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Abstract.  Fault links represent relationships between the types of mistakes 
made and the type of module being developed or modified.  The existence of 
such fault links can be used to guide code reviews, walkthroughs, allocation of 
verification and validation resources, testing of new code development, as well 
as code maintenance.  We present an approach for categorizing code faults and 
code modules, and a means for examining relationships between the two. We 
successfully applied our approach to two case studies.    

1. Introduction 

As we seek to develop ever more complex systems, some with grave consequences 
of failure, we must strive to improve our technologies for developing and ensuring ro-
bust, reliable software.  Fault-based analysis and fault-based testing are related tech-
nologies that seek to address this challenge. 

Fault-based testing generates test data to demonstrate the absence of a set of pre-
specified faults.  Similarly, fault-based analysis identifies static techniques (such as 
traceability analysis that should be performed to ensure that a set of pre-specified 
faults do not exist.  As part of fault-based analysis, a project manager can use histori-
cal data to determine what fault types are most likely to be introduced or can perform 
a risk analysis to determine what fault types would be most devastating if overlooked.   
Note that fault-based analysis is an early lifecycle approach that can be applied prior 
to implementation [15].  For example, developers of version 10 of a software system 
could use information on the number and type of faults from versions 8 and 9 to guide 
their code walkthroughs. 

Based on our work on a semantic model of faults [30], Offutt’s work on testing 
coupling [29], our work on traceability [16], and on requirement faults [15], we de-
veloped a conjecture about faults:  The types of mistakes made by programmers 
largely depend on the type of module that is being developed or modified.  We refer 
to this as a “fault link”. A fault link is a relationship between the type of module being 
developed or changed and the fault type.  For example, we posit that if a developer is 



writing a Computational-centric module, it is more likely that a computational fault 
will be introduced.  Though this may seem intuitive or “not surprising,” note that cur-
rently there are no empirical results to confirm it.   

If we can demonstrate that fault links exist and if we can codify them, we can im-
prove the development, testing, and maintenance of complex computer systems in 
several ways.  We can offer preventative items for walkthrough checklists for newly 
developed code.  We can recommend that exit criteria be added to walkthrough 
checklists for maintained code.  For example, if a computational-centric module is be-
ing examined, do not exit the walkthrough until an extra check has been made to en-
sure that no computational errors exist.  We can offer a list of fault-based tests that 
should be conducted based on the fault links.  We can guide the allocation of verifica-
tion and validation resources to best reduce risk. 

The remainder of the paper is organized as follows.  Section 2 presents related 
work.  Sections 3 and 4 will present the module taxonomy and fault taxonomy, re-
spectively.  Section 5 discusses the research conjectures.  Section 6 discusses two 
open source software case studies. We found evidence in favor of four of the conjec-
tured fault links (as well as weak evidence for an additional two), such as Data-centric 
modules having many Data faults.  We also found evidence of six unexpected fault 
links. Conclusions and future work are presented in Section 7. 

2. Related Work 

Faults have traditionally been characterized by syntactic categories [4, 22, 19], in-
cluding where in the program the faults appear [17], which software development 
phase generated the faults [25, 20], what testing phase found the faults [30], and what 
type of statement or language feature the faults occur on [12].  As part of a NASA-
funded project, Hayes has developed a taxonomy of requirements faults that is based 
on syntactic problems in the requirements [15]. 

A few attempts have been made to classify faults based on the mental mistakes that 
programmers make.  IBM's ODC is one such scheme [18].  It assigns mental mistakes 
as part of a larger classification scheme. 

Researchers have also examined change patterns of modules.  Gall et al [13] used 
information about changes covering a sizeable number of releases to uncover logical 
dependencies and change patterns among modules.  This was used to identify logical 
coupling among modules to uncover structural shortcomings.  The work does not dis-
criminate between corrective maintenance or enhancement related changes, thus did 
not attempt to classify faults.  Similarly, Bieman et al [5] identified change-proneness 
of C++ code based on intentional use of patterns (or lack thereof).  While this analysis 
found that some patterns are more change-prone in different categories of mainte-
nance (corrective versus enhancement related changes), these faults were not classi-
fied. Bieman et al [6] found a strong relationship between class size and number of 
changes; larger classes changed more frequently.  Also, classes that participate in de-
sign patterns and/or are reused through inheritance are more change-prone.  They did 
not identify the type of change or fault in these studies. 

Ohlsson et al [31] modeled fault proneness statistically over a series of releases.  
This included a variety of change measures at various levels of analysis, such as the 



number of defect fix reports attributed to a module, an interaction measure of defect 
repairs that involved more than one module, and impact of change measures (how 
many files affected, how many changes for each, various size of change measures by 
type of file).  The analysis of the case study data showed that fault-prone modules 
showed higher system impact across four releases, where system impact is defined as 
total number of changes to .c and .h files in a release per module.  This motivated 
construction of a fault architecture [24], which determines fault coupling and cohesion 
measures at the module and subsystem levels, within a release and across releases.  
Nikora and Munson presented a predictor for fault prone modules.  They used a set of 
metrics and a reduced set of domains to build their predictor.  They did not classify 
faults though and did not classify modules beyond “fault prone” or not “fault prone 
[28].” 

Ostrand et al [32], with the aim of aiding organizations to determine the optimal 
use of their testing resources, have identified various file characteristics. These char-
acteristics can serve as predictors of fault-proneness. By examining a series of 13 re-
leases of a large evolving industrial software system, they observed that: (i) faults are 
concentrated in small numbers of files and in small percentages of code mass, (ii) 
shortchanging the testing efforts for previously high-fault files is a mistake, and (iii) 
“all late-pre-release faults always appeared in under 5% of the files”[32].  

However, no effort was made to classify modules and faults.  Fenton et al [11] 
have quantitatively analyzed the faults and failures of a major commercial system. 
Some of their observations were identical to those made by Ostrand et al [32]. Fenton 
et al provided strong evidence to suggest that software systems that are developed un-
der the same environment result in similar fault densities, when tested in similar test-
ing phases. 

3. Module Taxonomy 

Any simple or complex program can be viewed as a combination of various mod-
ules. A module is just a part of a program, which aids in performing some action or in 
making decisions to perform actions. A module can be a single statement or a single 
function or procedure that contributes to the purpose of the program. 
We identified two methods for categorizing modules by type: 
• Method one: Program modules are classified based on their main purpose. We con-

sidered allowing modules to have a second category based on their secondary pur-
pose, but decided against it for the present.  This represents a possible area for fu-
ture work.  This method is easy to comprehend and apply and is also faster than 
method two. However, it does not easily lend itself to automation. 

• Method two: Modules are classified based on the percentage of lines of code that 
perform specific functions, such as computation, data manipulations, etc. We count 
the number of lines that belong to a particular category in a module, select the 
category with the highest Lines Of Code, and assign the module to that category. 
For example, “IF (salary > 1000)” is a controller statement. This method provides 
information about the statements used in a program and is easily automated with 
some standard guidelines. Unfortunately, there are drawbacks including: (i) diffi-



cult to perform categorization, (ii) time consuming, (iii) tedious when performed 
manually, and (iv) not easy to understand. 
This paper classifies modules using method one. We followed a subset of the steps 

in [15] to develop module and code fault taxonomies: select a fault taxonomy as the 
basis for the work, examine sample code faults, adopt or build a method for extending 
the fault taxonomy, and implement the method for tailoring a taxonomy. 

Our original module and fault taxonomy was influenced by the prior work dis-
cussed in Sections 2 and 4.  We also performed a pilot study on an industrial partner’s 
project as well as on student programming assignments to further construct the tax-
onomies.  We applied the two taxonomies to categorize the faults and modules in two 
open source web-based projects, and detected new categories for both the fault and 
module taxonomies. Two new module categories were added including error handling 
and environmental setup. Fig. 1 shows the resulting generic module taxonomy.  It is 
applicable to most programs and domains, but could be tailored to a specific domain 
or application using the process in [15]. Each module category is described below. 
• Data-centric: Modules that deal with data definition and handling fall under this 

category. Access to database is also classified under data centric module. 
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Fig. 1. Taxonomy of program modules 

• Error Handling: The main purpose of modules in this category is to handle excep-
tions or errors that are likely to occur. 

• Computational-centric: Modules whose main purpose is to calculate or compute re-
sults belong in this category. At the statement level, any statement that changes any 
variable or state of the program falls under this category. 

• Controller: Any module whose main purpose is to control the sequence of program 
execution falls under this category.  

• Environmental setup/configuration:  The main purpose of the modules is to set up 
an appropriate environment for the software to function efficiently. 

• View: Any module that designs or handles graphical user-interface controls or ma-
nipulates the attributes of the controls is part of this category. Also, the statements 
used for displaying information belong to this category. 



• Interaction: Any module or statement that performs a function call or passes pa-
rameters to other modules or tries to access the data structures outside the module 
falls under this category. 

4. Fault Taxonomy 

Our fault taxonomy does not include errors that can be caught by the compiler at 
compile time.  We attempted to make the module and fault taxonomies generic 
enough to be language independent and method independent. Fig. 3 presents a graphi-
cal depiction of the taxonomy. The branches of the tree represent fault categories that 
are language independent, but the leaves may be language dependent. For example, 
the control/logic fault type applies to any language but register reuse will only be ap-
plicable for languages such as C or assembly languages. 

The fault taxonomy also takes practical realities into account.  Specifically, the 
taxonomy only relies on bug reports or problem reports and does not assume that (up 
to date) specifications or design are available for analysis.   The following fault types 
are significant and have been included because they have been shown to be important 
fault categories in the past [3, 9, 10, 14, 21, 23, 35, 36]. 

Data: Incorrect data definition. Data definition involves assigning a name, type, 
and size for a data item.  Since some data types are compatible with others (e.g., float 
can take an integer value), misuse can result in errors that are not detected at compile 
time. Improper data initialization is caused by the failure to initialize or reinitialize a 
data structure properly upon module entry or exit [3]. Examples of this include control 
blocks, registers, or switches not cleared or reset before transition [10].  Improper 
data representation.  By representation we mean the ways in which the data is stored, 
i.e., data structure. The information or data can be stored in different ways, e.g., struc-
tured as a database or unstructured in flat files. Program statements that don’t properly 
account for data representation may compile, but could result in runtime problems. 

Computational: Errors that lead to a wrong value being calculated for a variable or 
register or switch belong in this class. 

Control/logic: “Errors that cause an incorrect path in a module to be taken are con-
sidered control errors [3].”  We group logic errors here also. Statement logic [36] 
faults cause the executable statements to be executed in the wrong order or not at all.  
For example, a program may fail to perform validation before returning the data. Se-
quence errors [36] exist when the order in which messages and control information 
are sent is erroneous.  For example, the server program in a client-server environment 
may send an acknowledgment without receiving any request from the client. Un-
reachable code [25] occurs due to errors in control or logic statements.  Performance 
faults may affect the overall performance of the software. 

Interface: Here we include “errors associated with structures existing outside the 
module’s local environment but which the module used” [3] and errors in the com-
munications between modules. For example, incorrect subroutine or module call, in-
sufficient data transfer [25], “incorrect declaration of COMMON segment” [3] all fall 
under this category. 

User interface: Faults that interfere with the efficiency, performance and appear-
ance of the user interface of the software. Large response time [23, 35] causes the in-



terface controls to respond with delay.  Lack of naturalness [21] is caused by a num-
ber of factors such as illogical grouping of information, use of uppercase, use of 
arbitrary abbreviations, etc. A natural interface does not cause the user to significantly 
alter his or her approach to the task in order to interact with the system.  Inconsistency 
[35, 21, 14] refers to the lack of a pattern of familiarity designed throughout a prod-
uct. Redundancy [21] in a user interface requires the user to enter unnecessary infor-
mation for an operation. For example, a user should never have to supply leading ze-
ros (“00090.45” instead of “90.45”).  Complexity [35] leads to interfaces that are not 
simple and easy to work with. The interface must be simple. The complexity of a user 
interface is based on the following factors:  ease of use, ease of learning and under-
standing, and ease of navigation. Lack of support [21] refers to the limited amount of 
assistance the interface provides to the user.  Not flexible [21, 14] refers to a user in-
terface that narrows the types of users that can work on the software. The user inter-
face must be able to tolerate different levels of user familiarity and performance. Un-
predictable flow is when the flow of control in the user-interface gets beyond the 
scope of the user. An example of unpredictable flow is when the user tries to perform 
a spell check on her document and the software also performs a thesaurus function, 
despite not being invoked by the user. Visual stimulation [35, 21] refers to faults deal-
ing with the improper use of color, fonts, graphics, control layout, etc.  The determi-
nation that a fault exists is based on a bug report. Thus, we do not need to define met-
rics to measure attributes like “ease of use” or “ease of navigation”. 

Framework [9]: There are certain languages that make use of the concept of pack-
ages or reusable code. In such a language, a particular program imports or includes 
some of the packages to avoid unnecessary work. The set of statements used for this 
purpose is classified as “framework.” Missing framework elements are caused when, 
upon integration, some modules might not have included required setup files.  When 
all the modules are compiled together or individually, the compiler does not show any 
errors. However, at run time when the module calls or tries to communicate with an-
other module, an error occurs. As mentioned before, only the leaves of the classifica-
tion tree may be language dependent. Thus the fact that a framework element is miss-
ing is language independent, while the specifics of element mismatch will be 
language dependent. 

5. Research Conjectures 

After developing the fault taxonomy and module taxonomy, we noticed a strong 
correspondence between the categories, resulting in the following research question:  
“Does the module type drive the fault type one encounters?”  We developed several 
research conjectures about fault links based on this.  They are justified by prior work 
and the pilot studies mentioned earlier. The following 10 fault links were posited: 

C1.1 – Data-centric modules will have a higher percentage of Data faults. 
C1.2 - Data faults will occur more frequently in Data-centric modules. 
C2.1 – Controller modules will have a higher percentage of Control/Logic faults. 
C2.2 - Control/Logic faults will occur more frequently in Controller modules. 
C3.1 – Computational-centric modules show a high percentage of Computation faults. 
C3.2 – Computation faults occur more frequently in Computational-centric modules. 



C4.1 -  Interaction modules will have a higher percentage of Interface faults. 
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C4.2 – Interface faults will occur more frequently in Interaction modules. 
C5.1 – View modules will have a higher percentage of User Interface faults. 
C5.2 – User Interface faults will occur more frequently in View modules. 
 
We also posited secondary research conjectures.  These are not as intuitive as the 
above, and some counter the above conjectures. 
 
C6.1 – Interaction modules will have a higher percentage of User Interface faults. 
C6.2 – User Interface faults will occur more frequently in Interaction modules. 
C7.1 – View modules will have a higher percentage of Framework faults. 
C7.2 – Framework faults will occur more frequently in View modules. 
C8.1 – Error Handling modules will have a higher percentage of Data faults. 
C8.2 – Data faults will occur more frequently in Error Handling modules. 



C9.1 – Environmental Setup/Configuration modules will have a higher percentage of 
framework faults. 
C9.2 – Framework fault occur more frequently in Environmental Setup/Configuration 
modules. 

6. Case Studies 

We applied the taxonomy to two open source software systems, Apache and 
Mozilla, to evaluate whether this taxonomy can be applied to common types of soft-
ware and to see whether bug reports typical for such applications are able to reveal 
enough information. Both systems are largely written in C/C++.  The Apache sever is 
a powerful, flexible, HTTP/1.1-compliant web server [2].   Mozilla is an open-source 
web browser, designed for standards compliance, performance, and portability [26].  
Bugzilla is a "Bug-Tracking Systems" used in the Mozilla project. It allows individual 
or groups of developers to effectively keep track of outstanding bugs in their product. 

6.1 Apache Case Study (Modules and Faults) 

We examined all 30 modules that existed at the time of the study (100%). The size 
of the modules ranged from 250 LOC to 4500 LOC. We randomly selected two re-
leases for which to examine bug reports, releases for the years 1999 and 2000. For 
those years, there were 2300 bug reports.  Of these, we examined 300 (13%).  Of 
these 300, only 177 bug reports provided enough information for fault categorization. 

 We classified all modules of the Apache 1.3.24 server [2] based on module pur-
pose (method one).  Table 1 presents the distribution of the Apache module classifica-
tion.  In this table, the percentage column denotes the percent number of modules of a 
particular type.   For example, 10% of the 30 (3) modules were categorized as View 
modules.  The largest module categories were Controller and Computational-centric, 
at 26.7% each. 
   Next, we applied method two to classify a subset of the Apache modules.  Though 
many modules were categorized as belonging to the same categories when using 
method one and method two, some modules were not.  For example, the following 
module was categorized as Computational-centric using method one, but was typed as 
Controller using method two. 
Module:  mod_unique_id 
Main purpose: generate unique request identifier for every request 
Method one: classified as computational module 
Method two: As you can see from Table 2, the number of lines of code perform-
ing control/logic (Controller) functions is greater than the number of lines performing 
other functions.  Therefore it is categorized as Controller. 

 

The advantage of method two is that categorization can be automated.  However, 
the results of method two are not always intuitive.  Method one is more subjective 
than method two.  While subjective measurement can and should be systematic, it 
lacks the rigor of objectively measurable and quantitative scales [38].  To account for 
this, one normally develops reliability indicators for such scales (for example, inter-
rater reliability) [1].  To that end, we performed an inter-rater reliability survey.  We 



had five software engineers apply method one to this same module.  The engineers 
were given the code for the module (including in-line documentation) and a list of and 
definitions for the module types in our taxonomy.  All five engineers labeled the 
module as “computational.”  This convinced us that our subjective method exhibits 
reliability, so we continued using the results from method one.  

Because of our interest in the relationship between module type and fault type, we 
performed a second step for the Apache case study.  We went back to the 30 modules 
we had categorized and attempted to locate bug reports or problem reports for each.  
The problem reports provide information on identified faults.  These have not neces-
sarily been fixed.  Several hundred bug reports were listed for each module. We ex-
amined a subset of these bug reports for a subset of the 30 modules (cf. Table 3). 

Some general observations can be made.  Many bug reports did not document 
bugs.  Some bug reports represented enhancement requests.  Bug reports had been 
generated by users who were “just trying out the bug tracking system.”  Many bug re-
ports did not relate to code faults, but to poor documentation.  Some bug reports did 
not relate to the version of Apache that we were examining or did not state the version 
number.  Bug reports were duplicated or not deemed errors by the Apache developers.  
Finally, many bug reports documented more than one code fault and should have been 
separated into multiple bug reports.  On average there were 1.5 faults per bug report.  

We adjusted our approach to accommodate these findings.  We first weeded out the 
“non-bug reports.”  Next, we disregarded bug reports not related to code.  We then 
eliminated bug reports that did not relate to version 1.3.24 of Apache or were not ac-
tual errors per the Apache engineers.  We then examined each fault in isolation, even 
if several had been grouped in one bug report. As we did not examine the same num-
ber of modules of each type (e.g., we examined eight Computational-centric, but only 
two Interaction modules), we looked at the faults as a function of the number of faults 
per module.  That is, we examined 33 faults for four Data-centric modules.  The 33 
faults were categorized according to the fault taxonomy.  The resulting values were 
scaled to reflect 8.25 faults per module.   

Table 3 shows the module and fault classification for the Apache study. Module 
types are shown in the rows.  The columns indicate:  the total number of modules of 
different types that were examined; the number of faults, by fault type, for each mod-
ule type; the total number of faults for the module type; and the percentage of faults 
found in a particular module type.  For example, the Controller module row indicates 
that six such modules were examined, that 28 Control/Logic faults were found in the 
Controller modules, that a total of 47 faults were found in controller modules account-
ing for 26.6% of all faults classified.  The highest value in each row has been bolded, 
and the highest value in each column has been italicized.  In the above example, the 
value “28” has been bolded and italicized as it is the highest value for both the row 
and column.  The bottom row indicates the percentage of each fault type classified.  
For example, 91 Control/Logic faults were found and they accounted for 51.5% of all 
faults.    

 It is clear that control/logic faults dominate this case study, regardless of module 
type.  Though we had not conjectured this, it is not such a surprising result.  In our 
own experience as programmers, teachers, and lab assistants for junior level pro-
gramming courses, we have also noticed that these errors dominate. 

 



 
               Table 1. Classification of Apache Modules by Type 

Module Number Percentage 
Data-centric 6 20 % 
Controller 8 26.7% 
Computational-

centric 
8 26.7% 

View 3 10% 
Interaction 3 10% 
Error Handling 1 3.3% 
Environmental 

Setup/Configuration 
1 3.3% 

Total 30 100% 
 

Table 2. Mod_Unique_ID Categorization-Method Two 

Module LOC (Lines Of Code) 
Data-centric 62 
Controller 68 
Computational-centric 12 
View 0 
Interaction 11 
Error Handling 0 
Environmental 

Setup/Configuration 
0 

Total 153 
 
Table 4 illustrates the “have” relationship that exists between the module and fault 

types.  For example, a Data-centric module has more Control/Logic faults than any 
other type of fault, and these account for 48% of the faults typically found in a Data-
centric module. The module types are listed in the rows of the table.  For ease of illus-
tration, two columns (the total number of modules of different types that were exam-
ined and the total number of faults grouped by the module in which they occur) have 
been repeated here from Table 3. We also show the total faults per module, followed 
by the percentage of faults found in a particular module type. Note that changes have 
been made to the values in the module-fault cells. Each cell has two values, a percent-
age value and a fault-per-module value. The percentage value represents the “have” 
relationship. The fault-per-module value indicates that out of N total faults in a mod-
ule of a particular type, X of them belongs to a particular fault type. For example, let 
us examine the row for the Data-centric module.  The number of data-centric modules 
examined was four, the total number of faults from the four modules was 33, and 
therefore the total faults per module (33/4) is 8.25 per module. This total fault-per-
module value is distributed across the fault types based on their count from Table 1. 
As far as the fault distribution across different fault types is concerned, the data-
centric module had about 18% data faults, 48% C/L faults, 6% computational faults, 



9% interface faults, 18% framework faults, and zero percent GUI faults. As before, 
the highest value in each row and column is bolded and italicized respectively. 

Table 5 illustrates the “occurs-in” relationship that exists between the fault and 
module types.  For example, Data faults tend to occur in Data-centric modules most 
frequently (46%).  The table is very similar to Table 4 except that it illustrates the 
“occurs-in” relationship from the fault type to the module type. The cells have the 
same two types of values as before, the percentage value and fault-per-module value. 
The fault-per-module value has the as meaning as before, but the percentage value in 
this case represents the “occurs-in” relationship. For example, let us examine the row 
for the Control/Logic fault.   We can see that 16.8% of the C/L faults occur in data-
centric modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L 
faults occur in computational-centric modules, 14.7% of the C/L faults occur in inter-
action modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults 
occur in error-handling modules, and 4% of the C/L faults occur in environmental 
setup modules. The total faults-per-module and faults-per-module values of each are 
calculated as before.  

Next, we assess the “have” relationship (from Table 4).  The most frequently oc-
curring fault type in Data-centric modules was Control/Logic at 48% (no close sec-
ond).  This does not support C1.1.  The most frequently occurring fault type in Con-
troller modules was Control/Logic at 59.6% with no close second.  This does strongly 
support C2.1.  The most frequently occurring fault type in Computational-centric 
modules was Control/Logic at 48% with no close second.  This does not support C3.1.  
The most frequently occurring fault type in Interaction modules was Control/Logic at 
41% with no close second.  This does not support C4.1 or C6.1.  The most frequently 
occurring fault type in View modules was Control/Logic at 50% with no close second.  
This does not support C5.1 or C7.1.  The most frequently occurring fault type in Error 
Handling modules was Control/Logic at 75%.  This does not support C8.1.  There was 
a tie for most frequently occurring fault type in Environmental Setup/Configuration 
modules, 50% for both Control/Logic and Computational (no support for C9.1). 

Table 5 illustrates the “occurs-in” relationship that exists between the fault and 
module types.  For example, Data faults tend to occur in Data-centric modules most 
frequently (46%).  The table is very similar to Table 4 except that it illustrates the 
“occurs-in” relationship from the fault type to the module type. The cells have the 
same two types of values as before, the percentage value and fault-per-module value. 
The fault-per-module value has the as meaning as before, but the percentage value in 
this case represents the “occurs-in” relationship. For example, let us examine the row 
for the Control/Logic fault.   We can see that 16.8% of the C/L faults occur in data-
centric modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L 
faults occur in computational-centric modules, 14.7% of the C/L faults occur in inter-
action modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults 
occur in error-handling modules, and 4% of the C/L faults occur in environmental 
setup modules. The total faults-per-module and faults-per-module values of each are 
calculated as before.  
Next, we assess the “have” relationship (from Table 4).  The most frequently occur-
ring fault type in Data-centric modules was Control/Logic at 48% (no close second).  
This does not support C1.1.  The most frequently occurring fault type in Controller 
modules was Control/Logic at 59.6% with no close second.  This does strongly sup-



port C2.1.  The most frequently occurring fault type in Computational-centric mod-
ules was Control/Logic at 48% with no close second.  This does not support C3.1. The 
most frequently occurring fault type in Interaction modules was Control/Logic at 41% 
with no close second.  This does not support C4.1 or C6.1.  The most frequently oc-
curring fault type in View modules was Control/Logic at 50% with no close second.  
This does not support C5.1 or C7.1.  The most frequently occurring fault type in Error 
Handling modules was Control/Logic at 75%.  This does not support C8.1.  
   There was a tie for most frequently occurring fault type in Environmental 
Setup/Configuration modules, 50% for both Control/Logic and Computational.  This 
does not support C9.1.  

 
Table 3. Module and Fault Type Classification for Apache Study 

Fault type Module 
type 

# mod-
ules Data C/L Comput. Interface Framework GUI 

Total 
Faults 

% 

Data-centric 4 6 16 2 3 6 0 33 18.7% 

Controller 6 3 28 5 4 5 2 47 26.6% 

Computational-
centric 

8 2 21 7 7 6 1 44 24.8% 

Interaction 2 0 7 3 3 2 2 17 9.6% 

View 3 3 15 4 1 5 2 30 17% 

Error Handling 1 0 3 1 0 0 0 4 2.2% 

Environ. Setup 1 0 1 1 0 0 0 2 1.1% 

Total 25 14 91 23 18 24 7 177 100% 

Percentage  8% 51.5% 13% 10% 13.5%     4% 100%  

As can be seen from Table 5 (the “occurs-in” relationship), the majority of the Data 
faults occur in the Data-centric modules (46%).  The next highest value is 30.7% for 
View modules.  This finding provides support for C1.2, but not for C8.2.  The major-
ity of Control/Logic faults occur in View modules (21%) with Controller modules 
bringing up a close second at 19.6%.  This finding lends some support to C2.2, but not 
as strong as for C1.2.  Computation faults occur 36% of the time in Interaction mod-
ules followed by View modules at 19%.  This does not support C3.2. Interface faults 
accounted for 36% of the Interaction module faults with no close second.  This 
strongly supports C4.2.  The majority of Framework faults occurred in View modules 
(29%) with Data-centric modules close behind at 26%.  This provides some support 
for C7.2, but not C9.2.  47% of the User Interface faults occur in Interaction modules 
(supports C6.2, but not C5.2). 

Our findings are summarized in Table 6.  The basic question was:  “Does the mod-
ule type drive the fault type?”  Six conjectured fault links were supported, at least 
weakly. Thus we found evidence for answering “yes.”  A fault link that appeared uni-
versally, though not conjectured, was Control/Logic faults being the most prominent 
fault type for all module types.  One could view this as an additional six fault links 
(data modules have Control/Logic (C/L) faults, computational-centric modules have 
C/L faults, Interaction modules have C/L faults, View, Error Handling, and Environ-
ment Setup/Configuration modules have C/L faults).  This finding would lead one to 



answer the overarching question “no.”  Our results are still inconclusive, but appear to 
hold promise. 

6.2 Mozilla Case Study (Faults and Modules) 

Next, we examined problem reports for the open source software product Mozilla 
(web browser) using the bug tracking system  Bugzilla [26].  Mozilla is a very large 
software system and provided a plethora of problem reports for sampling. We exam-
ined 70 bug reports, selected randomly using Bugzilla.  From these, 75 faults were 
identified that were code-related.  Note that the “fault per problem report” ratio was 
only 1.07 as compared to 1.5 for Apache.  These faults were categorized using our 
fault taxonomy. Table 7 presents the high level distribution of the faults found in 
Mozilla. 53.4% of faults reported for the open source software Mozilla fall under the 
category of Control/Logic faults, reinforcing findings from the first case study. 
   We were not able to find the modules that tied to specific bug reports or vice versa, 
as we were able to do in Apache.  So we next randomly selected 30 modules in the 
Mozilla directories and categorized them.  As can be seen from Table 8, the majority 
of the modules fell under the category of Computational-centric (26.7%), with Con-
troller just behind at 20%.  This is consistent with our findings for the Apache study. 

 6.3 Comparison of Case Study 

Both case studies exhibit strong similarities with regard to fault types and module 
types.  For both systems, Control/Logic faults occurred most frequently:  50% for 
Apache and 53.4% for Mozilla.  The next most frequent fault type for Apache was a 
tie between Interface and Framework at 14%.  For Mozilla, it was Data at 17.3%.  The 
fourth most frequent fault type for Apache was Data at 10%, and it was a three-way 
tie for Mozilla between Computational, Interface, and User Interface, all at 8%.  A 
striking result was the dominance of the Control/Logic fault type, in both systems. 

 The most frequent module type for Mozilla was Computational-centric at 26.7%.  
Computational-centric was tied for most frequent with Controller at 26.7% for 
Apache.  The next most frequent module type for Apache was Data-centric at 20%.  
For Mozilla, it was Controller at 20%.  The third most frequent module type for 
Apache was a tie between View and Interaction, both at 10%.  For Mozilla, Data-
centric and View tied for 16.7%. Computational-centric and Controller occurred most 
frequently in both systems. A comparison of fault type percentages is shown in Fig. 2.  
In each category, the percent of faults in the two applications are similar (note that 
Apache does not report user interface bugs, since it is not interactive).  For the com-
mon fault types, correlation analysis found a correlation value of 0.94 between the 
faults percentages. This is not surprising, as these applications share common charac-
teristics: open source, web related.  The result also confirms that our fault taxonomy is 
reasonable and applicable.   



Table 4. “have” Relationship from Module to Fault Types for the Apache Study 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fault type Module 
type 

#  
modules Data   C/L Comput. Interface Frame-

work 
GUI 

Total 
Faults 

Total 
Faults/ 
module 

% 

Data-centric   4 18% 
 

1.5 

48% 
 

4 

6% 
 

0.5 

9% 
 

0.75 

18% 
 

1.5 

0% 
 
0 

33 8.25 18%

Controller     6 6%
 

0.5 

59.6
% 

 
4.67 

10.6% 
 

0.83 

8.5% 
 

0.67 

10.6% 
 

0.83 

4% 
 

0.33 

47 7.83 17%

Computat.-
centric 

8    4.5%
 

0.25 

48% 
 

2.63 

16% 
 

0.875 

16% 
 

0.875 

13.6% 
 

0.75 

2% 
 

0.12 

44 5.5 12%

Interaction    2
 
 

0% 
 

0 

41% 
 

3.5 

17.6% 

             1.5 

17.6% 
 

1.5 

11.7% 
 
1 

11.7% 
 
1 

17 8.5 18%

View      3 10%
 

1 

50% 

 

5 

13% 
 

1.33 

3% 
 

0.33 

16.7% 
 

1.67 

6.7% 
 

0.67 

30 10 21.8%

Error Han-
dling 

1     0%
 

0 

75% 
 

3 

25% 
 

1 

0% 
 
0 

0% 
 
0 

0% 
 
0 

4 4 8.7%

Environ. 
Setup 

1     0%
 

0 

50% 
 

1 

50% 
 

1 

0% 
 
0 

0% 
 
0 

0% 
 
0 

2 2 4.5%

Total         25 3.25 23.8 7.035 4.125 5.75 2.12 [46.08,
46.08] 

 100% 



 

Table 5. The “occurs-in” Relationship from Fault to Module Types for the Apache Study 

Module Type Fault 
Type Data-

centric 
Controller  Computat.-

centric 
Interaction View Error Handling Environmental

setup 

Total 
 

% 

#modules         4 6 8 2 3 1 1 25

Data 46% 
 

1.5 

15% 
 

0.5 

7.7% 
 

0.25 

0% 
 
0 

30.7% 
 

1 

0% 
 
0 

0% 
 

0 

3.25  10%

C/L   16.8% 19.6% 
 
4 

 
4.67 

11% 
 

2.63 

14.7% 
 

3.5 

21% 
 

5 

12.6% 
 
3 

4% 
 

1 

23.8 50%

Computational    7%
 

0.5 

11.7% 
 

0.83 

12% 
 

0.875 

36% 
 

1.5 

19% 
 

1.33 

14% 
 
1 

14% 
 

1 

7.035 9%

Interface    18%
 

0.75 

16% 
 

0.67 

21% 
 

0.875 

36% 
 

1.5 

8% 
 

0.33 

0% 
 
0 

0% 
 

0 

4.125 14%

Framework    26%
 

1.5 

14% 
 

0.83 

13% 
 

0.75 

17% 
 
1 

29% 
 

1.67 

0% 
 
0 

0% 
 

0 

5.75 14%

GUI    0%
 
0 

15.5% 
 

0.33 

5.6% 
 

0.12 

47% 
 
1 

31.6% 
 

0.67 

0% 
 
0 

0% 
 

0 

2.12 3%

Total  faults 33 47 44 17 30 4 2 177 100% 

Total 
Faults/module 

8.25       7.83 5.5 8.5 10 4 2 [46.0
8, 46.08] 

 

 



Table 6. Conjecture Results 

Conjecture Conjectured Fault Link Supported? 
C1.1 Data modules have 

Data faults 
No 

C1.2 Data faults occur in 
Data modules 

Yes 

C2.1 Controller modules 
have C/L faults 

Yes 

C2.2 C/L faults occur in 
Controller modules 

Weak 

C3.1 Comp. modules have 
computational faults 

No 

C3.2 Comput. faults occur in 
Comput. modules 

No 

C4.1 Interaction modules 
have Interface faults 

No 

C4.2 Interface faults occur 
in Interaction modules 

Yes 

C5.1 View modules have 
User Interface faults 

No 

C5.2 User Interface faults 
occur in View modules 

No 

C6.1 Interaction modules 
have User Interface faults 

No 

C6.2 User Interface faults 
occur in Interaction 
modules 

Yes 

C7.1 View modules have 
Framework faults 

No 

C7.2 Framework faults oc-
cur in View modules 

Weak 

C8.1 Error handling modules 
have Data faults 

No 

C8.2 Data faults occur in Er-
ror Handling modules 

No 

C9.1 Environ. Setup/Config. 
Modules have framework 
faults 

No 

C9.2 Framework faults occur in 
Environ. Modules 

No 

 
We conclude with some remarks about threats to validity of our case studies. As 

with any case study, there are unavoidable threats to validity. First, we cannot gener-
alize the results to other application domains, systems, or languages. What we can 
say, however, is that we found support for our taxonomy in both the Apache and 
Mozilla systems. Second, a case study is limited in the amount of control over what 
data can be collected. We were limited by the available bug reports. While the random 
selection of defect reports for both systems does not bias the results, the quality and 
information content of the bug reports possibly could. Given the nature of case stud-



ies, we had no control over how bugs were reported. The analysis depends on the 
quality of the bug reports. They have to contain enough information for fault classifi-
cation. While we have not performed a large scale inter-rater reliability analysis of the 
module classification, we used a team to classify them, in line with guidelines in [1]. 
The analysis is based on a theory about a fault link taxonomy that is based on existing 
knowledge and empirical studies as explained in section 4. It is thus possible that new 
fault links may be found, and, of course, some applications may not have certain 
faults. We consider our work a step towards building a more comprehensive theory.   

7. Conclusions and Future Work 

We have developed two taxonomies, one for modules and one for code faults.  We 
introduced the notion of a fault link.  We presented two methods for module classifi-
cation along with their advantages and disadvantages.  We classified modules and 
code faults of two open source,   web-based software products    using our   approach. 

  We found evidence in favor of the existence of four conjectured fault links (and 
an additional two with weak evidence) and six fault links that were not conjectured 
(all related to Control/Logic faults).  We have already capitalized upon the discovery 
of the Control/Logic fault links (for every module type) by augmenting our FTR 
checklists. 

Table 7. Mozilla Fault Types 

Fault Number Percentage 
Data 13 17.3% 
Computational 6 8% 
Control/Logic 40 53.4% 
Interface 6 8% 
User interface 6 8% 
Framework 4 5.3% 
Total 75 100% 

Table 8. Mozilla Module Types 

Module Types Number Percentage 
Data-centric 5 16.7% 
Computational-
centric 

8 26.7% 

Controller 6 20% 
View 5 16.7% 
Interaction 1 3.3% 
Error Handling 1 3.3% 
Environmental 
setup 

4 13.3% 

Total 30 100% 
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Fig. 2. Comparison of Fault Type Percentages 

We continue work on the fault taxonomy and the module taxonomy and hope that 
others will assist us in validating and improving them.  We plan to examine the tax-
onomies with respect to the object-oriented methodology.  We plan to examine lan-
guages such as Lisp that provide control abstraction.  We also are not convinced that 
the fault taxonomy is orthogonal.  Specifically, we plan to evaluate mixed-purpose 
modules in the context of the fault link taxonomy. Our taxonomies might require tai-
loring to a specific domain or application, such as real-time or embedded systems, as 
discussed in [15].  We also plan to expand the fault link concept to fault chains.  
Faults rarely occur in isolation. They may be related longitudinally within a release 
(e.g., a design fault leads to a code fault) or across releases (e.g., incomplete fault re-
pair). We refer to these relationships as fault chains.  We have identified several types 
of fault chains, and will continue our work in this area. The ultimate goal of this work 
is to identify evaluation techniques that can take advantage of our knowledge of fault 
chains to prevent or detect faults as early as possible.  That will assist us in develop-
ing reliable, though complex, software systems. 
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