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ABSTRACT 

Research must be reproducible in order to make an impact on 

science and to contribute to the body of knowledge in our 

field.  Yet studies have shown that 70% of research from aca-

demic labs cannot be reproduced.  In software engineering, 

and more specifically requirements engineering (RE), repro-

ducible research is rare, with datasets not always available or 

methods not fully described.  This lack of reproducible re-

search hinders progress, with researchers having to replicate 

an experiment from scratch.  A researcher starting out in RE 

has to sift through conference papers, finding ones that are 

empirical, then must look through the data available from the 

empirical paper (if any) to make a preliminary determination if 

the paper can be reproduced.  This paper addresses two parts 

of that problem, identifying RE papers and identifying empiri-

cal papers within the RE papers.  Recent RE and empirical 

conference papers were used to learn features and to build an 

automatic classifier to identify RE and empirical papers.  We 

introduce the Empirical Requirements Research Classifier 

(ERRC) method, which uses natural language processing and 

machine learning to perform supervised classification of con-

ference papers.  We compare our method to a baseline key-

word-based approach.  To evaluate our approach, we examine 

sets of papers from the IEEE Requirements Engineering con-

ference and the IEEE International Symposium on Software 

Testing and Analysis.  We found that the ERRC method per-

formed better than the baseline method in all but a few cases.  
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1 INTRODUCTION 

Innovative research is a vital part of moving the requirements 

engineering industry forward, spurring the development of 

novel, faster, and better techniques.  While current emphasis is 

placed on “greenfield” research, there is a decline in reproduci-

ble research, regardless of whether the research being repro-

duced is greenfield or not.  According to Popper [2], “Non-

reproducible single occurrences are of no significance to sci-

ence.” Studies show that up to 70% of academic research isn’t 

able to be reproduced, which “represents a tremendous amount 

of wasted effort and money [1].”  If research cannot be repro-

duced, there isn’t an efficient way to determine its validity, 

which results in it going unused. 

Recent work funded by the National Science Foundation 

developed a research framework called TraceLab [3].  

TraceLab is designed to “provide an experimental environment 

in which researchers can design and execute experiments [3].”  

While TraceLab allows researchers to easily reproduce experi-

ments, it should first be determined if the work in a given re-

search paper even has the possibility of being reproduced.  

While the ultimate goal of our research is to be able to quickly 

determine whether an experiment or study in a paper can be 

reproduced, this paper addresses antecedent questions to sup-

port that objective. 

The first step in our overall process is to determine whether 

a paper is related to Requirements Engineering (RE), as we are 

focused on replicating requirements engineering research.  

Next, we need to determine whether the RE paper is empirical. 

We define an empirical paper as one that is based on observed 

and measured phenomena, where results are analyzed and con-

clusions are drawn.  

We start by applying natural language processing (NLP) 

techniques.  Once the text of the research papers has been ex-

tracted and processed, we apply two methods for determining 

features of the papers.  The first is a baseline method which 

uses the frequency of certain key words. The other method, the 

Empirical Requirements Research Classifier (ERRC), uses 

supervised learning as the basis for the features.  Both methods 

have been implemented as TraceLab components. 

We built a training set by manually labelling papers from 

several years’ worth of papers from two different conferences 

(one RE, one not).  We then applied popular classification 

techniques to each model: Weka’s [6] implementation of Naïve 

Bayes [7], J48 [8], and ZeroR [9].  We used precision, recall, 

and f-measure, as well as the prediction accuracy, to evaluate 

the ERRC and baseline methods.   

The paper is organized as follows. Section II discusses the 

research method.  Section III addresses the study approach, 

including the threats to validity. The results and analysis are 



presented in Section IV.  Related work is discussed in Section 

V.  Section VI presents our conclusions and future work. 

2 METHOD 

Figure 1 presents a high level overview of our ultimate goal: to 

automatically identify reproducible empirical requirements 

engineering papers.  The shaded blocks are in the scope of this 

paper.  Toward our goal we developed a method to identify 

empirical requirements engineering papers, the ERRC.   

As can be seen in the figure, we first created a directory for 

each year of each conference and saved the file for each paper.  

To support model building, we manually labelled each paper as 

being empirical RE, non-empirical RE, empirical non-RE, or 

non-empirical non-RE. 

Next, each paper was parsed. The newline and return char-

acters were then removed.  This allowed, for example, any 

phrases spanning multiple lines to be read as a whole.  Pre-

processing was performed:  we replaced all punctuation except 

apostrophes and dashes with spaces to allow for easier text 

recognition.  We then used a filter to remove stop words.  Stop 

words are common words that don’t add meaning to a sentence 

(i.e., “the,” “an,” “and”).  Finally, numbers were removed from 

the text. 

Once the text was processed, we proceeded with data col-

lection.  Each remaining word was shortened to its stem (i.e., 

“required,” “requirements,” “requiring” all were stemmed to 

“requir”) and added to the list of stems (unless the stem had 

already been found, in which case we increased the count for 

that stem).  Stemming words to their morphological root in-

creases the likelihood of similar or related words being 

matched.   

Once data collection was complete, we used two different 

feature selection methods to build the classification models. 

2.1 Baseline Method 

The baseline approach used a simple term frequency count 

for developing features of the model.  We identified key words 

from previous RE and empirical papers.  Specifically, we iden-

tified the top five most frequently used keywords from the most 

recent RE and ISSTA conferences, which spanned over 200 

papers.  The term counts of the selected key words were then 

used to build the baseline model. 

2.2 ERRC Method 

The ERRC method represents a more general approach to 

paper classification.  Unlike the baseline method, which uses 

only the provided key terms, the ERRC method recorded the 

frequency of all stemmed terms found in a paper.  Once a com-

plete list had been created, the terms were sorted from most 

frequent to least.  The top ten most frequent stemmed terms 

were then recorded as the unique features for that paper. The 

result was the ERRC model that can be passed to a classifica-

tion technique. 

2.3 Analysis of Methods 

To measure the effectiveness of the baseline and ERRC 

methods, we used Weka to classify the resulting models.  Each 

classification technique, ZeroR, Naïve Bayes, and J48, was 

applied to each method’s model.  The models were evaluated 

using cross validation at 10, 20, 30, and 40 folds.  In cross vali-

dation, the dataset is divided into k subsets.  One of the k sub-

sets is used for the testing set, while the other k-1 subsets are 

used for the training sets.  The advantage of this method is that 

every element gets to be in the testing set exactly once, and in 

the training set k-1 times [15].  Each cross validation was run 

10 times with a different seed, to randomize the folds.  We used 

the average of the results of all runs to perform analysis.   

 

 

Figure 1: High level overview of approach to identification of 

reproducible empirical requirements engineering papers.  

3 EMPIRICAL STUDY 

We performed a case study aimed at evaluating whether RE 

empirical research papers can be automatically classified.  We 

studied two research questions. 

 

RQ1: Can NLP features be used to characterize empirical 

and/or RE papers? 

 

RQ2: Can the ERRC method predict paper classifications 

better than the baseline method? 

 

Studying RQ1 and RQ2 will help determine whether or not 

a model can be built to classify RE empirical papers.  With this 



question answered, we will be able to move onto our longer 

term research project of determining if it is possible to classify 

papers as reproducible. 

For this study, we have a null hypothesis  

 

H0 : AERRC = AB 

and an alternate hypothesis 

H1 : AERRC > AB 

 

where A is the accuracy of the method, ERRC is the ERRC 

method, and B is the baseline method. 

3.1 Objects of Analysis 

For the objects of analysis, we chose conference papers 

from the IEEE Requirements Engineering (RE) conference and 

the IEEE International Symposium on Software Testing and 

Analysis (ISSTA).  The RE conference ensures that papers on 

requirements engineering research are represented; the ISSTA 

conference ensures that non requirements engineering research 

is represented.  Further, we chose these two conferences since 

they have both RE and empirical papers.   

The breakdown of papers used is shown in Table 1.  We 

chose the years 2000, 2005, and 2015 for RE to represent an 

even division of years across the past conference offerings.  We 

chose 2000, 2004, and 2015 for ISSTA for the same reason.  

The papers ranged from 5-10 pages in length, with most of 

them being 10 pages.   

Once a suitable subset of papers was gathered, we manually 

classified all the papers.  To accomplish this, we had one of the 

co-authors read through the papers, labelling them as RE or 

not, and empirical or not.  Note that there is a good balance of 

empirical/non empirical and RE/ non RE papers, as can be seen 

in the bottom row of the table. 

 

Table1: Conference Papers 

 

Year Empirical 
Non-

Empirical 
RE 

Non-
RE 

Total 

IEEE 
RE 

     

2000 7 6 12 1 13 

2005 21 23 41 3 44 

2015 29 18 43 4 47 

 

IEEE 
ISSTA 

     

2000 12 9 1 20 21 

2004 11 17 1 27 28 

2015 21 21 0 42 42 

Total 101 (52%) 94 (48%) 98 (50%) 97 (50%) 195 (100%) 

3.2 Variables and Measures 

This section describes the independent and dependent vari-

ables of our study. 

3.2.1 Independent Variables.  We had two independent 

variables.  First, we varied the feature selection 

methods, applying a baseline approach and the 

ERRC.  The baseline method was developed to be a 

simplistic approach to be used as a control method 

against which to judge the ERRC method. 

Second, we used three classification techniques in the 

study: ZeroR, Naïve Bayes, and J48. We implemented these 

methods using the Weka Data Mining Software [6]. 

ZeroR is one of the simplest classification methods.  It ig-

nores any predictors, only relying on the target of the data. 

With its lack of ability to predict anything other than the ma-

jority class, it is unhelpful for practical prediction, but is useful 

for creating a baseline result against which to compare the 

other techniques. 

The Naïve Bayes classifier is built upon the Bayes’ theo-

rem.  Naïve Bayes uses independent assumptions for the fea-

tures to predict the classification. 

J48 is an open-source Java implementation of the C4.5 al-

gorithm.  It builds decision trees from the training set. 

3.2.2 Dependent Variables. We chose accuracy, recall, 

precision, and f-measure as the dependent variables.  

Accuracy measures the percent of correctly classified 

papers.  Precision measures how many of the 

retrieved elements are relevant (how many of the 

papers that ZeroR indicates are RE papers truly are?). 

Recall, on the other hand, measures the percentage of 

true instances that are retrieved (did ZeroR retrieve 

all the RE papers?).  F-measure is the harmonic mean 

of recall and precision and provides a single measure 

to represent both.   

3.3 Study Operation 

To perform the feature setup and collection, we used the 

Apache Lucene and Solr libraries [12].  These Java-based li-

braries provide text indexing, searching, and advanced analy-

sis/tokenization capabilities.  We used these libraries to remove 

stop words, remove special characters and numbers, and to 

stem words and count their frequencies. 

To help speed up the development and evaluation process, 

and to allow others to easily reproduce our experiment, we 

implemented the study as a collection of TraceLab compo-

nents. 

3.4 Threats to Validity 

The primary threat to external validity in this experiment 

involved the datasets.  Other datasets may be larger, or have 

different term frequencies.  A larger dataset may generate a 

more diverse classification model.  Also, due to the inability 

and impracticality of building a model that uses every paper 

from every conference from every field, we mitigated the threat 

by using papers from several years’ worth of two different con-



ferences.  We cannot claim that our results will generalize to 

other datasets.    

For internal validity, the primary threat involved the manual 

classification of the training set.  To reduce this threat, we had 

one co-author perform the labelling.  These labels were then 

later corroborated by another co-author.  Both co-authors 

worked independently.  The co-authors discussed conflicting 

labels until agreement was reached.  To perform analysis, we 

used popular and established tools (i.e., Weka).   

For construct validity, the primary concern was the depend-

ent variables used to answer the research questions.  To address 

this threat, we used the standard and well accepted measures of 

accuracy, recall, precision, and f-measure.  To minimize con-

clusion validity threats, we performed statistical analysis to 

interpret the results. 

4 RESULTS AND ANALYSIS 

All of the tables for our results can be found at 

www.cs.uky.edu/~hayes. 

4.1 RE Paper Classification 

Figure 2 shows the percent of correctly classified empirical 

papers using the Naïve Bayes technique.  As can be seen, the 

ERRC method has about a 2% accuracy benefit over the base-

line method at 10 folds.  Figure 3 shows the same using the J48 

technique.  The ERRC method outperforms the baseline meth-

od by a maximum of 10%.  Figures 4 and 5 show the precision 

for the empirical classification using Naïve Bayes and J48.  

These show that the ERRC method has increased precision 

over the baseline method using J48, but not when using Naïve 

Bayes.  Figure 6 shows the recall using J48 for the empirical 

classification.  As can be seen, the ERRC method has a steady 

value across all numbers of folds, whereas the baseline method 

varies greatly, with its lowest value under 0.2.  Figure 7 shows 

the f-measure using Naïve Bayes while classifying empirical 

papers, with the ERRC having almost double the value of the 

baseline method. 

 

Figure 3: Percent of Correctly Classifed Empirical Papers using 

J48. X-Axis = number of Cross validation folds times 10. 

 

Figure 2: Percent of Correctly Classifed Empirical Papers using 

Naïve Bayes. X-Axis = number of Cross validation folds times 10. 

 

Figure 4: Naïve Bayes Precision for Classifying Empirical 

Papers. X-Axis = number of Cross validation folds times 10. 



 

Figure 5: J48 Precision for Classifying Empirical Papers.  X-

Axis = number of Cross validation folds times 10. 

 

Figure 6: J48 Recall for Classifying Empirical Papers. X-

Axis = number of Cross validation folds times 10. 

 

Figure 7: Naïve Bayes f-measure for Classifying Empirical 

Papers. X-Axis = number of Cross validation folds times 10. 

4.2 Empirical Paper Classification 

The percent of correctly classified papers using Naïve 

Bayes can be seen in Figure 8.  As shown, the ERRC method 

outperforms the baseline method by about 10%.  Figure 9 also 

shows the ERRC method outperforming the baseline method 

using J48.  While the ERRC and baseline methods have close 

recall, as seen in Figure 10, the ERRC has f-measure roughly 

12% higher, which is shown in Figure 11. 

 

Figure 8: Percent of Correctly Classifed RE Papers using 

Naïve Bayes. X-Axis = number of Cross validation folds 

times 10. 

 

Figure 9: Percent of Correctly Classifed RE Papers using 

J48. X-Axis = number of Cross validation folds times 10. 

 

Figure 10: J48 Recall for classifying RE papers. X-Axis = 

number of Cross validation folds times 10. 



 

Figure 11: Naïve Bayes f-measure for classifying RE papers. 

X-Axis = number of Cross validation folds times 10. 

4.3 Analysis 

While the ERRC and baseline methods may have similar 

accuracy classifying empirical papers, the ERRC has about 

10% increased performance for classifying RE papers.   

Surprisingly, the baseline method outperformed the ERRC 

method for classifying some empirical papers using Naïve 

Bayes at higher folds.  This result does not mean that the 

ERRC method is not useful.  The ERRC method still has an 

advantage of automatic modelling over manually assigning 

terms.  

For RE classification, the ERRC method clearly outper-

forms the baseline method, with a much higher classification 

accuracy, recall, and f-measure.  The baseline method does 

have a slightly higher precision, though.  This higher precision 

could be due to the baseline method naively predicting an RE 

classification more often than the ERRC, which would explain 

the low recall and f-measure values. This is not certain though 

as there was not an overwhelming majority class in the dataset.  

Recall from Table I that the training set was well balanced, 

with 98 RE papers and 97 non-RE papers. 

Table 2 shows the one tail t-test statistical analysis of the 

accuracy, recall, precision, and f-measure from the study.  For 

this study α = 0.05, meaning that there is a 5% or less probabil-

ity that the results are due to chance.  The values in Table 2 

which are less than α, and therefore significant, are bolded.  As 

shown in the table, all values are significant except for the Na-

ïve Bayes for empirical papers and J48 for RE papers. To an-

swer RQ1, we can use NLP features to characterize empirical 

and/or RE papers.  Our results show that we can characterize 

empirical papers with roughly 55% accuracy and RE papers 

with roughly 89% accuracy.  Answering RQ2, the ERRC does 

predict paper classifications as well as or better than the base-

line method.  Due to the significance of the results, we can re-

ject our null hypothesis H0 in favor of our alternate hypothesis 

H1. 

 

 

 

 

 

Table 2: Statistical analysis 

 

 
Empirical Requirements 

Accuracy P(T<=t) one tail 

Naïve Bayes 0.294063822 9.22234E-06 

J48 0.01042203 0.022431733 

Recall P(T<=t) one tail 

Naive Bayes 9.71788E-07 4.78814E-06 

J48 0.009172371 0.135325556 

Precision P(T<=t) one tail 

Naive Bayes 0.000168851 0.00188626 

J48 0.016667758 0.000890836 

F-Measure P(T<=t) one tail 

Naive Bayes 1.46014E-06 5.56186E-06 

J48 0.010584164 0.057447213 

 

5 RELATED WORK 

Hayes, Li, and Rahimi [16] discuss the potential that can be 

achieved in requirements engineering research when the Weka 

machine learning software suite and the TraceLab project are 

combined.  Towards this goal, they implement a proof of con-

cept in the form of a TraceLab component which uses the We-

ka classification trees.  They demonstrate the usability of their 

component on two different requirements engineering prob-

lems.  They also offer insights on using their Tracelab Weka 

component.   Their work relates to this paper as we also use 

TraceLab and Weka to support our study.   

The first defense against software bugs is to develop testa-

ble requirements.  This allows developers to test that their im-

plementation of a requirement is correct.  Hayes et al. [17] ex-

amined two datasets with requirement and code artifacts to 

address testability from the perspective of requirement under-

standability and quality.  Their work relates to this paper in that 

both use machine learning to automatically classify a textual 

dataset.  We classify research papers, Hayes et al. [17] classify 

whether a requirement is testable. 

Dit, Moritz, Linares-Vasquez, Poshyvanyk, and Cleland-

Huang [4] attempt to remedy the problem of software mainte-

nance research studies having difficult to reproduce experi-

ments.  They found that studies are hard to reproduce due to a 

lack of datasets, tools, implementation details, and other varied 

reasons.  This hurdle hinders progress in the field by requiring 

researchers to devote a significant amount of time to recreating 

test processes to determine if new techniques truly are an im-

provement over existing ones.   Their research is applicable to 

our work by attempting to alleviate the difficulty of sharing 

experiment sources.  With the approach of Dit, Moritz, Linares-

Vasquez, Poshyvanyk, and Cleland-Huang, components can be 

developed that can be used to reproduce an experiment on any 

machine, with little or no setup required on the tester’s side. 



Millions of apps can be found in the different app stores, 

and with them billions of reviews for the apps.  This large 

amount of data is a significant source of user feedback that can 

be used to develop higher quality apps.  There is a challenge, 

though, with sifting through which reviews are relevant or not.  

Maalej and Nabil [5] discuss several techniques for classifying 

these reviews into different types.  This classification of un-

structured text is similar to our research of classifying confer-

ence papers. 

McCallum and Nigam [7] discuss two different first-order 

probabilistic model approaches to text classification using the 

Naïve Bayes assumption: a multi-variate Bernoulli model and a 

multinomial model.  Their [7] results find that the multi-variate 

Bernoulli method performs better with small vocabulary sizes, 

but the multinomial method performs better with larger vocab-

ularies. Their work relates to our paper as they also use a Naïve 

Bayes method to classify the text in their experiment. 

6 CONCLUSION AND FUTURE WORK 

With the quantity of academic research, and concomitantly 

the number of publications, on the rise, the amount of research 

that cannot be reproduced has also risen.  To be able to deter-

mine the reproducibility of an academic research paper, we 

have worked on determining if a paper is an RE paper, and then 

whether that paper is an empirical paper.  To approach this, we 

took papers from the IEEE Requirements Engineering and the 

IEEE International Symposium on Software Testing and Anal-

ysis conferences and collected data to build training sets. We 

built a baseline keyword-based method and our ERRC method 

to model the academic research, then applied various classifica-

tion techniques.  Our results show that our ERRC method per-

formed approximately 3% better than the baseline method at 

classifying empirical papers and 12% better when classifying 

RE papers. 

While the ERRC method shows promise, there is definitely 

room to improve.  The first possible improvement would be to 

expand the stop word list to help further filter out words that 

add no meaning to the classification of the paper.  Along the 

same lines, other filtering could help narrow the scope of what 

the paper being classified is about.  Possibilities include com-

paring the paper’s text against a dictionary to remove acro-

nyms, project names, and other special words.  The potential 

downside of these approaches could be filtering too much out, 

thus possibly removing important words.  Another way to pos-

sibly filter the text of the paper under analysis would be to 

weight the words based on the location in which they were 

found in the paper.  Words found in an abstract or conclusion 

could be given more weight than words found in the body of 

the paper, for example.  The reasoning for this is that we hy-

pothesize that words found in those locations would more di-

rectly address the content of the paper being analyzed.   

Source code and datasets for the study can be found at 

www.cs.uky.edu/~hayes. 
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