
Fault Links: Exploring the Relationship Between
Module and Fault Types

Jane Huffman Hayes1, Inies Raphael C.M.1, Vinod Kumar Surisetty1,
 Anneliese Andrews2

1University of Kentucky
Computer Science Department

hayes@cs.uky.edu

2Washington State University
School of Electrical Engineering and Computer Science

aandrews@eecs.wsu.edu

Abstract. Fault links represent relationships between the types of mistakes
made and the type of module being developed or modified. The existence of
such fault links can be used to guide code reviews, walkthroughs, allocation of
verification and validation resources, testing of new code development, as well
as code maintenance. We present an approach for categorizing code faults and
code modules, and a means for examining relationships between the two. We
successfully applied our approach to two case studies.

1. Introduction

As we seek to develop ever more complex systems, some with grave consequences
of failure, we must strive to improve our technologies for developing and ensuring ro-
bust, reliable software. Fault-based analysis and fault-based testing are related tech-
nologies that seek to address this challenge.

Fault-based testing generates test data to demonstrate the absence of a set of pre-
specified faults. Similarly, fault-based analysis identifies static techniques (such as
traceability analysis that should be performed to ensure that a set of pre-specified
faults do not exist. As part of fault-based analysis, a project manager can use histori-
cal data to determine what fault types are most likely to be introduced or can perform
a risk analysis to determine what fault types would be most devastating if overlooked.
Note that fault-based analysis is an early lifecycle approach that can be applied prior
to implementation [15]. For example, developers of version 10 of a software system
could use information on the number and type of faults from versions 8 and 9 to guide
their code walkthroughs.

Based on our work on a semantic model of faults [30], Offutt’s work on testing
coupling [29], our work on traceability [16], and on requirement faults [15], we de-
veloped a conjecture about faults: The types of mistakes made by programmers
largely depend on the type of module that is being developed or modified. We refer
to this as a “fault link”. A fault link is a relationship between the type of module being
developed or changed and the fault type. For example, we posit that if a developer is

writing a Computational-centric module, it is more likely that a computational fault
will be introduced. Though this may seem intuitive or “not surprising,” note that cur-
rently there are no empirical results to confirm it.

If we can demonstrate that fault links exist and if we can codify them, we can im-
prove the development, testing, and maintenance of complex computer systems in
several ways. We can offer preventative items for walkthrough checklists for newly
developed code. We can recommend that exit criteria be added to walkthrough
checklists for maintained code. For example, if a computational-centric module is be-
ing examined, do not exit the walkthrough until an extra check has been made to en-
sure that no computational errors exist. We can offer a list of fault-based tests that
should be conducted based on the fault links. We can guide the allocation of verifica-
tion and validation resources to best reduce risk.

The remainder of the paper is organized as follows. Section 2 presents related
work. Sections 3 and 4 will present the module taxonomy and fault taxonomy, re-
spectively. Section 5 discusses the research conjectures. Section 6 discusses two
open source software case studies. We found evidence in favor of four of the conjec-
tured fault links (as well as weak evidence for an additional two), such as Data-centric
modules having many Data faults. We also found evidence of six unexpected fault
links. Conclusions and future work are presented in Section 7.

2. Related Work

Faults have traditionally been characterized by syntactic categories [4, 22, 19], in-
cluding where in the program the faults appear [17], which software development
phase generated the faults [25, 20], what testing phase found the faults [30], and what
type of statement or language feature the faults occur on [12]. As part of a NASA-
funded project, Hayes has developed a taxonomy of requirements faults that is based
on syntactic problems in the requirements [15].

A few attempts have been made to classify faults based on the mental mistakes that
programmers make. IBM's ODC is one such scheme [18]. It assigns mental mistakes
as part of a larger classification scheme.

Researchers have also examined change patterns of modules. Gall et al [13] used
information about changes covering a sizeable number of releases to uncover logical
dependencies and change patterns among modules. This was used to identify logical
coupling among modules to uncover structural shortcomings. The work does not dis-
criminate between corrective maintenance or enhancement related changes, thus did
not attempt to classify faults. Similarly, Bieman et al [5] identified change-proneness
of C++ code based on intentional use of patterns (or lack thereof). While this analysis
found that some patterns are more change-prone in different categories of mainte-
nance (corrective versus enhancement related changes), these faults were not classi-
fied. Bieman et al [6] found a strong relationship between class size and number of
changes; larger classes changed more frequently. Also, classes that participate in de-
sign patterns and/or are reused through inheritance are more change-prone. They did
not identify the type of change or fault in these studies.

Ohlsson et al [31] modeled fault proneness statistically over a series of releases.
This included a variety of change measures at various levels of analysis, such as the

number of defect fix reports attributed to a module, an interaction measure of defect
repairs that involved more than one module, and impact of change measures (how
many files affected, how many changes for each, various size of change measures by
type of file). The analysis of the case study data showed that fault-prone modules
showed higher system impact across four releases, where system impact is defined as
total number of changes to .c and .h files in a release per module. This motivated
construction of a fault architecture [24], which determines fault coupling and cohesion
measures at the module and subsystem levels, within a release and across releases.
Nikora and Munson presented a predictor for fault prone modules. They used a set of
metrics and a reduced set of domains to build their predictor. They did not classify
faults though and did not classify modules beyond “fault prone” or not “fault prone
[28].”

Ostrand et al [32], with the aim of aiding organizations to determine the optimal
use of their testing resources, have identified various file characteristics. These char-
acteristics can serve as predictors of fault-proneness. By examining a series of 13 re-
leases of a large evolving industrial software system, they observed that: (i) faults are
concentrated in small numbers of files and in small percentages of code mass, (ii)
shortchanging the testing efforts for previously high-fault files is a mistake, and (iii)
“all late-pre-release faults always appeared in under 5% of the files”[32].

However, no effort was made to classify modules and faults. Fenton et al [11]
have quantitatively analyzed the faults and failures of a major commercial system.
Some of their observations were identical to those made by Ostrand et al [32]. Fenton
et al provided strong evidence to suggest that software systems that are developed un-
der the same environment result in similar fault densities, when tested in similar test-
ing phases.

3. Module Taxonomy

Any simple or complex program can be viewed as a combination of various mod-
ules. A module is just a part of a program, which aids in performing some action or in
making decisions to perform actions. A module can be a single statement or a single
function or procedure that contributes to the purpose of the program.
We identified two methods for categorizing modules by type:
• Method one: Program modules are classified based on their main purpose. We con-

sidered allowing modules to have a second category based on their secondary pur-
pose, but decided against it for the present. This represents a possible area for fu-
ture work. This method is easy to comprehend and apply and is also faster than
method two. However, it does not easily lend itself to automation.

• Method two: Modules are classified based on the percentage of lines of code that
perform specific functions, such as computation, data manipulations, etc. We count
the number of lines that belong to a particular category in a module, select the
category with the highest Lines Of Code, and assign the module to that category.
For example, “IF (salary > 1000)” is a controller statement. This method provides
information about the statements used in a program and is easily automated with
some standard guidelines. Unfortunately, there are drawbacks including: (i) diffi-

cult to perform categorization, (ii) time consuming, (iii) tedious when performed
manually, and (iv) not easy to understand.
This paper classifies modules using method one. We followed a subset of the steps

in [15] to develop module and code fault taxonomies: select a fault taxonomy as the
basis for the work, examine sample code faults, adopt or build a method for extending
the fault taxonomy, and implement the method for tailoring a taxonomy.

Our original module and fault taxonomy was influenced by the prior work dis-
cussed in Sections 2 and 4. We also performed a pilot study on an industrial partner’s
project as well as on student programming assignments to further construct the tax-
onomies. We applied the two taxonomies to categorize the faults and modules in two
open source web-based projects, and detected new categories for both the fault and
module taxonomies. Two new module categories were added including error handling
and environmental setup. Fig. 1 shows the resulting generic module taxonomy. It is
applicable to most programs and domains, but could be tailored to a specific domain
or application using the process in [15]. Each module category is described below.
• Data-centric: Modules that deal with data definition and handling fall under this

category. Access to database is also classified under data centric module.

 D a ta - c e n t r ic

V ie w

C o n t ro l le r

C o m p u ta t io n a l-
c e n t r ic

In te ra c t io n

C o m p o n e n t

E r r o r H a n d lin g

E n v iro n m e n ta l
S e tu p /

C o n f ig u ra t io n

Fig. 1. Taxonomy of program modules

• Error Handling: The main purpose of modules in this category is to handle excep-
tions or errors that are likely to occur.

• Computational-centric: Modules whose main purpose is to calculate or compute re-
sults belong in this category. At the statement level, any statement that changes any
variable or state of the program falls under this category.

• Controller: Any module whose main purpose is to control the sequence of program
execution falls under this category.

• Environmental setup/configuration: The main purpose of the modules is to set up
an appropriate environment for the software to function efficiently.

• View: Any module that designs or handles graphical user-interface controls or ma-
nipulates the attributes of the controls is part of this category. Also, the statements
used for displaying information belong to this category.

• Interaction: Any module or statement that performs a function call or passes pa-
rameters to other modules or tries to access the data structures outside the module
falls under this category.

4. Fault Taxonomy

Our fault taxonomy does not include errors that can be caught by the compiler at
compile time. We attempted to make the module and fault taxonomies generic
enough to be language independent and method independent. Fig. 3 presents a graphi-
cal depiction of the taxonomy. The branches of the tree represent fault categories that
are language independent, but the leaves may be language dependent. For example,
the control/logic fault type applies to any language but register reuse will only be ap-
plicable for languages such as C or assembly languages.

The fault taxonomy also takes practical realities into account. Specifically, the
taxonomy only relies on bug reports or problem reports and does not assume that (up
to date) specifications or design are available for analysis. The following fault types
are significant and have been included because they have been shown to be important
fault categories in the past [3, 9, 10, 14, 21, 23, 35, 36].

Data: Incorrect data definition. Data definition involves assigning a name, type,
and size for a data item. Since some data types are compatible with others (e.g., float
can take an integer value), misuse can result in errors that are not detected at compile
time. Improper data initialization is caused by the failure to initialize or reinitialize a
data structure properly upon module entry or exit [3]. Examples of this include control
blocks, registers, or switches not cleared or reset before transition [10]. Improper
data representation. By representation we mean the ways in which the data is stored,
i.e., data structure. The information or data can be stored in different ways, e.g., struc-
tured as a database or unstructured in flat files. Program statements that don’t properly
account for data representation may compile, but could result in runtime problems.

Computational: Errors that lead to a wrong value being calculated for a variable or
register or switch belong in this class.

Control/logic: “Errors that cause an incorrect path in a module to be taken are con-
sidered control errors [3].” We group logic errors here also. Statement logic [36]
faults cause the executable statements to be executed in the wrong order or not at all.
For example, a program may fail to perform validation before returning the data. Se-
quence errors [36] exist when the order in which messages and control information
are sent is erroneous. For example, the server program in a client-server environment
may send an acknowledgment without receiving any request from the client. Un-
reachable code [25] occurs due to errors in control or logic statements. Performance
faults may affect the overall performance of the software.

Interface: Here we include “errors associated with structures existing outside the
module’s local environment but which the module used” [3] and errors in the com-
munications between modules. For example, incorrect subroutine or module call, in-
sufficient data transfer [25], “incorrect declaration of COMMON segment” [3] all fall
under this category.

User interface: Faults that interfere with the efficiency, performance and appear-
ance of the user interface of the software. Large response time [23, 35] causes the in-

terface controls to respond with delay. Lack of naturalness [21] is caused by a num-
ber of factors such as illogical grouping of information, use of uppercase, use of
arbitrary abbreviations, etc. A natural interface does not cause the user to significantly
alter his or her approach to the task in order to interact with the system. Inconsistency
[35, 21, 14] refers to the lack of a pattern of familiarity designed throughout a prod-
uct. Redundancy [21] in a user interface requires the user to enter unnecessary infor-
mation for an operation. For example, a user should never have to supply leading ze-
ros (“00090.45” instead of “90.45”). Complexity [35] leads to interfaces that are not
simple and easy to work with. The interface must be simple. The complexity of a user
interface is based on the following factors: ease of use, ease of learning and under-
standing, and ease of navigation. Lack of support [21] refers to the limited amount of
assistance the interface provides to the user. Not flexible [21, 14] refers to a user in-
terface that narrows the types of users that can work on the software. The user inter-
face must be able to tolerate different levels of user familiarity and performance. Un-
predictable flow is when the flow of control in the user-interface gets beyond the
scope of the user. An example of unpredictable flow is when the user tries to perform
a spell check on her document and the software also performs a thesaurus function,
despite not being invoked by the user. Visual stimulation [35, 21] refers to faults deal-
ing with the improper use of color, fonts, graphics, control layout, etc. The determi-
nation that a fault exists is based on a bug report. Thus, we do not need to define met-
rics to measure attributes like “ease of use” or “ease of navigation”.

Framework [9]: There are certain languages that make use of the concept of pack-
ages or reusable code. In such a language, a particular program imports or includes
some of the packages to avoid unnecessary work. The set of statements used for this
purpose is classified as “framework.” Missing framework elements are caused when,
upon integration, some modules might not have included required setup files. When
all the modules are compiled together or individually, the compiler does not show any
errors. However, at run time when the module calls or tries to communicate with an-
other module, an error occurs. As mentioned before, only the leaves of the classifica-
tion tree may be language dependent. Thus the fact that a framework element is miss-
ing is language independent, while the specifics of element mismatch will be
language dependent.

5. Research Conjectures

After developing the fault taxonomy and module taxonomy, we noticed a strong
correspondence between the categories, resulting in the following research question:
“Does the module type drive the fault type one encounters?” We developed several
research conjectures about fault links based on this. They are justified by prior work
and the pilot studies mentioned earlier. The following 10 fault links were posited:

C1.1 – Data-centric modules will have a higher percentage of Data faults.
C1.2 - Data faults will occur more frequently in Data-centric modules.
C2.1 – Controller modules will have a higher percentage of Control/Logic faults.
C2.2 - Control/Logic faults will occur more frequently in Controller modules.
C3.1 – Computational-centric modules show a high percentage of Computation faults.
C3.2 – Computation faults occur more frequently in Computational-centric modules.

C4.1 - Interaction modules will have a higher percentage of Interface faults.

 Incorrect data definition

 Data Improper data initialization

 Improper data representation

 Computational

 Control/Logic

Code Faults

 Framework

Fig 3. Fault Taxonomy

Statement logic

Large response time
Lack of naturalness
Inconsistency
Redundancy
Complexity

Non -supportiveness

Lack of flexibility

Unpredictable flows
Visual stimulation

Lacks ease of use

Lacks ease to learn

Lacks ease of navigation

Missing framework elements Mismatch of elements

Performance

Unreachable code

Insufficient data transport

Incorrect equation

Copying overrun

Sequence error

Register reuse

Interface
Unnecessary return value

User - interface

C4.2 – Interface faults will occur more frequently in Interaction modules.
C5.1 – View modules will have a higher percentage of User Interface faults.
C5.2 – User Interface faults will occur more frequently in View modules.

We also posited secondary research conjectures. These are not as intuitive as the
above, and some counter the above conjectures.

C6.1 – Interaction modules will have a higher percentage of User Interface faults.
C6.2 – User Interface faults will occur more frequently in Interaction modules.
C7.1 – View modules will have a higher percentage of Framework faults.
C7.2 – Framework faults will occur more frequently in View modules.
C8.1 – Error Handling modules will have a higher percentage of Data faults.
C8.2 – Data faults will occur more frequently in Error Handling modules.

C9.1 – Environmental Setup/Configuration modules will have a higher percentage of
framework faults.
C9.2 – Framework fault occur more frequently in Environmental Setup/Configuration
modules.

6. Case Studies

We applied the taxonomy to two open source software systems, Apache and
Mozilla, to evaluate whether this taxonomy can be applied to common types of soft-
ware and to see whether bug reports typical for such applications are able to reveal
enough information. Both systems are largely written in C/C++. The Apache sever is
a powerful, flexible, HTTP/1.1-compliant web server [2]. Mozilla is an open-source
web browser, designed for standards compliance, performance, and portability [26].
Bugzilla is a "Bug-Tracking Systems" used in the Mozilla project. It allows individual
or groups of developers to effectively keep track of outstanding bugs in their product.

6.1 Apache Case Study (Modules and Faults)

We examined all 30 modules that existed at the time of the study (100%). The size
of the modules ranged from 250 LOC to 4500 LOC. We randomly selected two re-
leases for which to examine bug reports, releases for the years 1999 and 2000. For
those years, there were 2300 bug reports. Of these, we examined 300 (13%). Of
these 300, only 177 bug reports provided enough information for fault categorization.

 We classified all modules of the Apache 1.3.24 server [2] based on module pur-
pose (method one). Table 1 presents the distribution of the Apache module classifica-
tion. In this table, the percentage column denotes the percent number of modules of a
particular type. For example, 10% of the 30 (3) modules were categorized as View
modules. The largest module categories were Controller and Computational-centric,
at 26.7% each.
 Next, we applied method two to classify a subset of the Apache modules. Though
many modules were categorized as belonging to the same categories when using
method one and method two, some modules were not. For example, the following
module was categorized as Computational-centric using method one, but was typed as
Controller using method two.
Module: mod_unique_id
Main purpose: generate unique request identifier for every request
Method one: classified as computational module
Method two: As you can see from Table 2, the number of lines of code perform-
ing control/logic (Controller) functions is greater than the number of lines performing
other functions. Therefore it is categorized as Controller.

The advantage of method two is that categorization can be automated. However,
the results of method two are not always intuitive. Method one is more subjective
than method two. While subjective measurement can and should be systematic, it
lacks the rigor of objectively measurable and quantitative scales [38]. To account for
this, one normally develops reliability indicators for such scales (for example, inter-
rater reliability) [1]. To that end, we performed an inter-rater reliability survey. We

had five software engineers apply method one to this same module. The engineers
were given the code for the module (including in-line documentation) and a list of and
definitions for the module types in our taxonomy. All five engineers labeled the
module as “computational.” This convinced us that our subjective method exhibits
reliability, so we continued using the results from method one.

Because of our interest in the relationship between module type and fault type, we
performed a second step for the Apache case study. We went back to the 30 modules
we had categorized and attempted to locate bug reports or problem reports for each.
The problem reports provide information on identified faults. These have not neces-
sarily been fixed. Several hundred bug reports were listed for each module. We ex-
amined a subset of these bug reports for a subset of the 30 modules (cf. Table 3).

Some general observations can be made. Many bug reports did not document
bugs. Some bug reports represented enhancement requests. Bug reports had been
generated by users who were “just trying out the bug tracking system.” Many bug re-
ports did not relate to code faults, but to poor documentation. Some bug reports did
not relate to the version of Apache that we were examining or did not state the version
number. Bug reports were duplicated or not deemed errors by the Apache developers.
Finally, many bug reports documented more than one code fault and should have been
separated into multiple bug reports. On average there were 1.5 faults per bug report.

We adjusted our approach to accommodate these findings. We first weeded out the
“non-bug reports.” Next, we disregarded bug reports not related to code. We then
eliminated bug reports that did not relate to version 1.3.24 of Apache or were not ac-
tual errors per the Apache engineers. We then examined each fault in isolation, even
if several had been grouped in one bug report. As we did not examine the same num-
ber of modules of each type (e.g., we examined eight Computational-centric, but only
two Interaction modules), we looked at the faults as a function of the number of faults
per module. That is, we examined 33 faults for four Data-centric modules. The 33
faults were categorized according to the fault taxonomy. The resulting values were
scaled to reflect 8.25 faults per module.

Table 3 shows the module and fault classification for the Apache study. Module
types are shown in the rows. The columns indicate: the total number of modules of
different types that were examined; the number of faults, by fault type, for each mod-
ule type; the total number of faults for the module type; and the percentage of faults
found in a particular module type. For example, the Controller module row indicates
that six such modules were examined, that 28 Control/Logic faults were found in the
Controller modules, that a total of 47 faults were found in controller modules account-
ing for 26.6% of all faults classified. The highest value in each row has been bolded,
and the highest value in each column has been italicized. In the above example, the
value “28” has been bolded and italicized as it is the highest value for both the row
and column. The bottom row indicates the percentage of each fault type classified.
For example, 91 Control/Logic faults were found and they accounted for 51.5% of all
faults.

 It is clear that control/logic faults dominate this case study, regardless of module
type. Though we had not conjectured this, it is not such a surprising result. In our
own experience as programmers, teachers, and lab assistants for junior level pro-
gramming courses, we have also noticed that these errors dominate.

 Table 1. Classification of Apache Modules by Type

Module Number Percentage
Data-centric 6 20 %
Controller 8 26.7%
Computational-

centric
8 26.7%

View 3 10%
Interaction 3 10%
Error Handling 1 3.3%
Environmental

Setup/Configuration
1 3.3%

Total 30 100%

Table 2. Mod_Unique_ID Categorization-Method Two

Module LOC (Lines Of Code)
Data-centric 62
Controller 68
Computational-centric 12
View 0
Interaction 11
Error Handling 0
Environmental

Setup/Configuration
0

Total 153

Table 4 illustrates the “have” relationship that exists between the module and fault

types. For example, a Data-centric module has more Control/Logic faults than any
other type of fault, and these account for 48% of the faults typically found in a Data-
centric module. The module types are listed in the rows of the table. For ease of illus-
tration, two columns (the total number of modules of different types that were exam-
ined and the total number of faults grouped by the module in which they occur) have
been repeated here from Table 3. We also show the total faults per module, followed
by the percentage of faults found in a particular module type. Note that changes have
been made to the values in the module-fault cells. Each cell has two values, a percent-
age value and a fault-per-module value. The percentage value represents the “have”
relationship. The fault-per-module value indicates that out of N total faults in a mod-
ule of a particular type, X of them belongs to a particular fault type. For example, let
us examine the row for the Data-centric module. The number of data-centric modules
examined was four, the total number of faults from the four modules was 33, and
therefore the total faults per module (33/4) is 8.25 per module. This total fault-per-
module value is distributed across the fault types based on their count from Table 1.
As far as the fault distribution across different fault types is concerned, the data-
centric module had about 18% data faults, 48% C/L faults, 6% computational faults,

9% interface faults, 18% framework faults, and zero percent GUI faults. As before,
the highest value in each row and column is bolded and italicized respectively.

Table 5 illustrates the “occurs-in” relationship that exists between the fault and
module types. For example, Data faults tend to occur in Data-centric modules most
frequently (46%). The table is very similar to Table 4 except that it illustrates the
“occurs-in” relationship from the fault type to the module type. The cells have the
same two types of values as before, the percentage value and fault-per-module value.
The fault-per-module value has the as meaning as before, but the percentage value in
this case represents the “occurs-in” relationship. For example, let us examine the row
for the Control/Logic fault. We can see that 16.8% of the C/L faults occur in data-
centric modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L
faults occur in computational-centric modules, 14.7% of the C/L faults occur in inter-
action modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults
occur in error-handling modules, and 4% of the C/L faults occur in environmental
setup modules. The total faults-per-module and faults-per-module values of each are
calculated as before.

Next, we assess the “have” relationship (from Table 4). The most frequently oc-
curring fault type in Data-centric modules was Control/Logic at 48% (no close sec-
ond). This does not support C1.1. The most frequently occurring fault type in Con-
troller modules was Control/Logic at 59.6% with no close second. This does strongly
support C2.1. The most frequently occurring fault type in Computational-centric
modules was Control/Logic at 48% with no close second. This does not support C3.1.
The most frequently occurring fault type in Interaction modules was Control/Logic at
41% with no close second. This does not support C4.1 or C6.1. The most frequently
occurring fault type in View modules was Control/Logic at 50% with no close second.
This does not support C5.1 or C7.1. The most frequently occurring fault type in Error
Handling modules was Control/Logic at 75%. This does not support C8.1. There was
a tie for most frequently occurring fault type in Environmental Setup/Configuration
modules, 50% for both Control/Logic and Computational (no support for C9.1).

Table 5 illustrates the “occurs-in” relationship that exists between the fault and
module types. For example, Data faults tend to occur in Data-centric modules most
frequently (46%). The table is very similar to Table 4 except that it illustrates the
“occurs-in” relationship from the fault type to the module type. The cells have the
same two types of values as before, the percentage value and fault-per-module value.
The fault-per-module value has the as meaning as before, but the percentage value in
this case represents the “occurs-in” relationship. For example, let us examine the row
for the Control/Logic fault. We can see that 16.8% of the C/L faults occur in data-
centric modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L
faults occur in computational-centric modules, 14.7% of the C/L faults occur in inter-
action modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults
occur in error-handling modules, and 4% of the C/L faults occur in environmental
setup modules. The total faults-per-module and faults-per-module values of each are
calculated as before.
Next, we assess the “have” relationship (from Table 4). The most frequently occur-
ring fault type in Data-centric modules was Control/Logic at 48% (no close second).
This does not support C1.1. The most frequently occurring fault type in Controller
modules was Control/Logic at 59.6% with no close second. This does strongly sup-

port C2.1. The most frequently occurring fault type in Computational-centric mod-
ules was Control/Logic at 48% with no close second. This does not support C3.1. The
most frequently occurring fault type in Interaction modules was Control/Logic at 41%
with no close second. This does not support C4.1 or C6.1. The most frequently oc-
curring fault type in View modules was Control/Logic at 50% with no close second.
This does not support C5.1 or C7.1. The most frequently occurring fault type in Error
Handling modules was Control/Logic at 75%. This does not support C8.1.
 There was a tie for most frequently occurring fault type in Environmental
Setup/Configuration modules, 50% for both Control/Logic and Computational. This
does not support C9.1.

Table 3. Module and Fault Type Classification for Apache Study

Fault type Module
type

mod-
ules Data C/L Comput. Interface Framework GUI

Total
Faults

%

Data-centric 4 6 16 2 3 6 0 33 18.7%

Controller 6 3 28 5 4 5 2 47 26.6%

Computational-
centric

8 2 21 7 7 6 1 44 24.8%

Interaction 2 0 7 3 3 2 2 17 9.6%

View 3 3 15 4 1 5 2 30 17%

Error Handling 1 0 3 1 0 0 0 4 2.2%

Environ. Setup 1 0 1 1 0 0 0 2 1.1%

Total 25 14 91 23 18 24 7 177 100%

Percentage 8% 51.5% 13% 10% 13.5% 4% 100%

As can be seen from Table 5 (the “occurs-in” relationship), the majority of the Data
faults occur in the Data-centric modules (46%). The next highest value is 30.7% for
View modules. This finding provides support for C1.2, but not for C8.2. The major-
ity of Control/Logic faults occur in View modules (21%) with Controller modules
bringing up a close second at 19.6%. This finding lends some support to C2.2, but not
as strong as for C1.2. Computation faults occur 36% of the time in Interaction mod-
ules followed by View modules at 19%. This does not support C3.2. Interface faults
accounted for 36% of the Interaction module faults with no close second. This
strongly supports C4.2. The majority of Framework faults occurred in View modules
(29%) with Data-centric modules close behind at 26%. This provides some support
for C7.2, but not C9.2. 47% of the User Interface faults occur in Interaction modules
(supports C6.2, but not C5.2).

Our findings are summarized in Table 6. The basic question was: “Does the mod-
ule type drive the fault type?” Six conjectured fault links were supported, at least
weakly. Thus we found evidence for answering “yes.” A fault link that appeared uni-
versally, though not conjectured, was Control/Logic faults being the most prominent
fault type for all module types. One could view this as an additional six fault links
(data modules have Control/Logic (C/L) faults, computational-centric modules have
C/L faults, Interaction modules have C/L faults, View, Error Handling, and Environ-
ment Setup/Configuration modules have C/L faults). This finding would lead one to

answer the overarching question “no.” Our results are still inconclusive, but appear to
hold promise.

6.2 Mozilla Case Study (Faults and Modules)

Next, we examined problem reports for the open source software product Mozilla
(web browser) using the bug tracking system Bugzilla [26]. Mozilla is a very large
software system and provided a plethora of problem reports for sampling. We exam-
ined 70 bug reports, selected randomly using Bugzilla. From these, 75 faults were
identified that were code-related. Note that the “fault per problem report” ratio was
only 1.07 as compared to 1.5 for Apache. These faults were categorized using our
fault taxonomy. Table 7 presents the high level distribution of the faults found in
Mozilla. 53.4% of faults reported for the open source software Mozilla fall under the
category of Control/Logic faults, reinforcing findings from the first case study.
 We were not able to find the modules that tied to specific bug reports or vice versa,
as we were able to do in Apache. So we next randomly selected 30 modules in the
Mozilla directories and categorized them. As can be seen from Table 8, the majority
of the modules fell under the category of Computational-centric (26.7%), with Con-
troller just behind at 20%. This is consistent with our findings for the Apache study.

 6.3 Comparison of Case Study

Both case studies exhibit strong similarities with regard to fault types and module
types. For both systems, Control/Logic faults occurred most frequently: 50% for
Apache and 53.4% for Mozilla. The next most frequent fault type for Apache was a
tie between Interface and Framework at 14%. For Mozilla, it was Data at 17.3%. The
fourth most frequent fault type for Apache was Data at 10%, and it was a three-way
tie for Mozilla between Computational, Interface, and User Interface, all at 8%. A
striking result was the dominance of the Control/Logic fault type, in both systems.

 The most frequent module type for Mozilla was Computational-centric at 26.7%.
Computational-centric was tied for most frequent with Controller at 26.7% for
Apache. The next most frequent module type for Apache was Data-centric at 20%.
For Mozilla, it was Controller at 20%. The third most frequent module type for
Apache was a tie between View and Interaction, both at 10%. For Mozilla, Data-
centric and View tied for 16.7%. Computational-centric and Controller occurred most
frequently in both systems. A comparison of fault type percentages is shown in Fig. 2.
In each category, the percent of faults in the two applications are similar (note that
Apache does not report user interface bugs, since it is not interactive). For the com-
mon fault types, correlation analysis found a correlation value of 0.94 between the
faults percentages. This is not surprising, as these applications share common charac-
teristics: open source, web related. The result also confirms that our fault taxonomy is
reasonable and applicable.

Table 4. “have” Relationship from Module to Fault Types for the Apache Study

Fault type Module
type

modules Data C/L Comput. Interface Frame-

work
GUI

Total
Faults

Total
Faults/
module

%

Data-centric 4 18%

1.5

48%

4

6%

0.5

9%

0.75

18%

1.5

0%

0

33 8.25 18%

Controller 6 6%

0.5

59.6
%

4.67

10.6%

0.83

8.5%

0.67

10.6%

0.83

4%

0.33

47 7.83 17%

Computat.-
centric

8 4.5%

0.25

48%

2.63

16%

0.875

16%

0.875

13.6%

0.75

2%

0.12

44 5.5 12%

Interaction 2

0%

0

41%

3.5

17.6%

 1.5

17.6%

1.5

11.7%

1

11.7%

1

17 8.5 18%

View 3 10%

1

50%

5

13%

1.33

3%

0.33

16.7%

1.67

6.7%

0.67

30 10 21.8%

Error Han-
dling

1 0%

0

75%

3

25%

1

0%

0

0%

0

0%

0

4 4 8.7%

Environ.
Setup

1 0%

0

50%

1

50%

1

0%

0

0%

0

0%

0

2 2 4.5%

Total 25 3.25 23.8 7.035 4.125 5.75 2.12 [46.08,
46.08]

 100%

Table 5. The “occurs-in” Relationship from Fault to Module Types for the Apache Study

Module Type Fault
Type Data-

centric
Controller Computat.-

centric
Interaction View Error Handling Environmental

setup

Total

%

#modules 4 6 8 2 3 1 1 25

Data 46%

1.5

15%

0.5

7.7%

0.25

0%

0

30.7%

1

0%

0

0%

0

3.25 10%

C/L 16.8% 19.6%

4

4.67

11%

2.63

14.7%

3.5

21%

5

12.6%

3

4%

1

23.8 50%

Computational 7%

0.5

11.7%

0.83

12%

0.875

36%

1.5

19%

1.33

14%

1

14%

1

7.035 9%

Interface 18%

0.75

16%

0.67

21%

0.875

36%

1.5

8%

0.33

0%

0

0%

0

4.125 14%

Framework 26%

1.5

14%

0.83

13%

0.75

17%

1

29%

1.67

0%

0

0%

0

5.75 14%

GUI 0%

0

15.5%

0.33

5.6%

0.12

47%

1

31.6%

0.67

0%

0

0%

0

2.12 3%

Total faults 33 47 44 17 30 4 2 177 100%

Total
Faults/module

8.25 7.83 5.5 8.5 10 4 2 [46.0
8, 46.08]

Table 6. Conjecture Results

Conjecture Conjectured Fault Link Supported?
C1.1 Data modules have

Data faults
No

C1.2 Data faults occur in
Data modules

Yes

C2.1 Controller modules
have C/L faults

Yes

C2.2 C/L faults occur in
Controller modules

Weak

C3.1 Comp. modules have
computational faults

No

C3.2 Comput. faults occur in
Comput. modules

No

C4.1 Interaction modules
have Interface faults

No

C4.2 Interface faults occur
in Interaction modules

Yes

C5.1 View modules have
User Interface faults

No

C5.2 User Interface faults
occur in View modules

No

C6.1 Interaction modules
have User Interface faults

No

C6.2 User Interface faults
occur in Interaction
modules

Yes

C7.1 View modules have
Framework faults

No

C7.2 Framework faults oc-
cur in View modules

Weak

C8.1 Error handling modules
have Data faults

No

C8.2 Data faults occur in Er-
ror Handling modules

No

C9.1 Environ. Setup/Config.
Modules have framework
faults

No

C9.2 Framework faults occur in
Environ. Modules

No

We conclude with some remarks about threats to validity of our case studies. As

with any case study, there are unavoidable threats to validity. First, we cannot gener-
alize the results to other application domains, systems, or languages. What we can
say, however, is that we found support for our taxonomy in both the Apache and
Mozilla systems. Second, a case study is limited in the amount of control over what
data can be collected. We were limited by the available bug reports. While the random
selection of defect reports for both systems does not bias the results, the quality and
information content of the bug reports possibly could. Given the nature of case stud-

ies, we had no control over how bugs were reported. The analysis depends on the
quality of the bug reports. They have to contain enough information for fault classifi-
cation. While we have not performed a large scale inter-rater reliability analysis of the
module classification, we used a team to classify them, in line with guidelines in [1].
The analysis is based on a theory about a fault link taxonomy that is based on existing
knowledge and empirical studies as explained in section 4. It is thus possible that new
fault links may be found, and, of course, some applications may not have certain
faults. We consider our work a step towards building a more comprehensive theory.

7. Conclusions and Future Work

We have developed two taxonomies, one for modules and one for code faults. We
introduced the notion of a fault link. We presented two methods for module classifi-
cation along with their advantages and disadvantages. We classified modules and
code faults of two open source, web-based software products using our approach.

 We found evidence in favor of the existence of four conjectured fault links (and
an additional two with weak evidence) and six fault links that were not conjectured
(all related to Control/Logic faults). We have already capitalized upon the discovery
of the Control/Logic fault links (for every module type) by augmenting our FTR
checklists.

Table 7. Mozilla Fault Types

Fault Number Percentage
Data 13 17.3%
Computational 6 8%
Control/Logic 40 53.4%
Interface 6 8%
User interface 6 8%
Framework 4 5.3%
Total 75 100%

Table 8. Mozilla Module Types

Module Types Number Percentage
Data-centric 5 16.7%
Computational-
centric

8 26.7%

Controller 6 20%
View 5 16.7%
Interaction 1 3.3%
Error Handling 1 3.3%
Environmental
setup

4 13.3%

Total 30 100%

Percent of Faults in Each Cateogory of Two Applications

0

10

20

30

40

50

60

Data Computational Control/Logic Interface Framework

Percent of Faults(Mozila)

Percent of Faults(Apache)

Fig. 2. Comparison of Fault Type Percentages

We continue work on the fault taxonomy and the module taxonomy and hope that
others will assist us in validating and improving them. We plan to examine the tax-
onomies with respect to the object-oriented methodology. We plan to examine lan-
guages such as Lisp that provide control abstraction. We also are not convinced that
the fault taxonomy is orthogonal. Specifically, we plan to evaluate mixed-purpose
modules in the context of the fault link taxonomy. Our taxonomies might require tai-
loring to a specific domain or application, such as real-time or embedded systems, as
discussed in [15]. We also plan to expand the fault link concept to fault chains.
Faults rarely occur in isolation. They may be related longitudinally within a release
(e.g., a design fault leads to a code fault) or across releases (e.g., incomplete fault re-
pair). We refer to these relationships as fault chains. We have identified several types
of fault chains, and will continue our work in this area. The ultimate goal of this work
is to identify evaluation techniques that can take advantage of our knowledge of fault
chains to prevent or detect faults as early as possible. That will assist us in develop-
ing reliable, though complex, software systems.

8. Acknowledgements

We thank Jeff Offutt for never tiring of discussions about testing and faults. Thanks to Martin
Feather and Alan Nikora of JPL who looked at early versions of these taxonomies. Thanks to
Kirk Kandt, also of JPL, for excellent comments on an earlier version of this paper.

References

1. Allen, M. and Yeh, W. Introduction to Measurement Theory. Brooks/Cole Publishing,
1979.

2. Apache modules and problem reports, Apache HTTP server version 1.3.24,
http://httpd.apache.org/docs/mod/index-bytype.html.

3. Basili, V.R. and Barry T. Perricone. ‘‘Software Errors and Complexity: An Empirical Inves-
tigation.’’ Communications of the ACM, 27, 1 (January 1984), 42-51.

4. Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, Inc, New York NY, 2nd
Edition, ISBN 0-442-20672-0, 1990.

5. Bieman, J., Andrews, A. and H. Yang. Analysis of change-proneness in software using pat-
terns: a case study, submitted Seventh European Conference on Software Maintenance and
Reengineering (Benevento, Italy, March 2003).

6. Bieman,J., Jain, D., and H. Yang. Design patterns, design structure, and program changes:
an industrial case study. Proceedings of the International Conference on Software Mainte-
nance (Florence, Italy, 6 – 10 November 2001).

7. Centre of Software Maintenance, University of Durham, England.
http://www.dur.ac.uk/computer.science/research/csm/rip/introduction.html

8. Cooper, A. About face: the essentials of user interface design. IDG Books Worldwide, Fos-
ter City, CA, 1995.

9. Duncan, IMM., and Robson, DJ.: An exploratory study of common coding faults in C pro-
grams. A technical report, Centre for Software Maintenance, University of Durham, Eng-
land, May 1991.

10. Endres, A. ‘‘An Analysis of Errors and Their Causes in System Programs’’. Proceedings of
the 1975 International Conference on Reliable Software, in SIGPLAN Notices, vol. 10, No.
6, pp. 327-336, June, 1975.

11. Fenton, N.E., and Ohlsson, N. Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Transactions on Software Engineering, vol. 26, No. 8, August 2000,
pp. 797-814.

12. Freimut, B. "Developing and Using Defect Classification Schemes", Fraunhofer IESE IESE-
Report No. 072.01/E, Version 1.0, September, 2001.

13. Gall, H., Hajek, K., and M. Jazayeri. Detection of logical coupling based on product release
history. Procs. International Conference on Software Maintenance (Bethesda, MD, No-
vember, 1998). IEEE Computer Society Press, 190-198.

14. Gram, C. A software engineering view of user interface design. Engineering for Human-
Computer Interaction. Proceedings of the IFIP TC2/WG2.7 working conference on engi-
neering for human-computer interaction (Yellowstone Park, USA, August 1995). Chapman
& Hall, London, 1996, 293-304.

15. Hayes, J.H. “Building a Requirement Fault Taxonomy: Experiences from a NASA Verifica-
tion and Validation Research Project,” IEEE International Symposium on Software
Reliability Engineering (ISSRE) 2003 (Denver, CO, November 2003).

16. Hayes, J.H., Dekhtyar, A., and J. Osbourne, “Improving Requirements Tracing via Informa-
tion Retrieval,” in Proceedings of the International Conference on Requirements Engineer-
ing (Monterey, California, September 2003).

17. Hayes, J.H., Mohamed, N., and T. Gao, “The Observe-Mine-Adopt Model: An Agile Way
to Enhance Software Maintainability”, Journal of Software Maintenance and Evolution: Re-
search and Practice, 15, 5 (October 2003), 297 – 323.

18. IBM Research, Center for Software Engineering, "Details of ODC v5.11",
http://www.research.ibm.com/softeng/ODC/DETODC.HTM.

19. IEEE Standard Classification for Software Anomalies, December 12, 1995. IEEE Std
1044.1-1995.

20. Lanubile, F., Shull, F., and V.R. Basili, “Experimenting with Error Abstraction in Require-
ments Documents”, Proceedings of the 5th Inernational. Symposium on Software Metrics
(Bethesda, Maryland, 1998).

21. Macaulay, L. Human -computer interaction for software designers. International Thomson
Computer Press, London, 1995.

22. Marick, B. A survey of software fault surveys. A technical report UIUCDCS-R-90-1651,
University of Illinois, 1990; pp 2-23.

23. Mayhew, DJ. Principles and guidelines in software user interface design. Englewood Cliffs,
N.J. Prentice Hall, 1992.

24. Mayrhauser, A., Ohlsson, MC., and Wohlin, C.: Deriving fault architecture from defect his-
tory. J. Softw. Maint. Res. Pract., 12, (2000), 287-304.

25. Miller, LA., Groundwater, EH., Hayes, J., and Mirsky, SM.: Guidelines for the verification
and validation of expert system software and conventional software. SAIC 1995; 2: pp 100.

26. Mozilla organization website, http://mozilla.org/.
27. Munch, J, Rombach, H.D., Rus, I. Creating an advanced software engineering laboratory by

combining empirical studies with process simulation. Proceedings of the International
Workshop on Software Process Simulation and Modeling (ProSim 2003) (Portland, Oregon,
USA, May 3-4, 2003).

28. Nikora, A., and Munson, J. Developing Fault Predictors for Evolving Software Systems.
Proceedings of the Ninth International Software Metrics Symposium (METRICS 2003)
(Sydney, Australia, September 2003).

29. Offutt, J. Investigations of the Software Testing Coupling Effect. ACM Transactions on
Software Engineering Methodology, 1, 1 (January 1992), 3-18.

30. Offutt, J., and J. H. Hayes. A Semantic Model of Program Faults. International Symposium
on Software Testing and Analysis (ISSTA 96) (San Diego, CA, January 1996).

31. Ohlsson, M., Andrews, A., and C. Wohlin. Modelling fault-proneness statistically over a
sequence of releases: a case study. Journal of Software Maintenance and Evolution: Re-
search and Practice, Volume 13, June 2001, pp. 167--199.

32. Ostrand, T. and Weyuker, W. The Distribution of Faults in a Large Industrial Software Sys-
tem. In Proceedings of International Symposium on Software Testing and Analysis (ISSTA)
2002 and ACM SIGSOFT, vol. 27, No. 4, July 2002, pp. 55-64.

33. Perry, D.E., and C.S. Stieg, "Software Faults in Evolving a Large, Real-Time System: a
Case Study", AT&T Bell Laboratories, Proceedings of the 4th European Software Engineer-
ing Conference, Garmisch, Germany, September 1993.

34. Rombach, H.D.., Basili, V., Selby, R. Experimental Software Engineering Issues: Critical
Assessment and Future Directions. Lecture Notes in Computer Science. Springer Verlag,
1993.

35. Shneiderman, B. Designing the user interface: strategies for effective human-computer in-
teraction. Addison-Wesley, Reading, MA, 1992.

36. Sullivan, M., and Chillarege, R. Software defects and their impact on system availability-A
study of field failures in operating systems. Digest 21st International Symposium on Fault-
Tolerant Computing (Montreal, Canada, June 1991).

37. Warren-Smith, RF.: Starlink project, Rutherford Appleton Laboratory, http://star-
www.rl.ac.uk/star/docs/sgp42.htx/sgp42.html#stardoctoppage.

38. Wohlin, C. and Andrews, A. Analysing Primary and Lower Order Project Success Drivers.
Proceedings of the Software Engineering and Knowledge Engineering (SEKE) 2002, Is-
clina, Italy, July 2002, CS Press.

39. Yu, WD., Barshefsky, A., and Huang, ST. An empirical study of software faults preventable
at a personal level in a very large software development environment. Bell Labs Technical
Journal 1997; 2: 221-232

