
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-25, NO. 12, DECEMBER 1976

Software Engineering
BARRY W. BOEHM

Abstract-This paper provides a definition of the term "software
engineering" and a survey of the current state of the art and likely
future trends in the field. The survey covers the technology avail-
able in the various phases of the software life cycle-requirements
engineering, design, coding, test, and maintenance-and in the
overall area of software management and integrated technology-
management approaches. It is oriented primarily toward discussing
the domain of applicability of techniques (where and when they
work), rather than how they work in detail. To cover the latter, an
extensive set of 104 references is provided.

Index Terms-Computer software, data systems, information
systems, research and development, software development, soft-
ware engineering, software management.

I. INTRODUCTION
r HE annual cost of software in the U.S. is

approximately 20 billion dollars. Its rate of growth is
considerably greater than that of the economy in general.
Compared to the cost of computer hardware, the cost of
software is continuing to escalate along the lines predicted
in Fig. 1 [1].1 A recent SHARE study [2] indicates further
that software demand over the years 1975-1985 will grow
considerably faster (about 21-23 percent per year) than
the growth rate in software supply at current estimated
growth rates of the software labor force and its productivity
per individual, which produce a combined growth rate of
about 11.5-17 percent per year over the years 1975-
1985.

In addition, as we continue to automate many of the
processes which control our life-style-our medical
equipment, air traffic control, defense system, personal
records, bank accounts-we continue to trust more and
more in the reliable functioning of this proliferating mass
of software. Software engineering is the means by which
we attempt to produce all of this software in a way that is
both cost-effective and reliable enough to deserve our trust.
Clearly, it is a discipline which is important to establish
well and to perform well.

This paper will begin with a definition of "software en-
gineering." It will then survey the current state of the art
of the discipline, and conclude with an assessment of likely
future trends.

II. DEFINITIONS

Let us begin by defining "software engineering." We will
define software to include not only computer programs,

Manuscript received June 24, 1976; revised August 16, 1976.
The author is with the TRW Systems and Energy Group, Redondo

Beach, CA 90278.
1 Another trend has been added to Fig. 1: the growth of software

maintenance, which will be discussed later.

but also the associated documentation required to-develop,
operate, and maintain the programs. By defining software
in this broader sense, we wish to emphasize the necessity
of considering the generation of timely documentation as
an integral portion of the software development process.
We can then combine this with a definition of "engineer-
ing" to produce the following definition.

Software Engineering: The practical application of
scientific knowledge in the design and construction of
computer programs and the associated documentation
required to develop, operate, and maintain them.
Three main points should be made about this definition.

The first concerns the necessity of considering a broad
enough interpretation of the word "design" to cover the
extremely important activity of software requirements
engineering. The second point is that the definition should
cover the entire software life cycle, thus including those
activities of redesign and modification often termed
"software maintenance." (Fig. 2 indicates the overall set
of activities thus encompassed in the definition.) The final
point is that our store of knowledge about software which
can really be called "scientific knowledge" is a rather small
base upon which to build an engineering discipline. But,
of course, that is what makes software engineering such a
fascinating challenge at this time.
The remainder of this paper will discuss the state of the

art of software engineering along the lines of the software
life cycle depicted in Fig. 2. Section III contains a discus-
sion of software requirements engineering, with some
mention of the problem of determining overall system
requirements. Section IV discusses both preliminary de-
sign and detailed design technology trends. Section V
contains only a brief discussion of programming, as this
topic is also covered in a companion article in this issue [3].
Section VI covers both software testing and the overall life
cycle concern with software reliability. Section VII dis-
cusses the highly important but largely neglected area of
software maintenance. Section VIII surveys software
management concepts and techniques, and discusses the
status and trends of integrated technology-management
approaches to software development. Finally, Section IX
concludes with an assessment of the current state of the
art of software engineering with respect to the definition
above.
Each section (sometimes after an introduction) contains

a short summary of current practice in the area, followed
by a survey of current frontier technology, and concluding
with a short summary of likely trends in the area. The
survey is oriented primarily toward discussing the domain
of applicability of techniques (where and when they work)

1226

BOEHM: SOFTWARE ENGINEERING

Fig. 1. Hardware-software cost trends.

Fig. 2. Software life cycle.

rather than how they work in detail. An extensive set of
references is provided for readers wishing to pursue the
latter.

III. SOFTWARE REQUIREMENTS ENGINEERING

A. Critical Nature of Software Requirements
Engineering

Software requirements engineering is the discipline for
developing a complete, consistent, unambiguous specifi-
cation-which can serve as a basis for common agreement
among all parties concerned-describing what the soft-
ware product will do (but not how it will do it; this is to be
done in the design specification).
The extreme importance of such a specification is only

now becoming generally recognized. Its importance derives
from two main characteristics: 1) it is easy to delay or avoid
doing thoroughly; and 2) deficiencies in it are very difficult
and expensive to correct later.

Fig. 3 shows a summary of current experience at IBM

[4], GTE [5], and TRW on the relative cost of correcting
software errors as a function of the phase in which they are
corrected. Clearly, it pays off to invest effort in finding
requirements errors early and correcting them in, say, 1
man-hour rather than waiting to find the error during
operations and having to spend 100 man-hours correcting
it.

Besides the cost-to-fix problems, there are other critical
problems stemming from a lack of a good requirements
specification. These include [6]: 1) top-down designing is
impossible, for lack of a well-specified "top"; 2) testing is
impossible, because there is nothing to test against; 3) the
user is frozen out, because there is no clear statement of
what is being produced for him; and 4) management is not
in control, as there is no clear statement ofwhat the project
team is producing.

B. Current Practice

Currently, software requirements specifications (when
they exist at all) are generally expressed in free-form En-
glish. They abound with ambiguous terms ("suitable,"

1227

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

RELATIVE
COST
TO
FIX

ERROR 2

0.5 -

0.2

0. 1
REQUIREMENTS DESIGN CO

PHASE IN WI

Fig. 3. Software validatior

"sufficient," "real-time," "flexible") or precise-sounding
terms with unspecified definitions ("optimum," "99.9
percent reliable") which are potential seeds of dissension
or lawsuits once the software is produced. They have nu-
merous errors; one recent study [7] indicated that the first
independent review of a fairly good software requirements
specification will find from one to four nontrivial errors per
page.
The techniques used for determining software re-

quirements are generally an ad hoc manual blend of sys-
tems analysis principles [8] and common sense. (These are
the good ones; the poor ones are based on ad hoc manual
blends of politics, preconceptions, and pure salesmanship.)
Some formalized manual techniques have been used suc-
cessfully for determining business system requirements,
such as accurately defined systems (ADS), and time au-
tomated grid (TAG). The book edited by Couger and
Knapp [9] has an excellent summary of such techniques.

C. Current Frontier Technology: Specification
Languages and Systems

1) ISDOS: The pioneer system for machine-analyzable
software requirements is the ISDOS system developed by
Teichroew and his group at the University of Michigan
[10]. It was primarily developed for business system ap-
plications, but much of the system and its concepts are
applicable to other areas. It is the only system to have
passed a market and operations test; several commercial,

DE DEVELOPMENT ACCEPTANCE OPERATION
TEST TEST

HICH ERROR DETECTED

n: the price of procrastination.

aerospace, and government organizations have paid for it
and are successfully using it. The U.S. Air Force is cur-
rently using and sponsoring extensions to ISDOS under
the Computer Aided Requirements Analysis (CARA)
program.
ISDOS basically consists of a problem statement lan-

guage (PSL) and a problem statement analyzer (PSA).
PSL allows the analyst to specify his system in terms of
formalized entities (INPUTS, OUTPUTS, REAL WORLD
ENTITIES), classes (SETS, GROUPS), relationships (USES,
UPDATES, GENERATES), and other information on timing,
data volume, synonyms, attributes, etc. PSA operates on
the PSL statements to produce a number of useful sum-
maries, such as: formated problem statements; directories
and keyword indices; hierarchical structure reports;
graphical summaries of flows and relationships; and sta-
tistical summaries. Some of these capabilities are actually
more suited to supporting system design activities; this is
often the mode in which ISDOS is used.
Many of the current limitations ofISDOS stem from its

primary orientation toward business systems. It is cur-
rently difficult to express real-time performance require-
ments and man-machine interaction requirements, for
example. Other capabilities are currently missing, such as
support for configuration control, traceability to design
and code, detailed consistency checking, and automatic
simulation generation. Other limitations reflect deliberate,
sensible design choices: the output graphics are crude, but
they are produced in standard 8 Y x 11 in size on any

1228

BOEHM: SOFTWARE ENGINEERING

standard line printer. Much of the current work on
ISDOS/CARA is oriented toward remedying such limita-
tions, and extending the system to further support soft-
ware design.

2) SREP: The most extensive and powerful system for
software requirements specification in evidence today is
that being developed under the Software Requirements
Engineering Program (SREP) by TRW for the U.S. Army
Ballistic Missile Defense Advanced Technology Center
(BMDATC) [11]-[13]. Portions of this effort are derivative
of ISDOS; it uses the ISDOS data management system,
and is primarily organized into a language, the require-
ments statement language (RSL), and an analyzer, the
requirements evaluation and validation system (REVS).
SREP contains a number of extensions and innovations

which are needed for requirements engineering in real-time
software development projects. In order to represent
real-time performance requirements, the individual
functional requirements can be joined into stimulus-re-
sponse networks called R-Nets. In order to focus early
attention on software testing and reliability, there are
capabilities for designating "validation points" within the
R-Nets. For early requirements validation, there are
capabilities for automatic generation of functional simu-
lators from the requirements statements. And, for adap-
tation to changing requirements, there are capabilities for
configuration control, traceability to design, and extensive
report generation and consistency checking.

Current SREP limitations again mostly reflect delib-
erate design decisions centered around the autonomous,
highly real-time process-control problem of ballistic missile
defense. Capabilities to represent large file processing and
man-machine interactions are missing. Portability is a
problem: although some parts run on several machines,
other parts of the system run only on a TI-ASC computer
with a very powerful but expensive multicolor interactive
graphics terminal. However, the system has been designed
with the use of compiler generators and extensibility fea-
tures which should allow these limitations to be rem-
edied.

3) Automatic Programming and Other Approaches:
Under the sponsorship of the Defense Advanced Research
Projects Agency (DARPA), several researchers are at-
tempting to develop "automatic programming" systems
to replace the functions of currently performed by pro-
grammers. If successful, could they drive software costs
down to zero? Clearly not, because there would still be the
need to determine what software the system should pro-
duce, i.e., the software requirements. Thus, the methods,
or at least the forms, of capturing software requirements
are of central concern in automatic programming re-
search.
Two main directions are being taken in this research.

One, exemplified by the work of Balzer at USC-ISI [14],
is to work within a general problem context, relying on only
general rules of information processing (items must be
defined or received before they are used, an "if' should
have both a "then" and an "else," etc.) to resolve am-

biguities, deficiencies, or inconsistencies in the problem
statement. This approach encounters formidable problems
in natural language processing and may require further
restrictions to make it tractable.
The other direction, exemplified by the work of Martin

at MIT [15], is to work within a particular problem area,
such as inventory control, where there is enough of a gen-
eral model of software requirements and acceptable ter-
minology to make the problems of resolving ambiguities,
deficiencies, and inconsistencies reasonably tractable.

This second approach has, of course, been used in the
past in various forms of "programming-by-question-
naire" and application generators [1], [2]. Perhaps the most
widely used are the parameterized application generators
developed for use on the IBM System/3. IBM has some
more ambitious efforts on requirements specification
underway, notably one called the Application Software
Engineering Tool [16] and one called the Information
Automat [17], but further information is needed to assess
their current status and directions.
Another avenue involves the formalization and speci-

fication of required properties in a software specification
(reliability, maintainability, portability, etc.). Some success
has been experienced here for small-to-medium systems,
using a "Requirements-Properties Matrix" to help analysts
infer additional requirements implied by such consider-
ations [18].

D. Trends

In the area of requirements statement languages, we will
see further efforts either to extend the ISDOS-PSL and
SREP-RSL capabilities to handle further areas of appli-
cation, such as man-machine interactions, or to develop
language variants specific to such areas. It is still an open
question as to how general such a language can be and still
retain its utility. Other open questions are those of the
nature, "which representation scheme is best for describing
requirements in a certain area?" BMDATC is sponsoring
some work here in representing general data-processing
system requirements for the BMD problem, involving
Petri nets, state transition diagrams, and predicate cal-
culus [11], but its outcome is still uncertain.
A good deal more can and will be done to extend the

capability of requirements statement analyzers. Some
extensions are fairly straightforward consistency checking;
others, involving the use of relational operators to deduce
derived requirements and the detection (and perhaps
generation) of missing requirements are more difficult,
tending toward the automatic programming work.

Other advances will involve the use of formal require-
ments statements to improve subsequent parts of the
software life cycle. Examples include requirements-de-
sign-code consistency checking (one initial effort is un-
derway), the automatic generation of test cases from re-
quirements statements, and, of course, the advances in
automatic programming involving the generation of code
from requirements.

1229

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

Progress will not necessarily be evolutionary, though.
There is always a good chance of a breakthrough: some key
concept which will simplify and formalize large regions of
the problem space. Even then, though, there will always
remain difficult regions which will require human insight
and sensitivity to come up with an acceptable set of soft-
ware requirements.
Another trend involves the impact of having formal,

machine-analyzable requirements (and design) specifi-
cations on our overall inventory of software code. Besides
improving software reliability, this will make our software
much more portable; users will not be tied so much to a
particular machine configuration. It is interesting to
speculate on what impact this will have on hardware ven-
dors in the future.

IV. SOFTWARE DESIGN

A. The Requirements/Design Dilemma

Ideally, one would like to have a complete, consistent,
validated, unambiguous, machine-independent specifi-
cation of software requirements before proceeding to
software design. However, the requirements are not really
validated until it is determined that the resulting system
can be built for a reasonable cost-and to do so requires
developing one or more software designs (and any asso-
ciated hardware designs needed).

This dilemma is complicated by the huge number of
degrees of freedom available to software/hardware system
designers. In the 1950's, as indicated by Table I, the de.-
signer had only a few alternatives to choose from in se-
lecting a central processing unit (CPU), a set of peripher-
als, a programming language, and an ensemble of support
software. In the 1970's, with rapidly evolving mini- and
microcomputers, firmware, modems, smart terminals, data
management systems, etc., the designer has an enormous
number of alternative design components to sort out
(possibilities) and to seriously choose from (likely choices).
By the 1980's, the number of possible design combinations
will be formidable.
The following are some of the implications for the de-

signer. 1) It is easier for him to do an outstanding design
job. 2) It is easier for him to do a terrible design job. 3) He
needs more powerful analysis tools to help him sort out the
alternatives. 4) He has more opportunities for designing-
to-cost. 5) He has more opportunities to design and de-
velop tunable systems. 6) He needs a more flexible re-
quirements-tracking and hardware procurement mecha-
nism to support the above flexibility (particularly in gov-
ernment systems). 7) Any rational standardization (e.g.,
in programming languages) will be a big help to him, in that
it reduces the number of alternatives he must consider.

B. Current Practice

Software design is still almost completely a manual
process; There is relatively little effort devoted to design
validation and risk analysis before committing to a par-

TABLE I
Design Degrees of Freedom for New Data Processing Systems

(Rough Estimates)

Likely
Choices Possibilities Choices

Element (1950's) (1970's) (1970's)

CPU 5 200 100
Op-Codes fixed variable variable
Peripherals (per function) 1 200 100
Programming language 1 50 5-10
Operating system 0-1 10 5
Data management system 0 100 30

ticular software design. Most software errors are made
during the design phase. As seen in Fig. 4, which summa-
rizes several software error analyses by IBM [4], [19] and
TRW [20], [21], the ratio of design to coding errors gener-
ally exceeds 60:40. (For the TRW data, an error was called
a design error if and only if the resulting fix required a
change in the detailed design specification.)
Most software design is still done bottom-up, by devel-

oping software components before addressing interface
and integration issues. There is, however, increasing suc-
cessful use of top-down design. There is little organized
knowledge of what a software designer does, how he does
it, or of what makes a good software designer, although
some initial work along these lines has been done by
Freeman [22].

C. Current Frontier Technology

Relatively little is available to help the designer make
the overall hardware-software tradeoff analyses and de-
cisions to appropriately narrow the large number of design
degrees of freedom available to him. At the micro level,
some formalisms such as LOGOS [23] have been helpful,
but at the macro level, not much is available beyond gen-
eral system engineering techniques. Some help is provided
via improved techniques for simulating information sys-
tems, such as the Extendable Computer System Simulator
(ECSS) [24], [25], which make it possible to develop a fairly
thorough functional simulation of the system for design
analysis in a considerably shorter time than it takes to
develop the complete design itself.

1) Top-Down Design: Most of the helpful new tech-
niques for software design fall into the category of "top-
down" approaches, where the "top" is already assumed to
be a firm, fixed requirements specification and hardware
architecture. Often, it is also assumed that the data
structure has also been established. (These assumptions
must in many cases be considered potential pitfalls in using
such top-down techniques.)
What the top-down approach does well, though, is to

provide a procedure for organizing and developing the
control structure of a program in a way which focuses early
attention on the critical issues of integration and interface
definition. It begins with a top-level expression of a hier-
archical control structure (often a top level "executive"
routine controlling an "input," a "process," and an "out-

1230

BOEHM: SOFTWARE ENGINEERING

60

50 F-

40k-

30 F-

20 1-

0

TRW
C+C

DEVELOPMENT

TRW
C+C

MAINTENANCE

IBM
OS

DEVELOPMENT AND
MAINTENANCE

IBM
OS

DEVELOPMENT

Fig. 4. Most errors in large software systems are in early stages.

put" routine) and proceeds to iteratively refine each suc-

cessive lower-level component until the entire system is
specified. The successive refinements, which may be
considered as "levels of abstraction" or "virtual machines"
[26], provide a number of advantages in improved under-
standing, communication, and verification of complex
designs [27], [28]. In general, though, experience shows that
some degree of early attention to bottom-level design
issues is necessary on most projects [29].
The technology of top-down design has centered on two

main issues. One involves establishing guidelines for how
to perform successive refinements and to group functions
into modules; the other involves techniques of repre-

senting the design of the control structure and its inter-
action with data.

2) Modularization: The techniques of structured design
[30] (or composite design [31]) and the modularization
guidelines of Parnas [32] provide the most detailed
thinking and help in the area of module definition and
refinement. Structured design establishes a number of
successively stronger types of binding of functions into
modules (coincidental, logical, classical, procedural,
communicational, informational, and functional) and
provides the guideline that a function should be grouped
with those functions to which its binding is the strongest.
Some designers are able to use this approach quite suc-

cessfully; others find it useful for reviewing designs but not
for formulating them; and others simply find it too am-
biguous or complex to be of help. Further experience will
be needed to determine how much of this is simply a

learning curve effect. In general, Parnas' modularization
criteria and guidelines are more straightforward and widely

used than the levels-of-binding guidelines, although they
may also be becoming more complicated as they address
such issues as distribution of responsibility for erroneous
inputs [33]. Along these lines, Draper Labs' Higher Order
Software (HOS) methodology [34] has attempted to re-

solve such issues via a set of six axioms covering relations
between modules and data, including responsibility for
erroneous inputs. For example, Axiom 5 states, "Each
module controls the rejection of invalid elements of its own,
and only its own, input set."2

3) Design Representation: Flow charts remain the main
method currently used for design representation. They
have a number of deficiencies, particularly in representing
hierarchical control structures and data interactions. Also,
their free-form nature makes it too easy to construct
complicated, unstructured designs which are hard to un-

-derstand and maintain. A number of representation
schemes have been developed to avoid these deficien-
cies.
The hierarchical input-process-output (HIPO) tech-

nique [35] represents software in a hierarchy of modules,
each of which is represented by its inputs, its outputs, and
a summary ofthe processing which connects the inputs and
outputs. Advantages of the HIPO technique are its ease

of use, ease of learning, easy-to-understand graphics, and
disciplined structure. Some general disadvantages are the
ambiguity of the control relationships (are successive lower

2 Problems can arise, however, when one furnishes such a design choice
with the power of an axiom. Suppose, for example, the input set contains
a huge table or a master file. Is the module stuck with the job of checking
it, by itself, every time?

PERCENT
OF

TOTAL
ERRORS

DESIGN
ERRORS

CODING
ERRORS

10 F--

1231

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

level modules in sequence, in a loop, or in an if/else rela-
tionship?), the lack of summary information about data,
the unwieldiness of the graphics on large systems, and the
manual nature of the technique. Some attempts have been
made to automate the representation and generation of
HIPO's such as Univac's PROVAC System [36].
The structure charts used in structured design [30], [31]

remedy some of these disadvantages, although they lose
the advantage of representing the processes connecting the
inputs with the outputs. In doing so, though, they provide
a more compact summary of a module's inputs and outputs
which is less unwieldy on large problems. They also provide
some extra symbology to remove at least some of the se-
quence/loop/branch ambiguity of the control relation-
ships.

Several other similar conventions have been developed
[37]-[39], each with different strong points, but one main
difficulty of any such manual system is the difficulty of
keeping the design consistent and up-to-date, especially
on large problems. Thus, a number of systems have been
developed which store design information in machine-
readable form. This simplifies updating (and reduces
update errors) and facilitates generation of selective design
summaries and simple consistency checking. Experience
has shown that even a simple set of automated consistency
checks can catch dozens of potential problems in a large
design specification [21]. Systems of this nature that have
been reported include the Newcastle TOPD system [401,
TRW's DACC and DEVISE systems [21], Boeing's DECA
System [41], and Univac's PROVAC [361; several more are
under development.
Another machine-processable design representation is

provided by Caine, Farber, and Gordon's Program Design
Language (PDL) System [42]. This system accepts con-
structs which have the form of hierarchical structured
programs, but instead of the actual code, the designer can
write some English text describing what the segment of
code will do. (This representation was originally called
"structured pidgin" by Mills [43].) The PDL system again
makes updating much easier; it also provides a number of
useful formatted summaries of the design information,
although it still lacks some wished-for features to support
terminology control and version control. The program-like
representation makes it easy for programmers to read and
write PDL, albeit less easy for nonprogrammers. Initial
results in using the PDL system on projects have been
quite favorable.

D. Trends
Once a good deal of design information is in machine-

readable form, there is a fair amount of pressure from users
to do more with it: to generate core and time budgets,
software cost estimates, first-cut data base descriptions,
etc. We should continue to see such added capabilities, and
generally a further evolution toward computer-aided-
design systems for software. Besides improvements in
determining and representing control structures, we should
see progress in the more difficult area of data structuring.

Some initial attempts have been made by Hoare [44] and
others to provide a data analog of the basic control struc-
tures in structured programming, but with less practical
impact to date. Additionally, there will be more integration
and traceability between the requirements specification,
the design specification, and the code-again with signif-
icant implications regarding the improved portability of
a user's software.
The proliferation of minicomputers and microcompu-

ters will continue to complicate the designer's job. It is
difficult enough to derive or use principles for partitioning
software jobs on single machines; additional degrees of
freedom and concurrency problems just make things so
much harder. Here again, though, we should expect at least
some initial guidelines for decomposing information pro-
cessing jobs into separate concurrent processes.

It is still not clear, however, how much one can formalize
the software design process. Surveys of software designers
have indicated a wide variation in their design styles and
approaches, and in their receptiveness to using formal
design procedures. The key to good software design still
lies in getting the best out of good people, and in struct-
uring the job so that the less-good people can still make a
positive contribution.

V. PROGRAMMING

This section will be brief, because much of the material
will be covered in the companion article by Wegner on
"Computer Languages" [3].

A. Current Practice

Many organizations are moving toward using structured
code [28], [43] (hierarchical, block-oriented code with a
limited number of control structures-generally SE-
QUENCE, IFTHENELSE, CASE, DOWHILE, andDOUNTIL-
and rules for formatting and limiting module size). A great
deal of terribly unstructured code is still being written,
though, often in assembly language and particularly for the
rapidly proliferating minicomputers and microcompu-
ters.

B. Current Frontier Technology

Languages are becoming available which support
structured code and additional valuable features such as
data typing and type checking (e.g., Pascal [45]). Exten-
sions such as concurrent Pascal [46] have been developed
to support the programming of concurrent processes. Ex-
tensions to data typing involving more explicit binding of
procedures and their data have been embodied in recent
languages such as ALPHARD [47] and CLU [48]. Me-
tacompiler and compiler writing system technology con-
tinues to improve, although much more slowly in the code
generation area than in the syntax analysis area.
Automated aids include support systems for top-down

structured programming such as the Program Support
Library [49], Process Construction [50], TOPD [40], and

1232

BOEHM: SOFTWARE ENGINEERING

COLUMBUS [51]. Another novel aid is the Code Auditor
program [50] for automated standards compliance
checking-which guarantees that the standards are more
than just words. Good programming practices are now
becoming codified into style handbooks, i.e., Kernighan
and Plauger [52] and Ledgard [53].

C. Trends

It is difficult to clean up old programming languages or
to introduce new ones into widespread practice. Perhaps
the strongest hope in this direction is the current De-
partment of Defense (DoD) effort to define requirements
for its future higher order programming languages [54],
which may eventually lead to the development and wide-
spread use of a cleaner programming language. Another
trend will be an increasing capability for automatically
generating code from design specifications.

VI. SOFTWARE TESTING AND RELIABILITY

A. Current Practice

Surprisingly often, software testing and reliability ac-
tivities are still not considered until the code has been run
the first time and found not to work. In general, the high
cost of testing (still 40-50 percent of the development ef-
fort) is due to the high cost of reworking the code at this
stage (see Fig. 3), and to the wasted effort resulting from
the lack of an advance test plan to efficiently guide testing
activities.

In addition, most testing is still a tedious manual process
which is error-prone in itself. There are few effective cri-
teria used for answering the question, "How much testing
is enough?" except the usual "when the budget (or
schedule) runs out." However, more and more organiza-
tions are now using disciplined test planning and some
objective criteria such as "exercise every instruction" or
"exercise every branch," often with the aid of automated
test monitoring tools and test case planning aids. But other
technologies, such as mathematical proof techniques, have
barely begun to penetrate the world of production soft-
ware.

B. Current Frontier Technology

1) Software Reliability Models and Phenomenology:
Initially, attempts to predict software reliability (the
probability of future satisfactory operation of the software)
were made by applying models derived from hardware
reliability analysis and fitting them to observed software
error rates [55]. These models worked at times, but often
were unable to explain actual experienced error phenom-
ena. This was primarily because of fundamental differ-
ences between software phenomenology and the hard-
ware-oriented assumptions on which the models were
based. For example, software components do not degrade
due to wear or fatigue; no imperfection or variations are
introduced in making additional copies of a piece of soft-

ware (except possibly for a class of easy-to-check copying
errors); repair of a software fault generally results in a
different software configuration than previously, unlike
most hardware replacement repairs.
Models are now being developed which provide expla-

nations of the previous error histories in terms of appro-
priate software phenomenology. They are based on a view
of a software program as a mapping from a space of inputs
into a space of outputs [56], of program operation as the
processing of a sequence of points in the input space, dis-
tributed according to an operational profile [57], and of
testing as a sampling of points from the input space [56]
(see Fig. 5). This approach encounters severe problems of
scale on large programs, but can be used conceptually as
a means of appropriately conditioning time-driven reli-
ability models [58]. Still, we are a long way off from having
truly reliable reliability-estimation methods for soft-
ware.

2) Software Error Data: Additional insights into reli-
ability estimation have come from analyzing the increasing
data base of software errors. For example, the fact that the
distributions of serious software errors are dissimilar from
the distributions of minor errors [59] means that we need
to define "errors" very carefully when using reliability
prediction models. Further, another study [60] found that
the rates of fixing serious errors and of fixing minor errors
vary with management direction. ("Close out all problems
quickly" generally gets minor simple errors fixed very
quickly, as compared to "Get the serious problems fixed
first.")

Other insights afforded by software data collection in-
clude better assessments of the relative efflcacy of various
software reliability techniques [4], [19], [601, identification
of the requirements and design phases as key leverage
points for cost savings by eliminating errors earlier (Figs.
2 and 3), and guidelines for organizing test efforts (for
example, one recent analysis indicated that over half the
errors were experienced when the software was handling
data singularities and extreme points [60]). So far, how-
ever, the proliferation of definitions of various terms (error,
design phase, logic error, validation test), still make it ex-
tremely difficult to compare error data from different
sources. Some efforts to establish a unified software reli-
ability data base and associated standards, terminology,
and data collection procedures are now under way at USAF
Rome Air Development Center, and within the IEEE
Technical Committee on Software Engineering.

3) Automated Aids: Let us sketch the main steps of
testing between the point the code has been written and
the point it is pronounced acceptable for use, and describe
for each stop the main types of automated aids which have
been found helpful. More detailed discussion of these aids
can be found in the surveys by Reifer [61] and Rama-
moorthy and Ho [62] which in turn have references to in-
dividual contributions to the field.

a) Static code analysis: Automated aids here include
the usual compiler diagnostics, plus extensions involving
more detailed data-type checking. Code auditors check for

1233

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

standards compliance, and can also perform various
type-checking functions. Control flow and reachability
analysis is done by structural analysis programs (flow
charters have been used for some of the elementary checks
here, "structurizers" can also be helpful). Other useful
static analysis tools perform set-use analysis of data ele-
ments, singularity analysis, units consistency analysis, data
base consistency checking, and data-versus-code consis-
tency checking.

b) Test case preparation: Extensions to structural
analysis programs provide assistance in choosing data
values which will make the program execute along a de-
sired path.. Attempts have been made to automate the
generation of such data values; they can generally succeed
for simple cases, but run into difficulty in handling loops
or branching on complex calculated values (e.g., the results
of numerical integration). Further, these programs only
help generate the inputs; the tester must still calculate the
expected outputs himself.
Another set of tools will automatically insert instru-

mentation to verify that a desired path has indeed been
exercised in the test. A limited capability exists for auto-
matically determining the minimum number of test cases
required to exercise all the code. But, as yet, there is no tool
which helps to determine the most appropriate sequence
in which to run a series of tests.

c) Test monitoring and output checking: Capabili-
ties have been developed and used for various kinds of
dynamic data-type checking and assertion checking, and
for timing and performance analysis. Test output post-
processing aids include output comparators and exception
report capabilities, and test-oriented data reduction and
report generation packages.

d) Fault isolation, debugging: Besides the traditional
tools-the core dump, the trace, the snapshot, and the
breakpoint-several capabilities have been developed for
interactive replay or backtracking of the program's exe-
cution. This is still a difflcult area, and only a relatively few
advanced concepts have proved generally useful.

e) Retesting (once a presumed fix has been made):
Test data management systems (for the code, the input
data, and the comparison output data) have been shown
to be most valuable here, along with comparators to check
for the differences in code, inputs, and outputs between
the original and the modified program and test case. A
promising experimental tool performs a comparative
structure analysis of the original and modified code, and
indicates which test cases need to be rerun.

f) Integration of routines into systems: In general,
automated aids for this process are just larger scale ver-
sions of the test data management systems above. Some
additional capabilities exist for interface consistency
checking, e.g., on the length and form of parameter lists or
data base references. Top-down development aids are also
helpful in this regard.

g) Stopping: Some partial criteria for thoroughness
of testing can and have been automatically monitored.
Tools exist which keep a cumulative tally of the number

or percent of the instructions or branches which have been
exercised during the test program, and indicate to the
tester what branch conditions must be satisfied in order
to completely exercise all the code or branches. Of course,
these are far from complete criteria for determining when
to stop testing; the completeness question is the subject
of the next section.

4) Test Sufficiency and Program Proving: If a pro-
gram's input space and output space are finite (where the
input space includes not only all possible incoming inputs,
but also all possible values in the program's data base),
then one can construct a set of "black box" tests (one for
each point in the input space) which can show conclusively
that the program is correct (that its behavior matches its
specification).

In general, though, a program's input space is infinite;-
for example, it must generally provide for rejecting unac-
ceptable inputs. In this case, a finite set of black-box tests
is not a sufficient demonstration of the program's cor-
rectness (since, for any input x, one must assure that the
program does not wrongly treat it as a special case). Thus,
the demonstration of correctness in this case involves some
formal argument (e.g., a proof using induction) that the
dynamic performance of the program indeed produces the
static transformation of the input space indicated by the
formal specification for the program. For finite portions
of the input space, a successful exhaustive test of all cases
can be considered as a satisfactory formal argument. Some
good initial work in sorting out the conditions under which
testing is equivalent to proof of a program's correctness has
been done by Goodenough and Gerhart [63] and in a review
of their work by Wegner [64].

5) Symbolic Execution: An attractive intermediate step
between program testing and proving is "symbolic exe-
cution," a manual or automated procedure which operates
on symbolic inputs (e.g., variable names) to produce
symbolic outputs. Separate cases are generated for dif-
ferent execution paths. If there are a finite number of such
paths, symbolic execution can be used to demonstrate
correctness, using a finite symbolic input space and output
space. In general, though, one cannot guarantee a finite
number of paths. Even so, symbolic execution can be quite
valuable as an aid to either program testing or proving.
Two fairly powerful automated systems for symbolic ex-
ecution exist, the EFFIGY system [65] and the SELECT
system [66].

6) Program Proving (Program Verification): Program
proving (increasingly referred to as program verification)
involves expressing the program specifications as a logical
proposition, expressing individual program execution
statements as logical propositions, expressing program
branching as an expansion into separate cases, and per-
forming logical transformations on the propositions in a
way which ends by demonstrating the equivalence of the
program and its specification. Potentially infinite loops
can be handled by inductive reasoning.

In general, nontrivial programs are very complicated and
time-consuming to prove. In 1973, it was estimated that

1234

BOEHM: SOFTWARE ENGINEERING

about one man-month of expert effort was required to
prove 100 lines of code [67]. The largest program to be
proved correct to date contained about 2000 statements
[68]. Again, automation can help out on some of the com-
plications. Some automated verification systems exist,
notably those of London et al. [69] and Luckham et al.
[70]. In general, such systems do not work on programs in
the more common languages such as Fortran or Cobol.
They work in languages such as Pascal [45], which has
(unlike Fortran or Cobol) an axiomatic definition [71] al-
lowing, clean expression of program statements as logical
propositions. An excellent survey of program verification
technology has been given by London [72].

Besides size and language limitations, there are other
factors which limit the utility of program proving tech-
niques. Computations on "real" variables involving trun-
cation and roundoff errors are virtually impossible to an-
alyze with adequate accuracy for most nontrivial programs.
Programs with nonformalizable inputs (e.g., from a sensor
where one has just a rough idea of its bias, signal-to-noise
ratio, etc.) are impossible to handle. And, of course, pro-
grams can be proved to be consistent with a specification
which is itself incorrect with respect to the system's proper
functioning. Finally, there is no guarantee that the proof
is correct or complete; in fact, many published "proofs"
have subsequently been demonstrated to have holes in
them [63].

It has been said and often repeated that "testing can be
used to demonstrate the presence of errors but never their
absence" [73]. Unfortunately, if we must define "errors"
to include those incurred by the two limitations above
(errors in specifications and errors in proofs), it must be
admitted that "program proving can be used to demon-
strate the presence of errors but never their absence."

7) Fault-Tolerance: Programs do not have to be
error-free to be reliable. If one could just detect erroneous
computations as they occur and compensate for them, one
could achieve reliable operation. This is the rationale be-
hind schemes for fault-tolerant software. Unfortunately,
both detection and compensation are formidable problems.
Some progress has been made in the case of software de-
tection and compensation for hardware errors; see, for
example, the articles by Wulf [741 and Goldberg [75]. For
software errors, Randell has formulated a concept of sep-
arately-programmed, alternate "recovery blocks" [761. It
appears attractive for parts of the error compensation
activity, but it is still too early to tell how well it will handle
the error detection problem, or what the price will be in
program slowdown.

C. Trends

As we continue to collect and analyze more and more
data on how, when, where, and why people make software
errors, we will get added insights on how to avoid making
such errors, how to organize our validation strategy and
tactics (not only in testing but throughout the software life
cycle), how to develop or evaluate new automated aids, and

how to develop useful methods for predicting software
reliability. Some automated aids, particularly for static
code checking, and for some dynamic-type or assertion
checking, will be integrated into future programming
languages and compilers. We should see some added useful
criteria and associated aids for test completeness, partic-
ularly along the lines of exercising "all data elements" in
some appropriate way. Symbolic execution capabilities will
probably make their way into automated aids for test case
generation, monitoring, and perhaps retesting.

Continuing work into the theory of software testing
should provide some refined concepts of test validity, re-
liability, and completeness, plus a better theoretical base
for supporting hybrid test/proof methods of verifying
programs. Program proving techniques and aids will be-
come more powerful in the size and range of programs they
handle, and hopefully easier to use and harder to misuse.
But many of their basic limitations will remain, particu-
larly those involving real variables and nonformalizable
inputs.

Unfortunately, most of these helpful capabilities will be
available only to people working in higher order languages.
Much of the progress in test technology will be unavailable
to the increasing number of people who find themselves
spending more and more time testing assembly language
software written for minicomputers and microcomputers
with poor test support capabilities. Powerful cross-com-
piler capabilities on large host machines and micropro-
grammed diagnostic emulation capabilities [77] should
provide these people some relief after a while, but a great
deal of software testing will regress back to earlier gener-
ation "dark ages."

VII. SOFTWARE MAINTENANCE

A. Scope of Software Maintenance

Software maintenance is an extremely important but
highly neglected activity. Its importance is clear from Fig.
1: about 40 percent of the overall hardware-software dollar
is going into software maintenance today, and this number
is likely to grow to about 60 percent by 1985. It will con-
tinue to grow for a long time, as we continue to add to our
inventory of code via development at a faster rate than we
make code obsolete.
The figures above are only very approximate, because

our only data so far are based on highly approximate def-
initions. It is hard to come up with an unexceptional def-
inition of software maintenance. Here, we define it as "the
process of modifying existing operational software while
leaving its primary functions intact." It is useful to divide
software maintenance into two categories: software
update, which results in a changed functional specification
for the software, and software repair, which leaves the
functional specification intact. A good discussion of soft-
ware repair is given in the paper by Swanson [78], who
divides it into the subcategories of corrective maintenance
(of processing, performance, or implementation failures),

1235

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

MINIMUM-VARIANCE UNBIASED ESTIMATOR .
* *.** SPACE

* PICK N {SAY, 10001 RANDOM, REPRESENTATIVE INPUTS

* PROCESS THE 1000 INPUTS, OBTAIN M SAY, 3) FAILURES

* THEN R PRO NO FAILURE NEXT RUNI 'N M 0.997

OPERATIONAL ESTIMATION PROBLEMS

* SIZE OF INPUT SPACE PROGRAM
* ACCOUNTING FOR FIXES

* ENSURING RANDOM INPUTS

* ENSURING REPRESENTATIVE INPUTS

OUTPUT
SPACE

Fig. 5. Input space sampling provides a basis for software reliability measurement.

adaptive maintenance (to changes in the processing or data
environment), and perfective maintenance (for enhancing
performance or maintainability).

For either update or repair, three main functions are-
involved in software maintenance [79].

Understanding the existing software: This implies the
need for good documentation, good traceability between
requirements and code, and well-structured and well-
formatted code.
Modifying the existing software: This implies the need

for software, hardware, and data structures which are easy
to expand and which minimize side effects of changes, plus
easy-to-update documentation.

Revalidating the modified software: This implies the
need for software structures which facilitate selective re-
test, and aids for making retest more thorough and effi-
cient.

Following a short discussion of current practice in
software maintenance, these three functions will be used
below as a framework for discussing current frontier
technology in software maintenance.

B. Current Practice

As indicated in Fig. 6, probably about 70 percent of the
overall cost of software is spent in software maintenance.
A recent paper by Elshoff [80] indicates that the figure for
General Motors is about 75 percent, and that GM is fairly
typical of large business software activities. Daly [5] indi-
cates that about 60 percent of GTE's 10-year life cycle costs
for real-time software are devoted to maintenance. On two
Air Force command and control software systems, the
maintenance portions of the 10-year life cycle costs were
about 67 and 72 percent. Often, maintenance is not done
very efficiently. On one aircraft computer, software de-
velopment costs were roughly $75/instruction, while
maintenance costs ran as high as $4000/instruction [81].

Despite its size, software maintenance is a highly ne-
glected activity. In general, less-qualified personnel are
assigned to maintenance tasks. There are few good general
principles and few studies of the process, most of them
inconclusive.

Further, data processing practices, are usually optimized

MAINTENANCE DEDELOPMENT

GEN. TEL. + ELECT.

USAF C+C NO. 1

USAF C+C NO. 2

GENERAL MOTORS

0 20 40 60 s0

PERCENT OF 10-YEAR LIFE-CYCLE COSTS

100

Fig. 6. Software life-cycle cost breakdown.

around other criteria than maintenance efficiency. Opti-
mizing around development cost and schedule criteria
generally leads to compromises in documentation, testing,
and structuring. Optimizing around hardware efficiency
criteria generally leads to use of assembly language and
skimping on hardware, both of which correlate strongly
with increased software maintenance costs [1].

C. Current Frontier Technology

1) Understanding the Existing Software: Aids here
have largely been discussed in previous sections: structured
programming, automatic formatting, and code auditors
for standards compliance checking to enhance code read-
ability; machine-readable requirements and design lan-
guages with traceability support to and from the code.
Several systems exist for automatically updating docu-
mentation by excerpting information from the revised code
and comment cards.

2) Modifying the Existing Software: Some of Parnas'
modularization guidelines [32] and the data abstractions
of the CLU [48] and ALPHARD [47] languages make it
easier to minimize the side effects of changes. There may
be a maintenance price, however. In the past, some systems
with highly coupled programs and associated data struc-

1236

BOEHM: SOFTWARE ENGINEERING

tures have had difficulties with data base updating. This
may not be a problem with today's data dictionary capa-

bilities, but the interactions have not yet been investigated.
Other aids to modification are structured code, configu-
ration management techniques, programming support li-
braries, and process construction systems.

3) Revalidating the Modified Software: Aids here were

discussed earlier under testing; they include primarily test
data management systems, comparator programs, and
program structure analyzers with some limited capability
for selective retest analysis.

4) General Aids: On-line interactive systems help to
remove one of the main bottlenecks involved in software
maintenance: the long turnaround times for retesting. In
addition, many of these systems are providing helpful
capabilities for text editing and software module man-

agement. They will be discussed in more detail under
"Management and Integrated Approaches" below. In
general, a good deal more work has been done on the
maintainability aspects of data bases and data structures
than for program structures; a good survey of data base
technology is given in a recent special issue of ACM
Computing Surveys [82].

D. Trends

The increased concern with life cycle costs, particularly
within the U.S. DoD [83], will focus a good deal more at-
tention on software maintenance. More data collection and
analysis on the growth dynamics of software systems, such
as the Belady-Lehman studies of OS/360 [84], will begin
to point out the high-leverage areas for improvement.
Explicit mechanisms for confronting maintainability issues
early in the development cycle, such as the require-
ments-properties matrix [18] and the design inspection [4]
will be refined and used more extensively. In fact, we may
evolve a more general concept of software quality assur-

ance (currently focussed largely on reliability concerns),
involving such activities as independent reviews of soft-
ware requirements and design specifications by experts in
software maintainability. Such activities will be enhanced
considerably with the advent of more powerful capabilities
for analyzing machine-readable requirements and design
specifications. Finally, advances in automatic program-

ming [14], [15] should reduce or eliminate some mainte-
nance activity, at least in some problem domains.

VIII. SOFTWARE MANAGEMENT AND INTEGRATED
APPROACHES

A. Current Practice

There are more opportunities for improving software
productivity and quality in the area of management than
anywhere else. The difference between software project
successes and failures has most often been traced to good
or poor practices in software management. The biggest
software management problems have generally been the
following.

Poor Planning: Generally, this leads to large amounts
of wasted effort and idle time because of tasks being un-
necessarily performed, overdone, poorly synchronized, or
poorly interfaced.
Poor Control: Even a good plan is useless when it is not

kept up-to-date and used to manage the project.
Poor Resource Estimation: Without a firm idea of how

much time and effort a task should take, the manager is in
a poor position to exercise control.

Unsuitable Management Personnel: As a very general
statement, software personnel tend to respond to problem
situations as designers rather than as managers.
Poor Accountability Structure: Projects are generally

organized and run with very diffuse delineation of re-
sponsibilities, thus exacerbating all the above problems.

Inappropriate Success Criteria: Minimizing develop-
ment costs and schedules will generally yield a hard-to-
maintain product. Emphasizing "percent coded" tends to
get people coding early and to neglect such key activities
as requirements and design validation, test planning, and
draft user documentation.

Procrastination on Key Activities: This is especially
prevalent when reinforced by inappropriate success cri-
teria as above.

B. Current Frontier Technology

1) Management Guidelines: There is no lack of useful
material to guide software management. In general, it takes
a book-length treatment to adequately cover the issues.
A number of books on the subject are now available [85]
-[95], but for various reasons they have not strongly in-
fluenced software management practice. Some of the books
(e.g., Brooks [85] and the collections by Horowitz [86],
Weinwurm [87], and Buxton, Naur, and Randell [88] are
collections of very good advice, ideas, and experiences, but
are fragmentary and lacking in a consistent, integrated life
cycle approach. Some of the books (e.g., Metzger [89], Shaw
and Atkins [90], Hice et al. [91], Ridge and Johnson [92],
and Gildersleeve [93], are good on checklists and proce-
dures but (except to some extent the latter two) are light
on the human aspects of management, such as staffing,
motivation, and conflict resolution. Weinberg [94] provides
the most help on the human aspects, along with Brooks
[85] and Aron [95], but in turn, these three books are light
on checklists and procedures. (A second volume by Aron
is intended to cover software group and project consider-
ations.) None of the books have an adequate treatment of
some items, largely because they are so poorly understood:
chief among these items are software cost and resource
estimation, and software maintenance.

In the area of software cost estimation, the paper by
Wolverton [96] remains the most useful source of help. It
is strongly based on the number of object instructions
(modified by complexity, type of application, and novelty)
as the determinant of software cost. This is a known weak

- spot, but not one for which an acceptable improvement has
surfaced. One possible line of improvement might be along

1237

IEEE TRANSACTIONS ON COMPUPERS, DECEMBER 1976

the "software physics" lines being investigated by Halstead
[97] and others; some interesting initial results have been
obtained here, but their utility for practical cost estimation
remains to be demonstrated. A good review of the software
cost estimation area is contained in [98].

2) Management-Technology Decoupling: Another
difficulty of the above books is the degree to which they are
decoupled from software technology. Except for the Ho-
rowitz and Aron books, they say relatively little about the
use of such advanced-technology aids as formal, ma-
chine-readable requirements, top-down design approaches,
structured programming, and automated aids-to software
testing.

Unfortunately, the management-technology decoupling
works the other way, also. In the design area, for example,
most treatments of top-down software design are pre-
sented as logical exercises independent of user or economic
considerations. Most automated aids to software design
provide little support for such management needs as
configuration management, traceability to code or re-
quirements, and resource estimation and control. Clearly,
there needs to be a closer coupling between technology and
management than this. Some current efforts to provide
integrated management-technology approaches are pre-
sented next.

3) Integrated Approaches: Several major integrated
systems for software development are currently in opera-
tion or under development. In general, their objectives are
similar: to achieve a significant boost in software devel-
opment efficiency and quality through the synergism of
a unified approach. Examples are the utility of having a
complementary development approach (top-down, hier-
archical) and set of programming standards (hierarchical,
structured code); the ability to perform a software update
and at the same time perform a set of timely, consistent
project status updates (new version number of module,
closure of software problem report, updated status logs);
or simply the improvement in software system integration
achieved when all participants are using the same devel-
opment concept, ground rules, and support software.
The most familiar of the integrated approaches is the

IBM "top-down structured programming with chief pro-
grammer teams" concept. A good short description of the
concept is given by Baker [49]; an extensive treatment is
available in a 15-volume series of reports done by IBM for
the U.S. Army and Air Force [99]. The top-down struc-
tured approach was discussed earlier. The Chief Pro-
grammer Team centers around an individual (the Chief)
who is responsible for designing, coding, and integrating
the top-level control structure as well as the key compo-
nents of the team's product; for managing and motivating.
the team personnel and personally reading and reviewing
all their code; and also for performing traditional man-
agement and customer interface functions. The Chief is
assisted by a Backup programmer who is prepared at
anytime to take the Chiefs place, a Librarian who handles
job submission, configuration control, and project status
accounting, and additional programmers and specialists
as needed.

In general, the overall ensemble of techniques has been

quite successful, but the Chief Programmer concept has
had mixed results [99]. It is difficult to find individuals
with enough energy and talent to perform all the above
functions. If you find one, the project will do quite well;
otherwise, you have concentrated most of the project risk
in a single individual, without a good way of finding out
whether or not he is in trouble. The Librarian and Pro-
gramming Support Library concept have generally been
quite useful, although to date the concept has been ori-
ented toward a batch-processing development environ-
ment.
Another "structured" integrated approach has been

developed and used at SofTech [38]. It is oriented largely
around a hierarchical-decomposition design approach,
guided by formalized sets of principles (modularity, ab-
straction, localization, hiding, uniformity, completeness,
confirmability), processes (purpose, concept, mechanism,
notation, usage), and goals (modularity, efficiency, reli-
ability, understandability). Thus, it accommodates some
economic considerations, although it says little about any
other management considerations. It appears to work well
for SofTech, but in general has not been widely assimilated
elsewhere.
A more management-intensive integrated approach is

the TRW software development methodology exemplified
in the paper by Williams [50] and the TRW Software De-
velopment and Configuration Management Manual [100],
which has been used as the basis for several recent gov-
ernment in-house software manuals. This approach fea-
tures a coordinated set of high-level and detailed man-
agement objectives, associated automated aids-standards
compliance checkers, test thoroughness checkers, process
construction aids, reporting systems for cost, schedule, core
and time budgets, problem identification and closure,
etc.-and unified documentation and management devices
such as the Unit Development Folder. Portions of the
approach are still largely manual, although additional
automation is underway, e.g., via the Requirements
Statement Language [13].
The SDC Software Factory [101] is a highly ambitious

attempt to automate and integrate software development
technology. It consists of an interface control component,
the Factory Access and Control Executive (FACE), which
provides users access to various tools and data bases: a
project planning and monitoring system, a software de-
velopment data base and module management system, a
top-down development support system, a set of test tools,
etc. As the system is still undergoing development and
preliminary evaluation, it is too early to tell what degree
of success it will have.
Another factory-type approach is the System Design

Laboratory (SDL) under development at the Naval Elec-
tronics Laboratory Center [102]. It currently consists
primarily of a framework within which a wide range of aids
to software development can be incorporated. The initial
installment contains text editors, compilers, assemblers,
and microprogrammed emulators. Later additions are
envisioned to include design, development, and test aids,
and such management aids as progress reporting, cost re-
porting, and user profile analysis.

1238

BOEHM: SOFTWARE ENGINEERING

SDL itself is only a part of a more ambitious integrated
approach, ARPA's National Software Works (NSW) [102].
The initial objective here has been to develop a "Works
Manager" which will allow a software developer at a ter-
minal to access a wide variety of software development
tools on various computers available over the ARPANET.
Thus, a developer might log into the NSW, obtain his
source code from one computer, text-edit it on another,
and perhaps continue to hand the program to additional
computers for test instrumentation, compiling, executing,
and postprocessing of output data. Currently, an initial
version of the Works Manager is operational, along with
a few tools, but it is too early to assess the likely outcome
and payoffs of the project.

C. Trends

In the area of management techniques, we are probably
entering a consolidation period, particularly as the U.S.
DoD proceeds to implement the upgrades in its standards
and procedures called for in the recent DoD Directive
5000.29 [104]. The resulting government-industry efforts
should produce a set of software management guidelines
which are more consistent and up-to-date with today's
technology than the ones currently in use. It is likely that
they will also be more comprehensible and less encum-
bered with DoD jargon; this will make them more useful
to the software field in general.

Efforts to develop integrated, semiautomated systems
for software development will continue at a healthy clip.
They will run into a number of challenges which will
probably take a few years to work out. Some are technical,
such as the lack of a good technological base for data
structuring aids, and the formidable problem of integrating
complex software support tools. Some are economic and
managerial, such as the problems of pricing services, pro-
viding tool warranties, and controlling the evolution of the
system. Others are environmental, such as the proliferation
of minicomputers and microcomputers, which will strain
the capability of any support system to keep up-to-date.
Even if the various integrated systems do not achieve

all their goals, there will be a number of major benefits
from the effort. One is of course that a larger number of
support tools will become available to a larger number of
people (another major channel of tools will still continue
to expand, though: the independent software products
marketplace). More importantly, those systems which
achieve a degree of conceptual integration (not just a
free-form tool box) will eliminate a great deal of the se-
mantic confusion which currently slows down our group
efforts throughout the software life cycle. Where we have
learned how to talk to each other about our software
problems, we tend to do pretty well.

IX. CONCLUSIONS

Let us now assess the current state of the art of tools and
techniques which are being used to solve software devel-
opment problems, in terms of our original definition of
software engineering: the practical application of scientific
knowledge in the design and construction of software.

TABLE II
Applicability of Existing Scientific Principles

Software Hardware
Dimension Engineering Engineering

Scope Across Some principles for com- Many principles ap-
Life Cycle ponent construction plicable across

and detailed design, vir- life cycle, e.g.,
tually none for system communication
design and integration, theory, control
e.g., algorithms, auto- theory.
mata theory.

Scope Across Some principles for "sys- Many principles ap-
Application tems" software, virtu- plicable across

ally none for applica- entire application
tions software, e.g., system, e.g., con-
discrete mathematical trol theory appli-
structures. cation.

Engineering Very few principles Many principles ap-
Economics which apply to system ply well to system

economics, e.g., algo- economics, e.g.,
rithms. strength of mate-

rials, optimization,
and control the-
ory.

Required Very few principles for- Many principles
Training mulated for consump- formulated for

tion by technicians, consumption by
e.g., structured code, technicians, e.g.,
basic math packages. handbooks for

structural design,
stress testing,
maintainability.

Table II presents a summary assessment of the extent to
which current software engineering techniques are based
on solid scientific principles (versus empirical heuristics).
The summary assessment covers four dimensions: the
extent to which existing scientific principles apply across
the entire software life cycle, across the entire range of
software applications, across the range of engineering-
economic analyses required for software development, and
across the range of personnel available to perform software
development.

For perspective, a similar summary assessment is pre-
sented in Table II for hardware engineering. It is clear from
Table II that software engineering is in a very primitive
state as compared to hardware engineering, with respect
to its range of scientific foundations. Those scientific
principles available to support software engineering ad-
dress problems in an area we shall call Area 1: detailed
design and coding of systems software by experts in a
relatively economics-independent context. Unfortunately,
the most pressing software development problems are in
an area we shall call Area 2: requirements analysis design,
test, and maintenance of applications software by tech-
nicians3 in an economics-driven context. And in Area 2,
our scientific foundations are so slight that one can seri-

3 For example, a recent survey of 14 installations in one large organi-
zation produced the following profile of its "average coder": 2 years col-
lege-level education, 2 years software experience, familiarity with 2
programming languages and 2 applications, and generally introverted,
sloppy, inflexible, "in over his head," and undermanaged. Given the
continuing increase in demand for software personnel, one should not
assume that this typical profile will improve much. This has strong im-
plications for effective software engineering technology which, like ef-
fective software, must be well-matched to the people who must use it.

1239

IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1976

ously question whether our current techniques deserve to
be called "software engineering."
Hardware engineering clearly has available a better

scientific foundation for addressing its counterpart of these
Area 2 problems. This should not be too surprising, since

"hardware science" has been pursued for a much longer
time, is easier to experiment with, and does not have to
explain the performance of human beings.
What is rather surprising, and a bit disappointing, is the

reluctance of the computer science field to address itself
to the more difficult and diffuse problems in Area 2, as

compared with the more tractable Area 1 subjects of au-
tomata theory, parsing, computability, etc. Like most ex-

plorations into the relatively unknown, the risks of ad-
dressing Area 2 research problems in the requirements
analysis, design, test and maintenance of applications
software are relatively higher. But the prizes, in terms of
payoff to practical software development and mainte-
nance, are likely to be far more rewarding. In fact, as

software engineering begins to solve its more difficult Area
2 problems, it will begin to lead the way toward solutions
to the more difficult large-systems problems which con-

tinue to beset hardware engineering.

REFERENCES
[1] B. W. Boehm, "Software and its impact: A quantitative assess-

ment," Datamation, pp. 48-59, May 1973.
[2] T. A. Dolotta et al., Data Processing in 1980-85. New York:

Wiley-Interscience, 1976.
[3] P. Wegner, "Computer languages," IEEE Trans. Comput., this

issue, pp. 1207-1225.
[4] M. E. Fagan, "Design and code inspections and process control in

the development of programs," IBM, rep. IBM-SDD TR-21.572,
Dec. 1974.

[5] E. B. Daly, "Management of software development," IEEE Trans.
Software Eng., to be published.

[6] W. W. Royce, "Software requirements analysis, sizing, and costing,"
in Practical Strategies for the Development ofLarge Scale Soft-
ware, E. Horowitz, Ed. Reading, MA: Addison-Wesley, 1975.

[7] T. E. Bell and T. A. Thayer, "Software requirements: Are they a

problem?," Proc. IEEE/ACM 2nd Int. Conf. Software Eng., Oct.
1976.

[8] E. S. Quade, Ed., Analysis for Military Decisions. Chicago, IL:
Rand-McNally, 1964.

[9] J. D. Couger and R. W. Knapp, Eds;, System Analysis Techniques.
New York: Wiley, 1974.

[10] D. Teichroew and H. Sayani, "Automation of system building,"
Datamation, pp. 25-30, Aug. 15, 1971.

[11] C. G. Davis and C. R. Vick, "The software development system,"
in Proc. IEEE/ACM 2nd Int. Conf. Software Eng., Oct. 1976.

[12] M. Alford, "A requirements engineering methodology for real-time
processing requirements," in Proc. IEEE/ACM 2nd Int. Conf.
Software Eng., Oct. 1976.

[13] T. E. Bell, D. C. Bixler, and M. E. Dyer, "An extendable approach
to computer-aided software requirements engineering," in Proc.
IEEE/ACM 2nd Int. Conf. Software Eng., Oct. 1976.

[14] R. M. Balzer, "Imprecise program specification," Univ. Southern
California, Los Angeles, rep. ISI/RR-75-36, Dec. 1975.

[15] W. A. Martin and M. Bosyj, "Requirements derivation in automatic
programming," in Proc. MRI Symp. Comput. Software Eng., Apr.
1976.

[16] N. P. Dooner and J. R. Lourie, "The application software engi-
neering tool," IBM, res. rep. RC 5434, May 29, 1975.

[17] M. L. Wilson, "The information automat approach to design and
implementation of computer-based systems," IBM, rep. IBM-FSD,
June 27, 1975.

[18] B. W. Boehm, "Some steps toward formal and automated aids to
software requirements analysis and design," Proc. IFIP Cong.,
1974, pp. 192-197.

[19] A. B. Endres, "An analysis of errors and their causes in system
programs," IEEE Trans. Software Eng., pp. 140-149, June
1975.

[201 T. A. Thayer, "Understanding software through analysis of em-
pirical data," Proc. Nat. Comput. Conf., 1975, pp. 335-341.

[21] B. W. Boehm, R. L. McClean, and D. B. Urfrig, "Some experience
with automated aids to the design of large-scale reliable software,"
IEEE Trans. Software Eng., pp. 125-133, Mar. 1975.

[22] P. Freeman, "Software design representation: Analysis and im-
provements," Univ. California, Irvine, tech. rep. 81, May 1976.

[23] E. L. Glaser et al., "The LOGOS project," in Proc. IEEE COMP-
CON, 1972, pp. 175-192.

[24] N. R. Nielsen, "ECSS: Extendable computer system simulator,"
Rand Corp., rep. RM-6132-PR/NASA, Jan. 1970.

[25] D. W. Kosy, "The ECSS II language for simulating computer
systems," Rand Corp., rep. R-1895-GSA, Dec. 1975.

[26] E. W. Dijkstra, "Complexity controlled by hierarchical ordering
of function and variability," in Software Engineering, P. Naur and
B. Randell, Eds. NATO, Jan. 1969.

[27] H. D. Mills, "Mathematical foundations for structured program-
ming," IBM-FSD, rep. FSC 72-6012, Feb. 1972.

[28] C. L. McGowan and J. R. Kelly, Top-Down Structured Program-
ming Techniques. New York: Petrocelli/Charter, 1975.

[29] B. W. Boehm et at., "Structured programming: A quantitative
assessment," Computer, pp. 38-54, June 1975.

[30] W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured
design," IBM Syst. J., vol. 13, no. 2, pp. 115-139, 1974.

[31] G. J. Myers, Reliable Software Through Composite Design. New
York: Petrocelli/Charter, 1975.

[32] D. L. Parnas, "On,the criteria to be used in decomposing systems
into modules," CACM, pp. 1053-1058, Dec. 1972.

[33] D. L. Parnas, "The influence of software structure on reliability,"
in Proc. 1975 Int. Conf. Reliable Software, Apr. 1975, pp. 358-362,
available from IEEE.

[34] M. Hamilton and S. Zeldin, "Higher order software-A method-
ology for defining software," IEEE Trans. Software Eng., pp. 9-32,
Mar. 1976.

[35] "HIPO-A design aid and documentation technique," IBM, rep.
GC20-1851-0, Oct. 1974.

[36] J. Mortison, "Tools and techniques for software development
process visibility and control," in Proc. ACM Comput. Sci. Conf.,
Feb. 1976.

[37] I. Nassi and B. Schneiderman, "Flowchart techniques for struc-
tured programming," SIGPLAN Notices, pp. 12-26, Aug. 1973.

[38] D. T. Ross, J. B. Goodenough, and C. A. Irvine, "Software engi-
neering: Process, principles, and gbals," Computer, pp. 17-27, May
1975.

[39] M. A. Jackson, Principles of Program Design. New York: Aca-
demic, 1975.

[40] P. Henderson and R A. Snowden, "A tool for structured program
development," in Proc. 1974 IFIP Cong., pp. 204-207.

[41] L. C. Carpenter and L. L. Tripp, "Software design validation tool,"
in Proc. 1975 Int. Conf. Reliable Software, Apr. 1975, pp. 395-400,
available from IEEE.

[42] S. H. Caine and E. K. Gordon, "PDL: A tool for software design,"
in Proc. 1975 Nat. Comput. Conf., pp. 271-276.

[43] H. D. Mills, "Structured programming in large systems," IBM-
FSD, Nov. 1970.

[44] C. A. R. Hoare, "Notes on data structuring," in Structured Pro-
gramming, 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. New
York: Academic, 1972.

[45] N. Wirth, "An assessment of the programming language Pascal,"
IEEE Trans. Software Eng., pp. 192-198, June 1975.

[46] P. Brinch-Hansen, "The programming language concurrent Pas-
cal," IEEE Trans. Software Eng., pp. 199-208, June 1975.

[47] W. A. Wulf, ALPHARD: Toward a language to support structured
programs," Carnegie-Mellon Univ., Pittsburgh, PA, internal rep.,
Apr. 30, 1974.

[48] B. H. Liskov and S. Zilles, "Programming with abstract data types,"
SIGPLAN Notices, pp. 50-59, April 1974.

[49] F. T. Baker, "Structured programming in a production program-
ming environment," IEEE Trans. Software Eng., pp. 241-252,
June 1975.

[501 R. D. Williams, "Managing the development of reliable software,"
Proc., 1975 Int. Conf. Reliable Software April 1975, pp. 3-8,
available from IEEE.

[51] J. Witt, "The COLUMBUS approach," IEEE Trans. Software

1240

BOEHM: SOFTWARE ENGINEERING

Eng., pp. 358-363, Dec. 1975.
[52] B. W. Kernighan and P. J. Plauger, The Elements of Programming

Style. New York: McGraw-Hill, 1974.
153] H. F. Ledgard, Programming Proverbs. Rochelle Park, NJ:

Hayden, 1975
[54] W. A. Whitaker etal., "Department of Defense requirements for

high order computer programming languages: 'Tinman,' " Defense
Advanced Research Projects Agency, Apr. 1976.

[55] Proc. 1973 IEEE Symp. Comput. Software Reliability, Apr.-May
1973.

[56] E. C. Nelson, "A statistical basis for software reliability assess-
ment," TRW Systems, Redondo Beach, CA, rep. TRW-SS-73-03,
Mar. 1973.

[57] J. R. Brown and M. Lipow, "Testing for software reliability," in
Proc. 1975Int. Conf. Reliable Software, Apr. 1975, pp. 518-527.

[58] J. D. Musa, "Theory of software reliability and its application,"
IEEE Trans. Software Eng., pp. 312-327, Sept. 1975.

[59] R. J. Rubey, J. A. Dana, and P. W. Biche, "Quantitative Aspects
of software validation," IEEE Trans. Software Eng., pp. 150-155,
June 1975.

[60] T. A. Thayer, M. Lipow, and E. C. Nelson, "Software reliability
study," TRW Systems, Redondo Beach, CA, rep. to RADC, Con-
tract F30602-74-C-0036, Mar. 1976.

[61] D. J. Reifer, "Automated aids for reliable software," in Proc. 1975
Int. Conf. Reliable Software, Apr. 1975, pp. 131-142.

[62] C. V. Ramamoorthy and S. B. F. Ho, "Testing large software with
automated software evaluation systems," IEEE Trans. Software
Eng., pp. 46-58, Mar. 1975.

[63] J. B. Goodenough and S. L. Gerhart, "Toward a theory of test data
selection," IEEE Trans. Software Eng., pp. 156-173, June 1975.

[64] P. Wegner, "Report on the 1975 International Conference on Re-
liable Software," in Findings and Recommendations of the Joint
Logistics Commanders' Software Reliability Work Group, Vol.
II, Nov. 1975, pp. 45-88.

[65] J. C. King, "A new approach to program testing," in Proc. 1975Int.
Conf. Reliable Software, Apr. 1975, pp. 228-233.

[66] R. S. Boyer, B. Elspas, and K. N. Levitt, "Select-A formal system
for testing and debugging programs," in Proc. 1975Int. Conf. Re-
liable Software, Apr. 1975, pp. 234-245.

[67] J. Goldberg, Ed., Proc. Symp. High Cost of Software, Stanford
Research Institute, Stanford, CA, Sept. 1973, p. 63.

[68] L. C. Ragland, "A verified program verifier," Ph.D. dissertation,
Univ. of Texas, Austin, 1973.

[69] D. I. Good, R. L. London, and W. W. Bledsoe, "An interactive
program verification system," IEEE Trans. Software Eng., pp.
59-67, Mar. 1975.

[70] F. W. von Henke and D. C. Luckham, "A methodology for verifying
programs," in Proc. 1975Int. Conf. Reliable Software, pp. 156-164,
Apr. 1975.

[71] C. A. R. Hoare and N. Wirth, "An axiomatic definition of the
programming language PASCAL," Acta Informatica, vol. 2, pp.
335-355, 1973.

[72] R. L. London, "A view of program verification," in Proc. 1975Int.
Conf. Reliable Software, Apr. 1975, pp. 534-545.

[73] E. W. Dijkstra, "Notes on structured programming," in Structured
Programming, 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. New
York: Academic, 1972.

[74] W. A. Wulf, "Reliable hardware-software architectures," IEEE
Trans. Software Eng., pp. 233-240, June 1975.

[75] J. Goldberg, "New problems in fault-tolerant computing," in Proc.
1975 Int. Symp. Fault-Tolerant Computing, Paris, France, pp.
29-36, June 1975.

[76] B. Randell, "System structure for software fault-tolerance," IEEE
Trans. Software Eng., pp. 220-232, June 1975.

[77] R. K. McClean and B. Press, "Improved techniques for reliable
software using microprogrammed diagnostic emulation," in Proc.
IFAC Cong., Vol. IV, Aug. 1975.

[78] E. B. Swanson, "The dimensions of maintenance," in Proc.
IEEE/ACM 2nd Int. Conf. Software Eng., Oct. 1976.

[79] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative evaluation
of software quality," in Proc. IEEE/ACM 2nd Int. Conf. Software
Eng., Oct. 1976.

[80] J. L. Elshoff, "An analysis of some commercial PL/I programs,"
IEEE Trans. Software Eng., pp. 113-120, June 1976.

[81] W. L. Trainor, "Software: From Satan to saviour," in Proc;,
NAECON, May 1973.

[82] E. H. Sibley, Ed., ACM Comput. Surveys (Special Issue on Data

Base Management Systems), Mar. 1976.
[83] Defense Management J. (Special Issue on Software Manage-

ment), vol.II, Oct. 1975.
[84] L. A. Belady and M. M. Lehman, "The evolution dynamics of large

programs," IBM Research, Sept. 1975.
[85] F. P. Brooks, The Mythical Man-Month. Reading, MA: Addi-

son-Wesley, 1975.
[86] E. Horowitz, Ed., Practical Strategies for Developing Large-Scale

Software. Reading, MA: Addison-Wesley, 1975.
[87] G. F. Weinwurm, Ed., On the Management of Computer Pro-

gramming. New York: Auerbach, 1970.
[88] P. Naur and B. Randell, Eds., Software Engineering, NATO, Jan.

1969.
[89] P. J. Metzger, Managing a Programming Project. Englewood

Cliffs, NJ: Prentice-Hall, 1973.
[90] J. C. Shaw and W. Atkins, Managing Computer System Projects.

New York: McGraw-Hill, 1970.
[91] G. F. Hice, W. S. Turner, and L. F. Cashwell, System Development

Methodology. New York: American Elsevier, 1974
[92] W. J. Ridge and L. E. Johnson, Effective Management of Com-

puter Software. Homewood, IL: Dow Jones-Irwin, 1973.
[93] T. R. Gildersleeve, Data Processing Project Management. New

York: Van Nostrand Reinhold, 1974.
[94] G. F. Weinberg, The Psychology of Computer Programming. New

York: Van Nostrand Reinhold, 1971.
[95] J. D. Aron, The Program Development Process: The Individual

Programmer. Reading, MA: Addison-Wesley, 1974.
[96] R. W. Wolverton, "The cost of developing large-scale software,"

IEEE Trans. Comput., 1974.
[97] M. H. Halstead, "Toward a theoretical basis for estimating pro-

gramming effort," in Proc. Ass. Comput. Mach. Conf., Oct. 1975,
pp. 222-224.

[98] Summary Notes, Government/Industry Software Sizing and
Costing Workshop, USAF Electron. Syst. Div., Oct. 1974.

[99] B. S. Barry and J. J. Naughton, "Chief programmer team opera-
tions description," U. S. Air Force, rep. RADC-TR-74-300, Vol.
X (of 15-volume series), pp. 1-2-1-3.

[100] Software Development and Configuration Management Manual,
TRW Systems, Redondo Beach, CA, rep. TRW-SS-73-07, Dec.
1973.

[101] H. Bratman and T. Court, "The software factory," Computer, pp.
28-37, May 1975.

[102] "Systems design laboratory: Preliminary design report," Naval
Electronics Lab. Center, Preliminary Working Paper, TN-3145,
Mar. 1976.

[103] W. E. Carlson and S. D. Crocker, "The impact of networks on the'
software marketplace," in Proc. EASCON, Oct. 1974.

[104] "Management of computer resources in major defense systems,"
Department of Defense, Directive 6000.29,Apr. 1976.

Barry W. Boehm received the B.A. degree in
mathematics from Harvard University, Cam-
bridge, MA, in 1957, and the M.A. and Ph.D.
degrees from the University of California, Los
Angeles, in 1961 and 1964, respectively.
He entered the computing field as a Pro-

grammer in 1955 and has variously served as a
Numerical Analyst, System Analyst, Informa-
tion System Development Project Leader,
Manager of groups performing such tasks,
Head of the Information Sciences Department

at the Rand Corporation, and as Director of the 1971 Air Force CCIP-85
study. He is currently Director of Software Research and Technology
within the TRW Systems and Energy Group, Redondo Beach, CA. He
is the author of papers on a number of computing subjects, most recently
in the area of software requirements analysis and design technology. He
serves on several governmental advisory committees, and currently is
Chairman of the NASA Research and Technology Advisory Committee
on Guidance, Control, and.Information Systems.

Dr. Boehm is a member of the IEEE Computer Society, in which he
currently serves on the Editorial Board of the IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING and on the Technical Committee on Software
Engineering.

1241

