine that it is a duplicate? What do we do?
Books: ISBN, Title, Date of Publication, Author (Last, First names), Subject, Number of Copies in the library.
Films: Name, description, Production company, Film category, Format, Number of Copies in the library.
Software: Name, description, Company, Software Category, Platform (PC, Mac, etc..) , Number of Copies in the library.
We subclass the MediaItem class and add this data as attributes for each subclass. We add GetNumberCopies() to the MediaItem class, since it can apply for all types. We assume Name = Title and a Description would apply for a book as well, so we also move these to the Media Item. We also treat Subject = Category and share these items in the Media Item class. We treat production company, software company and publisher (which we add for book) as a common item and call it publishing company.
From Add Media Copy Use Case
What information is classified as copy information? What validation must take place?
Each copy has a unique number assigned by the library, a status and a location.
We add a CopyId to the Media Copy class.
From Remove Media Copy Use Case
Should we allow checked-out items to be removed? (will effect our media copy statechart)
	Checked out items can be removed (e.g. Lost Items)
Like our Borrower, we add an Active flag to the Media Copy. We also realize we need a Checkout status.
From Add Borrower Payment Use Case
What information is required for borrower payment? E.g. Payment type, amount, etc…
Payment date and amount.
We add a date and amount to the Payment class.
What validation rules exist for borrower payments? Can a payment be more than a borrower owes?
Payment must be <= amount owed.
Next we go through each of the Use Cases and look for additional data items and methods.
Add Borrower
· Validate to PersonManager (should we put this on Person? Let’s revisit later)
· Update and Save method to Person
Remove Borrower
· Add Remove to PersonManager
Checkout Media
· TransactionManager needs a CheckOut operation
· Find MediaItem to Catalog
· Add SetBorrower to Transaction
· Add SetMediaItem to Transaction
· Add Save to Transaction
[Use Case] We notice that CheckoutMedia needs to be updated. It should associate a MediaCopy with the Transaction, not a Media Item.
Checkin Media
· TransactionManager gets a CheckIn operation
· TransactionManager needs to be able to Find a Transaction. We should allow a searc h by either the media copy or by the borrower.
· Noting that we need to update the use case to find a media item, we add a SearchForCopy to the catalog.
· We add a subclass to CatalogSearchCriteria for searching for copies. We add CopyId to search for an item by its unique identifier (barcoded on the copy) and MediaItem to see all of the copies for a particular Media Item.
·
 [Use Case] Checkin Media needs to be updated to checkin a media copy, not a media item.
[Use Case] Change Find to Search. Standardize the name of the call.
Add Media item
· We add a method to add a MediaItem.
· We add a validate operation.
Add Media Copy
· We add a method to add a Copy
· Oops! We did not have validation for media copy information
· Wait a minute! We are going to need ValidateBook, ValidateMovie, etc…
· Let’s back up and move Validate to the class with the data.
· We add Save to MediaCopy and MediaItem.
· Hmm… Borrower and Transaction are going to need that too. Borrower has a Save operation so we add it to Transaction.
[Use Case] Need validation in the Add Media Copy use case.
We move Validate from the managers to the data classes. This puts validation in a location specific to the class we are working with, not in the hands of the creator. We need to update this in several use cases and the domain model.
Remove Media Copy
· We add GetCopy() to MediaItem and a Remove operation to MediaCopy.
· We will use the same approach as the Borrower class and add a SetActive() and IsActive() function.
Remove Media Item
· We add Remove, SetActive and IsActive functions to MediaItem as well.

Create Overdue Notices
· Add CreateOverdueNotices to TransactionManager
· GetBorrower is a Search operation on a Borrower with a UniversityId. (We should update the sequence diagram)
· We already have GetAmountDue on the Borrower
· Add CreateNotice to the TransactionManager.
[Use Case] Make GetBorrower a Search operation based on UniversityId
Add Borrower Payment
· AddPayment to PersonManager
· Add(Payment) to Borrower
· For consistency’s sake we add a Save() operation

Updated Domain Model (version 1.2)
[image:]

image1.emf

