4.1 Grading Policy and Syllabus

Exemplary syllabi and grading policies are provided below, in chronological order (2006 through 2011).

Syllabus for CS 617 Requirements Engineering Spring 2006

Instructor:

514D)

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building Office hours M 0900 – 0945, W 0900 – 0950 (Robotics (CRMS) Bldg, Room

or by appointment

Course information:

Course homepage http://selab.netlab.uky.edu/Homepage/CS617spr06.htm

Course:	CS 617 Requirements Engineering
Call Number:	06042
Section:	001
Meets:	MWF 10:00 – 10:50
Location:	UK Center for Manufacturing (CRMS) aka Robotics (RMB) Room

Description:

323

The course will examine the requirements phase of the Systems Engineering and Software Engineering lifecycles in detail. Topics will include: requirements elicitation, requirements specification, and requirements analysis. Verification and validation techniques will be emphasized throughout the course. Students will work in small groups to apply requirements engineering techniques.

Course Materials:

Required Text:

L.A. Maciaszek Requirements Analysis and System Design, 2 ed. Addison Wesley ISBN: 0321204646 **You must obtain a copy of Maciaszek**

Other readings, as assigned: See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 617 will be determined according to these weights:

M.S. students:

Attendance and participation:	5%	
Individual assignments:		15%
Team project 1:		15%
Team project 2:		25%
Presentations:	10%	
Mid-term:	15%	
Final:	15%	

Ph.D. students:

Attendance and participation:	5%	
Individual assignments:		13%
Team project 1:		15%
Team project 2:		25%
Presentations:	7%	
Ph.D. lecture:	5%	
Mid-term:	15%	
Final:	15%	

Where:

There will be a mid-term and a final. The exams will be 50 minute long "in class" exams. The dates for the exams are listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work between groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. Note that the minimum penalty for plagiarism is an F in the course.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex, as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group projects for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. Proper language usage is required.

Week	Date	Readings	Topics	Project, Homework, Exam
1	Wed 1/11/06	Ch. 1	Introduction Software Requirements Specifications	Assign homework 1
1	Fri 1/13/06	Ch. 2	Introduction Software Requirements Specifications	Homework 1 due, assign homework 2
2	Mon 1/16/06	NO CLASS Have fun, be		

Schedule:

2 Wed 1/18/06 Ch. 9 Traceability Homework 2 due 2 Fri 1/28/06 Ch. 3 Requirements management techniques Homework 2 due 3 Mon 1/23/06 Ch. 3 Requirements management techniques Homework 3 3 Wed 1/25/06 Ch. 4 Specification techniques Assign homework 3 4 Mon 1/20/06 Ch. 4 Specification techniques Assign homework 4 4 Wed 2/1/06 Business Process Models to Requirements Homework 4 4 Wed 2/3/06 Business Process Models to Requirements Homework 4 5 Mon 1/30/06 Requirements Rational Unified Process: Development Teams (see Processes: Rational Unified Processes: Rational Homework 5 5 Wed 2/8/06 Requirements Software Processes: Rational Unified Processes: Rational Unified Processes: Rational Rational Unified Process: Best Practices for Software Development Teams Processes: Rational Unified Processes: Rational 2/13/06 Homework 5 6 Mon 2/13/06 Requirements Modeling 2/13/06 Requirements Modeling 1 6 Wed 2/13/06 Requirements Modeling 2/13/06 Hand out projec 1 6 Wed 2/13/06 Requirements Modeling 2/13/06 <td< th=""><th></th><th></th><th>safe!</th><th></th><th></th></td<>			safe!		
1/20/06techniques3Mon 1/23/06Ch. 3 techniquesRequirements management techniques3Wed 1/25/06Ch. 4Specification techniques3Fri 1/27/06Ch. 4Specification techniques4Mon 1/30/06Business Process Models to RequirementsHomework 3 due, assign Homework 44Wed 2/1/06Business Process Models to RequirementsPh.D. lecture topic due5Mon 2/3/06Requirements Software Processes: Rational Unified Processes: RationalRational Unified Process: Development Teams (see URL below)Assign Homework 5 due5Wed 2/10/06Requirements Software Processes: Rational Unified Processes: RationalRational Unified Process: Development Teams (see Development Teams Development Teams Processe: Rational Unified Processes: RationalHomework 5 due5Wed 2/10/06Requirements Management in Software Processes: RationalRational Unified Process: Best Practices for Software Development Teams Process: Best Practices for Software Development TeamsHomework 5 due5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development TeamsHomework 5 due6Mon 2/13/06Requirements Management in Software Processes: RUPRequirements Modeling 2/13/06Hand out projec 16Mon 2/13/06Requirements Modeling 2/21/06Hand o	2			Traceability	
1/23/06techniques3Wed 1/25/06Ch. 4Specification techniques process Models to RequirementsAssign homework 34Mon 1/30/06Business Process Models to RequirementsHomework 3 due, assign Homework 44Wed 2/1/06Business Process Models to RequirementsHomework 4 due due to Requirements5Mon 2/6/06Requirements Management in Software Processes: Rational Unified ProcessRational Unified Process: Best Practices for Software Development Teams (see URL below)Assign Homework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified ProcessRational Unified Process: Best Practices for Software Development Teams Development TeamsHomework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified Process (RUP)Rational Unified Process: Best Practices for Software Development Teams Development TeamsHomework 55Fri 2/10/06Requirements Management in Software Processes: Rational Unified Process (RUP)Rational Unified Process: Best Practices for Software Development Teams Processes: Rational Unified Process RUPHand out projec 16Mon 2/13/06Requirements Modeling 2/13/06Hand out projec 16Mon 2/21/06Requirements Modeling 2/21/06Hand out projec 17Mon 2/21/06Design review Ch 5Requirements Modeling Ch 5Ph.D. outline due<	2		Ch. 3		
1/25/06Ch. 4Specification techniquesAssign homework 34Mon 1/30/06Business Process Models to RequirementsHomework 3 due, assign Homework 44Wed 2/1/06Business Process Models to RequirementsPh.D. lecture topic due4Fri 2/3/06Business Process Models to RequirementsPh.D. lecture topic due5Mon 2/6/06Requirements Management in Software ProcesssRational Unified Process: Best Practices for Software Development Teams (see URL below)Assign Homework 55Wed 2/8/06Requirements Management in Software ProcesssRational Unified Process: Best Practices for Software Development TeamsHomework 5 due5Wed 2/8/06Requirements Management in Software ProcesssRational Unified Process: Best Practices for Software Development TeamsHomework 5 due5Fri 2/8/06Requirements Management in Software ProcesssRational Unified Process: Best Practices for Software Development Teams Process: Rational Unified Process: RUPHomework 5 due5Fri 2/10/06Requirements Management in Software Processe: RUPRational Unified Process: Best Practices for Software Development Teams Process: RUP6Mon 2/13/06Requirements Modeling 2/13/06Hand out projec 16Mon 2/13/06Requirements Modeling 2/13/06Hand out projec 16Fri 2/20/06Requirements Modeling 2/20/06Ph.D. outline due	3	-	Ch. 3		
1/27/06Instructionhomework 34Mon 1/30/06Business Process Models to RequirementsHomework 3 due, assign Homework 44Wed 2/1/06Business Process Models to RequirementsPh.D. lecture topic due4Fri 2/3/06Business Process Models to RequirementsHomework 4 due5Mon 2/6/06Requirements Management in Software Processes: Rational Unified Processes:Rational Unified Process: Best Practices for Software Development Teams (see URL below)Assign Homework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified Process:Rational Unified Process: Best Practices for Software Development TeamsHomework 5 due5Wed 2/8/06Requirements Management in Software Processes: Rational Unified Process:Rational Unified Process: Best Practices for Software Development Teams Development TeamsHomework 5 due5Fri 2/10/06Requirements Management in Software Drocesse: RUPRational Unified Process: Best Practices for Software Development Teams Processe: RUPHand out projec 16Mon 2/13/06Requirements Modeling 2/13/06Hand out projec 16Wed 2/20/06Requirements Modeling 2/20/06Hand out projec 17Mon 2/20/06Design review Case tool demoPh.D. outline due	3		Ch. 4	Specification techniques	
1/30/06to Requirementsdue, assign Homework 44Wed 2/1/06Business Process Models to RequirementsPh.D. lecture topic due4Fri 2/3/06Business Process Models to RequirementsHomework 4 due5Mon 2/6/06Requirements Software Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Development Teams Processes: Rational Development Teams Processes: Rational Unified ProcessHomework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified ProcessRational Unified Process: Best Practices for Software Development Teams Best Practices for Software Development Teams Process: Best Practices for Software Deve	3		Ch. 4	Specification techniques	-
2/1/06to Requirementstopic due4Fri 2/3/06Business Process Models to RequirementsHomework 4 due5Mon 2/6/06RequirementsRational Unified Process: Best Practices for Software Development Teams (see URL below)Assign Homework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified ProcessRational Unified Process: Best Practices for Software Development Teams (see URL below)Homework 55Wed 2/8/06Requirements Management in Software Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Processes: Rational Unified Process (RUP)Homework 5 due5Fri 2/10/06Requirements Management in Software Processes: Rational Unified Process (RUP)Rational Unified Process: Best Practices for Software Development Teams Development Teams5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development Teams6Mon 2/13/06Requirements Modeling 2/19/06Hand out projec 16Mon 2/21/06Requirements Modeling duePh.D. outline due7Mon 2/20/06Design review Case tool demoPh.D. outline due	4	-			due, assign
2/3/06to Requirementsdue5Mon 2/6/06Requirements Management in Software Processes: Rational Unified Processes: Bast Practices for Software Development Teams (see URL below) Rational Unified ProcessAssign Homework 55Wed 2/8/06Requirements Management in Software Processes: Management in Software Processes: Rational Unified ProcessRational Unified Process: Best Practices for Software Development Teams Best Practices for Software Development Teams Processes: Rational Unified Process (RUP)Homework 5 due5Fri 2/10/06Requirements Management in Software Process (RUP)Rational Unified Process: Best Practices for Software Development Teams Process: Best Practices for Software Development Teams Process: Best Practices for Software Development Teams Process: Best Practices for Software Development Teams Process: Rup5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development Teams Process: Best Practices for Software Development Teams Processes: RUP6Mon 2/13/06Requirements Modeling 2/13/06Hand out projec 16Mon 2/21/06Requirements Modeling 2/21/06Ph.D. outline due7Mon 2/20/06Design review Case tool demoPh.D. outline due	4				
2/6/06Management in Software Processes: Rational Unified ProcessBest Practices for Software Development Teams (see URL below)Homework 55Wed 2/8/06Requirements Management in Software Processe: Rational Unified Process: Rational Unified Process: Rational Development TeamsHomework 55Wed 2/8/06Requirements Management in Software Processe: Rational Unified Process: Rational Unified Process: Rational Unified Process: Rational Unified Process: Rational Unified Process: Requirements Management in Software Processe: RUPRational Unified Process: Best Practices for Software Development Teams Best Practices for Software Development TeamsHomework 5 due5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development TeamsHomework 5 due6Mon 2/13/06Requirements Modeling 2/19/06Hand out projec 16Wed 2/21/06Requirements Modeling ueHand out projec 17Mon 2/20/06Design review Case tool demoPh.D. outline due	4				
5Wed 2/8/06Requirements Management in Software Processes: Rational Unified Processes: Rational Unified Process (RUP)Rational Unified Process: Best Practices for Software Development TeamsHomework 5 due5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development TeamsHomework 5 due6Mon 2/13/06Requirements Modeling 2/19/06Requirements Modeling dueHand out projec 16Fri 2/10/06Requirements Modeling Ch 5Requirements ModelingPh.D. outline due	5	-	Management in Software Processes: Rational Unified	Best Practices for Software Development Teams (see URL below)	e
5Fri 2/10/06Requirements Management in Software Processes: RUPRational Unified Process: Best Practices for Software Development Teams6Mon 2/13/06The Ten Essentials of RUP6Mon 2/13/06Requirements Modeling 16Wed 2/19/06Requirements Modeling ue6Fri 2/21/06Requirements Modeling 2/21/067Mon 2/20/06Design review Ch 57Mon 2/20/06Case tool demo	5		Requirements Management in Software Processes: Rational Unified	Best Practices for Software Development Teams	
6Mon 2/13/06Requirements Modeling 1Hand out projec 16Wed 2/19/06Requirements Modeling 216Fri 2/21/06Requirements Modeling duePh.D. outline due7Mon 2/20/06Design review Ch 5Requirements Modeling Case tool demoPh.D. outline due	5		Requirements Management in Software Processes:	Best Practices for Software Development Teams	
2/19/06 Privation 6 Fri 2/21/06 Requirements Modeling due 7 Mon 2/20/06 Design review Ch 5 Requirements Modeling Case tool demo	6			Requirements Modeling	Hand out project 1
2/21/06 due 7 Mon 2/20/06 Design review Requirements Modeling Ch 5 Case tool demo Case tool demo	6			Requirements Modeling	
2/20/06 Ch 5 Case tool demo	6			Requirements Modeling	
	7		Design review	Requirements Modeling	
7 Wed Design review Requirements Modeling	7	Wed			

	2/22/06			
		Ch 5	Case tool demo	
7	Fri 2/24/06	Design review	Requirements Modeling	
		Ch 5	Case tool demo	
8	Mon 2/27/06		Review for exam	Project 1 draft due
8	Wed 3/1/06	Midterm exam	Midterm exam	Midterm exam
8	Fri 3/3/06			
9	Mon 3/6/06	Ch 4, 5	Specification Models : Use cases	Project 1 Design review
9	Wed 3/8/06	Ch 4, 5	Specification Models : Use cases	
9	Fri 3/10/06	Ch 4, 5	Specification Models : Use cases	
10	Mon 3/13/06 - 3/18/06	NO CLASS Have fun, be safe!		
11	Mon 3/20/06	Ch 5, 6	Specification Models : Class and State Diagrams	Project 1 due, handout Project 2
11	Wed 3/22/06		Project presentations	
11	Fri 3/24/06		Project presentations	
12	Mon 3/27/06	Ch 5, 6	Specification Models : Class and State Diagrams	
12	Wed 3/29/06	Ch 6	Specification Models : Collaboration and Sequence diagrams	
12	Fri 3/31/06	Ch 6	Specification Models : Collaboration and Sequence diagrams	
13	Mon 4/3/06	Formal Specification: A Roadmap Axel van Lamsweerde	Formal Specification techniques	Project 2 draft due
13	Wed 4/5/06	Formal Specification: A Roadmap Axel van Lamsweerde	Formal Specification techniques	

13	Fri 4/7/06	Formal Specification Reading	Formal Specification techniques	
14	Mon 4/10/06	Rolland et al, Guiding goal modeling through scenarios, IEEE Trans. On Software Engineering, 24(12), 1998. Survey	Goal Modeling	Project 2 Design review
		Manager system, model		
14	Wed 4/12/06	Rolland et al, Guiding goal modeling through scenarios, IEEE Trans. On Software Engineering, 24(12), 1998.	Goal Modeling	
		Survey Manager system, model		
14	Fri 4/14/06		Student lectures	
15	Mon 4/17/06		Student lectures	
15	Wed 4/19/06		Requirements Management tools	
15	Fri 4/21/06		Requirements Management tools	
16	Mon 4/24/06		Requirements Specifications to Design	Project 2 due
16	Wed 4/26/06	None	Project Presentations	
16	Fri 4/28/06	None	Project Presentations, Final Exam Review	
Final	Fri 5/5/06 0800 - 1030	Review all readings	Final	Final

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Rational Unified Process: Best Practices for Software Development Teams

http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/r up_bestpractices.pdf

The Ten Essentials of RUP <u>http://www-</u> <u>128.ibm.com/developerworks/rational/library/content/RationalEdge/dec00/TheTenEssentialsofRUP</u> <u>Dec00.pdf</u>

Formal Specification: A Roadmap Axel van Lamsweerde <u>http://www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalvanlamsweerde.pdf</u>

Guiding goal modeling using scenarios

Rolland, C.; Souveyet, C.; Achour, C.B.; Software Engineering, IEEE Transactions on Volume 24, Issue 12, Dec. 1998 Page(s):1055 – 1071

Barry W. Boehm, Software Engineering, IEEE Trans. On Computers, 25(12):1226-1241, 19.

Parnas, D.L., On criteria to be used in decomposing systems into modules, CACM, vol. 15, no. 12, April '72, pp.1053-1058. http://portal.acm.org/citation.cfm?id=361623

Wirth, N. Program development by stepwise refinement, CACM, vol. 14, no. 4, 1971, pp. 221-227. http://www.acm.org/classics/dec95/

[1] Dr. Judy Goldsmith[2] http://www.scs.ryerson.ca/~dwoit/failure.html.

Syllabus for CS 685 Empirical Software Engineering Spring 2007

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>).
Room 233, Hardymon Building
Office hours MW 1000 – 1050 (Robotics (CRMS) Bldg, Room 514D) or by appointment

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS685-emp-sw-engspring07.htm Course: CS 685 Empirical Software Engineering Call Number: 01617 Section: 001 Meets: MWF 11:00 – 11:50 Location: RGAN (Ralph G. Anderson) Room 207

Description:

The course will present the following: Detailed study of the scientific process; particularly using the experimental method. Examination of how empirical studies are carried out in software engineering (by industry and by researchers). Review of the distinction between analytical techniques and empirical techniques. Study of when experimentation is required in software engineering, and what kinds of problems can be solved using experimentation. Examination of how to control variables and to eliminate bias in experimentation. Examination of analysis and presentation of empirical data for decision making. Students will learn how the scientific process should be applied, how and when to apply it in the software engineering area, and how to evaluate empirical evidence. The principles will be reinforced by examination of published experimental studies, and through designing and carrying out small experiments. On completion of the course, students will be in a position to design and carry out experiments in ways appropriate for a given problem, and will acquire skills in analyzing and presenting experimental data.

Course Materials:

Required Text:

Clases Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, Anders Wesslen *Experimentation in Software Engineering: An Introduction* November 1999 Kluwer Academic Pub ISBN: 0792386825 **You must obtain a copy of Wohlin et al.**

Other readings, as assigned: See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 685 will be determined according to these weights:

M.S. students:

Attendance and participation: 10%Paper summaries:Team research project:Presentation:30%	20% 40%
Ph.D. students:	
Attendance and participation: 10%Paper summaries:Individual research project: 40%Presentation: 30%	20%
Where:	
A = 92 - 100% B = 83 - 91% C = 74 - 82%	

C= 74 - 82%D= 65 - 73%F = 64 and below

Papers:

The first nine papers are about experimentation, and the rest are descriptions of experiments. It is important that you read the papers BEFORE the lectures, as the discussion will be very interactive. Turn in simple summaries and evaluations of **four** of the first nine. For **one half** of the remaining papers (10), turn in a short (about one page) summary of the paper. The summaries should: (1) describe the problem in general terms, (2) paraphrase the experimental hypothesis, (3) summarize and critique the design, (4) discuss the conduct of the experiment, (5) explain whether the hypothesis was proved or disproved, and (6) critique the presentation of the paper.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and assignments with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points are good ways to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the

student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted **in person** at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work **between** groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. Note that the minimum penalty for plagiarism is an F in the course.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance

and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us--never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex, as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group projects for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. Proper language usage is required.

Week	Date	Readings	Topics	Project, Homework, Exam
1	Wed 1/10/07	Paper 1	Introduction, Overview of Scientific Method Lecture 1	
1	Fri 1/12/07	Paper 1	Introduction, Overview of Scientific Method, Lecture 1	
2	Mon 1/15/07	NO CLASS Have fun, be safe!		
2	Wed 1/17/07	Papers 2 – 5, Wohlin Chapter 1, 2	Experimentation in Software Engineering, Lecture 2 – 4, Ethics	
2	Fri 1/19/07	Papers 2 – 5, Wohlin Chapter 1, 2	Experimentation in Software Engineering, Lecture 2 – 4, Ethics	
3	Mon 1/22/07	Papers 6 - 9, Wohlin Chapter 3, 4, 5,	Experimentation in Software Engineering, Lecture 5 - 8	Topic selection

Schedule:

		6, 7, 10		
3	Wed	Papers 6 - 9,	Experimentation in	
5	1/24/07	Wohlin	Software Engineering,	
	1/24/07	Chapter 3, 4, 5,	Lecture 5 - 8	
		6, 7, 10	Lecture 5 - 8	
3	Fri	Papers 6 - 9,	Experimentation in	
5	1/26/07	Wohlin	1	
	1/20/07	Chapter 3, 4, 5,	Software Engineering, Lecture 5 - 8	
		6, 7, 10	Lecture 5 - 8	
4	Mon	Papers 10, 11,	Metrics and Complexity	
4	1/29/07	12,	Metrics and Complexity	
	1/29/07	Wohlin		
		Chapter 8, 9		
4	Wed	Papers 10, 11,	Metrics and Complexity,	
-	1/31/07	12,	Guest from the Writing	
	1/31/07	Wohlin	Center	
		Chapter 8, 9		
4	Fri	Papers 10, 11,	Metrics and Complexity	
-	2/2/07	12,	Weates and complexity	
	2/2/07	Wohlin		
		Chapter 8, 9		
5	Mon	Wohlin	Project Day	Experiment
5	2/5/07	Chapter 11, 12		Design Reviews
5	Wed	Wohlin	Project Day	Experiment
-	2/7/07	Chapter 11, 12		Design Reviews
5	Fri	Wohlin	Project Day	Experiment
	2/9/07	Chapter 11, 12		Design Reviews
6	Mon	Papers 13, 14,	Testing, lecture Assert-	
	2/12/07	16	Assess	
6	Wed	Papers 13, 14,	Testing, lecture Assert-	
	2/14/07	16	Assess	
6	Fri	Papers 13, 14,	Testing, lecture Assert-	
	2/16/07	16	Assess	
7	Mon	Papers 19, 21,	Maintenance, lecture	
	2/19/07	22	Writing	
7	Wed	Papers 19, 21,	Maintenance, lecture	
	2/21/07	22	Writing	
7	Fri	Papers 19, 21,	Maintenance, lecture	
	2/23/07	22	Writing	
8	Mon	Papers 32, 33,	Traceability	
	2/26/07	34		
8	Wed	Papers 32, 33,	Traceability	
	2/28/07	34		
8	Fri	Papers 32, 33,	Traceability	
	3/2/07	34		
9	Mon	Papers 23, 24	Requirements & Design	Hand out sample

	3/5/07			paper
9	Wed	Papers 23, 24	Requirements & Design	
	3/7/07			
9	Fri	Papers 23, 24	Requirements & Design	
	3/9/07			
10	Mon	NO CLASS		
	3/12/07	Have fun, be		
	-	safe!		
	3/16/07			
11	Mon	Papers 25, 26	Design	Draft paper due
	3/19/07			
11	Wed	Papers 25, 26	Design	
	3/21/07			
11	Fri	Papers 25, 26	Design	
	3/23/07			
12	Mon	Papers 27, 28	Design, Lecture	Reviews due
	3/26/07		Presentations	
12	Wed	Papers 27, 28	Design, Lecture	
	3/28/07		Presentations	
12	Fri	Papers 27, 28	Design, Lecture	
	3/30/07		Presentations	
13	Mon	Papers 29, 30	HCI, Management and	Hand out sample
	4/2/07		Inspections	presentation
13	Wed	Papers 29, 30	HCI, Management and	
	4/4/07		Inspections	
13	Fri	Papers 29, 30	HCI, Management and	
	4/6/07	1	Inspections	
14	Mon	None	Project Presentations	Final research
	4/9/07			papers due
14	Wed	None	Project Presentations	
	4/11/07		5	
14	Fri	None	Project Presentations	
	4/13/07		5	
15	Mon	None	Project Presentations	
	4/16/07		5	
15	Wed	None	Project Presentations	
	4/18/07		5	
15	Fri	None	Project Presentations	
	4/20/07			
16	Mon	None	Project Presentations	
	4/23/07			
16	Wed	None	Project Presentations	
10	4/25/07			
16	Fri	None	Project Presentations	
10	4/27/07	1,0110	-10,000110000000	
	4/2/101			

5/2/07 1030 -	time slot needed	
1300		

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Readings:

Empirical Methods Overview

- 1. National Research Council, Academic Careers for Experimental Computer Scientists and Engineers, Ch. 1, National Acadamy Press, pages 9-33, 1994. TOC PS
- Fenton, Norman, Shari Lawrence Pfleeger and Robert L. Glass, "Science and Substance: A Challenge to Software Engineers", *IEEE Software*, V. 11, N. 4, pages 86-95, July 1994. <u>PDF</u> (not working) <u>HTML</u> (works, but ugly)
- 3. **Tichy**, Walter F., "Hints for Reviewing Empirical Work in Software Engineering", *Empirical Software Engineering*, 5(4):309-312, December 2000. <u>EMSE Home</u>
- 4. Amschler Andrews, Anneliese and Arundeep S. Pradhan, "Ethical Issues in Empirical Software Engineering: The Limits of Policy", *Empirical Software Engineering*, 6(2):105-110, June 2001. EMSE Home
- 5. **Zendler**, Andreas, "A Preliminary Software Engineering Theory as Investigated by Published Experiments", *Empirical Software Engineering*, 6(2):161-180, June 2001. <u>EMSE Home</u>
- 6. **Harrison**, Warren "Editorial: Open Source and Empirical Software Engineering", *Empirical Software Engineering*, 6(3):193-194, September 2001. <u>EMSE Home</u>
- Shull, Forrest, Manoel G. Mendoncça, Victor Basili, et al. "Knowledge-Sharing Issues in Experimental Software Engineering", *Empirical Software Engineering*, (9)1-2:111-137, March 2004. <u>EMSE Home</u>
- Karahasanovic', Amela, Bente Anda, Erik Arisholm, Siw Elisabeth Hove, Magne Jørgensen, Dag I K Sjøberg and Ray Welland, "Collecting Feedback During Software Engineering Experiments", *Empirical Software Engineering*, 10(2):113-147, April 2005. <u>EMSE Home</u>
- 9. **Offutt**, Jeff, Yuan Yang and Jane Hayes, "SEEWeb: Making Experimental Artifacts Available", *Workshop on Empirical Research in Software Testing*, Boston, MA, July 2004. <u>PDF</u>

Metrics and Complexity

- 10. L. Briand and J. Wust, "Empirical Studies of Quality Models in Object-Oriented Systems", *Advances in Computers*, vol. 56, 2002, Academic Press. Briand's homepage
- Fenton, Norman and Niclas Ohlsson, "Quantitative Analysis of Faults and Failures in a Complex Software System", *IEEE Transactions on Software Engineering*, (26)8:797-814, August 2000. <u>PDF</u>
- Wohlin, Claes, and Anneliese Amschler Andrews "Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data", *Empirical Software Engineering*, (8)3:285-308, September 2003. <u>EMSE Home</u>

Testing

- 13. Juristo, Natalia, Ana M. Moreno, Sira Vegas "Reviewing 25 Years of Testing Technique Experiments", *Empirical Software Engineering*, (9)1-2:7-44, March 2004. <u>EMSE Home</u>
- 14. Ma, Yu-Seung, Jeff Offutt and Yong Rae Kwon, "MuJava: An Automated Class Mutation System", *Journal of Software Testing, Verification and Reliability*, 15(2):97-133, June 2005. <u>PDF local copy</u>
- 15. **Roger T. Alexander** and Jeff Offutt, "Empirical Evaluation of Coupling-based Testing Techniques for Object-oriented Programs", submitted. <u>PDF</u>
- 16. Lionel C. Briand, Massimiliano Di Penta and Yvan Labiche, "Assessing and Improving State-Based Class Testing: A Series of Experiments", *IEEE Transactions on Software Engineering*, 30(11), November 2004. <u>PDF</u>
- 17. Grindal, Mats, Jeff Offutt and Jonas Mellin, "State-of-Practice: An Investigation of Testing Maturity", submitted. <u>Preliminary version</u>
- Stuart C. Reid, "An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and Random Testing", Proceedings of the 4th International Software Metrics Symposium (METRICS '97), 1997. <u>PDF</u>

Maintenance

- 19. Kajko-Mattsson, Mira, "A Survey of Documentation Practice within Corrective Maintenance", *Empirical Software Engineering*, 10(1):31-55, January 2005. <u>EMSE Home</u>
- 20. Liguo Yu, Stephen R. Schach, Kai Chen and Jeff Offutt, "Categorization of Common Coupling and its Application to the Maintainability of the Linux Kernel", *IEEE Transactions on Software Engineering*, 30(10):694-706, October 2004. <u>PDF local</u>
- 21. Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt and Gillian Z. Heller, "Open-Source Change Logs", *Kluwer's Empirical Software Engineering*, 9(3):197-210, September 2004. <u>online EMSE Home</u>
- 22. Stephen R. Schach, Bo Jin, Liguo Yu, Gillian Z. Heller and Jeff Offutt, "Determining the Distribution of Maintenance Categories: Survey versus Measurement", *Kluwer's Empirical Software Engineering*, 8(4):351-365, December 2003. <u>online EMSE Home</u>

Requirements

23. • **Damian**, Daniela, James Chisan, Lakshminarayanan Vaidyanathasamy and Yogendra Pal, "Requirements Engineering and Downstream Software Development: Findings from a Case Study", *Empirical Software Engineering*, (10)3:255-28, July 2005. <u>EMSE Home</u>

Design

- 24. Iris Reinhartz-Berger and Dov Dori, "OPM vs. UML--Experimenting with Comprehension and Construction of Web Application Models", *Empirical Software Engineering*, 10(1), January 2005. <u>EMSE Home</u>
- 25. Marek Vokáccaron, Walter Tichy, Dag I. K. SjØberg, Erik Arisholm and Magne Aldrin, "A Controlled Experiment Comparing the Maintainability of Programs Designed with and without Design Patterns-A Replication in a Real Programming Environment", *Empirical Software Engineering*, 9(3):149-195, September 2004. <u>EMSE Home</u>
- 26. Anda, Bente and Dag I. K. Sjøberg, "Investigating the Role of Use Cases in the Construction of Class Diagrams", *Empirical Software Engineering*, (10)3:285-309, July 2005. <u>EMSE Home</u>

- 27. Svahnberg, Mikael and Claes Wohlin "An Investigation of a Method for Identifying a Software Architecture Candidate with Respect to Quality Attributes", *Empirical Software Engineering*, (10)2:149-181, April 2005. EMSE Home
- 28. Knight, John C. and Nancy G. Leveson, "An Experimental Evaluation of the Assumption of Independence in Multiversion Programming", *IEEE Transactions on Software Engineering*, (SE-12)1:96-109, January 1986. NEC Research Index (CiteSeer)

HCI

Miara, Richard J., Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman, "Program Indentation and Comprehensibility", *Communications of the ACM*, (26)11:861-867, November 1983. <u>ACM</u>

Management and Inspections

- McDonald, James, "The Impact of Project Planning Team Experience on Software Project Cost Estimates", *Empirical Software Engineering*, (10)2:219-234, April 2005.
 <u>EMSE Home</u>
- Thelin, Thomas, Per Runeson, Claes Wohlin, et al. "Evaluation of Usage-Based Reading-Conclusions after Three Experiments", *Empirical Software Engineering*, (9)1-2:77-110, March 2004. <u>EMSE Home</u>

Traceability

- O.C.Z. Gotel and A.C.W. Finkelstein. An analysis of the requirements traceability problem. In 1st International Conference on Requirements Engineering, pages 94--101, 1994. PDF
- 33. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. Recovering Traceability Links between Code and Documentation. IEEE Transactions on Software Engineering, Volume 28, No. 10, October 2002, 970-983. <u>PDF</u>
- 34. Jane Huffman Hayes, Alex Dekhtyar: A Framework for Comparing Requirements Tracing Experiments. International Journal of Software Engineering and Knowledge Engineering 15(5): 751-782 (2005) PDF

[1] Dr. Judy Goldsmith

[2] <u>http://www.scs.ryerson.ca/~dwoit/failure.html</u>.

Syllabus for CS 585-001 Software Testing and Quality Evaluation

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building 257-3171 Office hours 1:00 – 1:50 pm MW or by appointment (Robotics Room 514D)

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/ CS485-Fall08.htm

Course: CS 485 Software Testing

Section:	001
Meets:	MWF 2:00 – 2:50 pm
Location:	Oliver H Raymond Building (OHR) Room C226

Description:

Concepts and techniques for testing software and assuring its quality. Topics cover software testing at the unit, module, subsystem, and system levels, automatic and manual techniques for generating and validating test data, the testing process, static vs. dynamic analysis, functional testing, inspections, and reliability assessment. *Professor's note*: The course will attempt to prepare students to test software in structured, organized ways. This course should provide practical knowledge of a variety of ways to test software, an understanding of some of the tradeoffs between testing techniques, and a feel for the practice of software testing **and** the research in software testing.

Course outcomes:

The student shall know the levels of testing and be able to define them.

The student shall know the definitions of key testing terms such as coverage criterion and subsumption.

The student shall understand how to generate test cases that achieve data flow coverage and/or determine if given test cases achieve data flow coverage for a given program.

The student shall understand how to generate logic expression coverage test cases and/or determine if given test cases achieve logic expression coverage.

The student shall understand Syntax-Based Coverage Criteria.

The student shall understand class integration test order.

Course Materials:

Required Texts:

- Paul Ammann and Jeff Offutt, *Introduction to Software Testing*, Cambridge University Press, Cambridge, UK, ISBN 0-52188-038-1, 2008.
- Various artifacts available over the web. Details as needed.

Other readings, as assigned: See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 485 will be determined according to these weights:

Undergraduate students:

Weekly homework assignments/paper summaries: 45%

Weekly quizzes:	45%
Final: 10%	
Graduate students:	
Weekly homework assignments/paper summaries:	32%
Additional paper summaries: 11%	5270
Weekly quizzes:	32%
Short paper and/or presentation:	15%
Final: 10%	
Where:	
A = 92 - 100%	

A= 92 - 100% B= 83 - 91% C= 74 - 82% D= 65 - 73%F= 64 and below

The lowest two homework and quiz grades will be dropped; allowing for missed classes. That is, **two total grades** will be dropped from the total set of homework grades and quiz grades, not four total.

There will be one closed book, in-class, comprehensive final. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class has started are **late**.

In recognition of the fact that students have occasional but unavoidable commitments that preclude attendance at every class, I drop each student's two lowest scores prior to final grade computations. I select the combination of homework and quiz scores most advantageous to the student. For example, I may drop one quiz score and one homework, or two homework assignments, or any other combination totaling two.

In view of this policy, late homework is not accepted and there are no make-up quizzes. Please do not ask for an exception.

Attendance/Absences:

Arrival after class has started is disruptive to the class and is not appreciated. Arrival after student presentations have begun will not be allowed. Arrival after the homework assignments have been collected constitutes a 0 for that assignment. Absence the day of a quiz, test or presentation constitutes a 0 for that grade element. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work between groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. Note that the minimum penalty for plagiarism is an F in the course.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department, located in Room 203 of the Engineering Annex as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Paper Summaries [3]:

You are required to read and evaluate each of the assigned readings prior to discussion in class. Summaries/evaluations are due at the start of class. Each paper summary should be on a separate sheet of paper, and include:

- The title, and first author's name
- \cdot The main point that the article seemed to make (2-5 sentences)
- Two subjective numerical ratings on a 1-to-6 scale (1 low, 6 high):
- a) How important is the material covered in the article?
- b) How well-written was the article?
- \cdot Two to three paragraphs concerning the content of the article, containing either:

a) A question about the article, such as one that you or someone reading the paper for the first time might have to stop and study, look elsewhere, or re-read to find an answer. Questions should be accompanied by an elaboration of the question, and/or a discussion of its relevance.

b) A comment on the article, such as discussion of application, classification, comparison, and/or evaluation of methods.

c) What you liked, disliked, found interesting or found unclear in the article.

Also, see "How to Read an Engineering Research Paper" by Bill Griswold for additional ideas (<u>http://www-cse.ucsd.edu/users/wgg/CSE210/howtoread.html</u>).

Paper evaluations will be graded according to the following scale: 0: not submitted, 1: marginal, 2: what was expected, 3: outstanding. You are expected to have read all articles. Proper language usage is required.

Homework assignments:

There will be small computer and homework assignments for most of our topics and/or paper summaries (see above). Some will require pencil and paper and others will require modest programming or use of tools available from the Web. Proper language usage is required.

Quizzes:

We will have weekly (roughly) quizzes and no midterm exam. Quizzes will be given during the **first 10 minutes** of each class and no makeup or late quizzes will be given.

Short Paper and/or Presentation:

Graduate students will prepare a 3 to 4 page paper that describes a current testing topic, of the student's choosing. Proper language usage is required. If time permits, students will make a short presentation to the class on the topic.

Schedule:

Week	Date	Readings	Topics	Assignments, Exam
1	Wed 8/27/08	Ammann/Offut t Chapter 1	Introduction and Background on Coverage Based Testing	
1	Fri 8/29/08	Ammann/Offut t Chapter 1, (Read Ariane 5 Flight Failure– graduate students)	Introduction and Background	Homework 1, Graduate student paper summary
2	Mon 9/1/08	NO CLASS	NO CLASS	NO CLASS
2	Wed 9/3/08	AO 2.1-2.2	Graph Coverage	Quiz 1
2	Fri 9/5/08	AO 2.1-2.2	Graph Coverage	
3	Mon 9/8/08	AO 2.1-2.2	Graph Coverage	Homework 2
3	Wed 9/10/08	AO 2.3, (Read TBD paper – graduate students)	Graph Coverage for code	Graduate student paper summary
3	Fri 9/12/08	AO 2.3	Graph Coverage for code, Code of ethics	Quiz 2
4	Mon 9/15/08	AO 2.3, AO 2.4	Graph Coverage for code	Homework 3
4	Wed 9/17/08	AO 2.4 -2.5	Graph Coverage for other artifacts	Quiz 3
4	Fri 9/19/08	AO 2.4-2.5	Graph Coverage for other artifacts	Topics for graduate papers due
5	Mon 9/22/08	AO 2.4-2.5	Graph Coverage for other artifacts	Homework 4

		•			
5	Wed 9/24/08	AO 2.6	Use Case graph coverage	Quiz 4	
5	Fri 9/26/08	AO 2.6	Use Case graph coverage	2	
6	Mon 9/29/08	AO 2.6, 3.1 and 3.2	Use Case graph coverage	Homework 5	
6	Wed 10/1/08	AO 3.1-3.2	Logic testing	Quiz 5	
6	Fri 10/3/08	AO 3.1-3.2	Logic testing		
7	Mon 10/6/08	AO 3.1-3.2, 3.3	Logic testing	Homework 6	
7	Wed 10/8/08	AO 3.3-3.4	More logic testing	Quiz 6	
7	Fri 10/10/0 8	AO 3.3-3.4	More logic testing	Homework 7	
8	Mon 10/13/0 8	AO 3.5	Still more logic testing	Quiz 7	
8	Wed 10/15/0 8	AO 3.5, 4	Still more logic testing	Homework 8	
8	Fri 10/17/0 8	AO 4	Input space partitioning		
9	Mon 10/20/0 8	AO 4	Input space partitioning	3 Hom ewor k 9	
9	Wed 10/22/0 8	AO 3.6	Disjunctive normal form testing	Quiz 8	
9	Fri 10/24/0 8	AO 3.6	Disjunctive normal form testing	Draft graduate papers due	
10	Mon 10/27/0 8	AO 5.1	Syntax testing/mutation analysis	Homework 10	
10	Wed 10/29/0 8	AO 5.1	Syntax testing/mutation analysis	Quiz 9	
10	Fri 10/31/0 8	AO 5.2	Syntax testing/mutation analysis	Homework 11	
11	Mon 11/3/08	AO 5.2	Syntax testing/mutation analysis		

11	Wed 11/5/08	4 Rea d Hut chin s et al pap er	5 Dataflow and Controlflow- based test adequacy criteria	Quiz 10, Paper Summary
11	Fri 11/7/08	AO 5.3	Integration and OO	
12	Mon 11/10/0 8	AO 5.3	Integration and OO	Quiz 11
12	Wed 11/12/0 8	AO 5.3, (Read TBD paper – graduate students)	Integration and OO	Graduate student paper summary
12	Fri 11/14/0 8	AO 5.3	Integration and OO	
13	Mon 11/17/0 8	AO 5.5	input space grammars	Quiz 12, Homework 12
13	Wed 11/19/0 8	AO 5.5	Input space grammars	
13	Fri 11/21/0 8	6 Rea d Fra nkl and Wei ss pap er	7 All-uses	Paper Summary
14	Mon 11/24/0 8	8 AO 6.4	9 Test Plans	10 Quiz 13, Grad uate paper s due
14	Wed 11/24/0 8	NO CLASS	NO CLASS	NO CLASS
14	Fri 11/26/0 8	NO CLASS	NO CLASS	NO CLASS

15	Mon	11	AO	12	Testing OO	
	12/1/08		7.1		software	
15	Wed	13	AO	14	Testing OO	Quiz 14
	12/3/08		7.1		software	
15	Fri	15	AO	16	Testing OO	
	12/5/08		7.1		software	
16	Mon	17	Rea	18	Software testing	Quiz 15, Paper
	12/8/08		d		coupling	Summary
			Off		1 0	
			utt			
			pap			
			er			
16	Wed	19	Cat	20		
	12/10/0		ch			
	8		up			
			day			
			(if			
			nee			
			ded)			
16	Fri		/	Course W	Vrap up.	
	12/12/0				am Review	
	8					
Final	Fri	Review a	ll			Exam (Final)
	12/19/0	readings				, ,
	8	assignme				
	0800-					
	1030					

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Report by the Inquiry Board. ARIANE 5 Flight 501 Failure. Technical report, European Space Agency, 1996. J.L. Lions, Chairman of the Board.

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria International Conference on Software Engineering

Proceedings of the 16th international conference on Software engineering Sorrento, Italy, Pages: 191 – 200, Year of Publication: 1994, ISBN:0-8186-5855-X Authors: Monica Hutchins, Herb Foster, Tarak Goradia, Thomas Ostrand Paper available from our course web page

An experimental comparison of the effectiveness of the all-uses and all-edges adequacy criteria International Symposium on Software Testing and Analysis Proceedings of the symposium on Testing, analysis, and verification, Victoria, British Columbia, Canada

Pages: 154 – 164, Year of Publication: 1991, ISBN:0-89791-449-X Authors: Phyllis G. Frankl, Stewart N. Weiss Paper available from our course web page

21 Investigations of the software testing coupling effect

ACM Transactions on Software Engineering and Methodology (TOSEM) Volume 1, Issue 1 (January 1992), Pages: 5 – 20, Year of Publication: 1992 ISSN:1049-331X Author: A. Jefferson Offutt Paper available from our course web page

Dr. Judy Goldsmith
 <u>http://www.scs.ryerson.ca/~dwoit/failure.html</u>.
 <u>http://www.cs.ucsc.edu/~ejw/courses/290gw02/assignments.htm</u>

Syllabus for CS 499-001 Senior Design Project Spring 2009

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building Office hours TR 0915 – 1000 (Robotics (CRMS) Bldg, Room 514D) or by

appointment

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS499spring09.htm

Course:	CS 499 Senior Design Project
Section:	001
Meets:	TR 0800 - 0915
Location:	Anderson Hall (FPAT) Room 263

Description:

This is a project course. Students will work in small groups to design and implement systems of current interest to computer scientists. The course will also provide a high-level overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality.

Course Outcomes:

- The student shall know the phases of the software development lifecycle and be able to define them. (C1)
- The student shall know the difference between project and process metrics. (C2)

- The student shall be able to define the terms version control and change control. (C3)
- The student shall be familiar with methods for performing requirements elicitation and requirements analysis. (C4)
- The student shall be able to discuss important design principles such as information hiding and abstraction. (C5)
- The student shall be able to discuss the differences between structured and object oriented analysis and design. (C6)
- The student shall be able to define key testing terms such as black box testing and white box testing. (C7)
- The student shall be able to perform the activities of the software lifecycle for a small to medium software project. (C8)

Course Materials:

Required Text:

Roger S. Pressman Software Engineering: A Practitioner's Approach,* **Fifth Edition*** McGraw-Hill ISBN: 0-07-052182-4 **You must obtain a copy of Pressman**

Recommended Texts:

Frederick P. Brooks, *Mythical Man Month*, 2nd Edition, Addison Wesley ISBN: 0-201-83595-9

You do not have to obtain these, though you may choose to. Also, copies have been placed on reserve in the Engineering Library (3rd floor Anderson Hall)

Other readings, as assigned:

These are available via hyperlink in this syllabus or are on our course web page. See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 499 will be determined according to these weights:

Attendance and participation*:		
25%		
	50%	
15%		
	25%	

Where:

*Includes preparation of resume and completion of senior survey.

There will be a mid-term. The exam will be a 50 minute long "in class" exam. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work between groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. Note that the minimum penalty for plagiarism is an E in the course.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex, as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group project for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. **Proper language usage is required.**

Schedule:

Week	Date	Readings	Topics	Project, Exam
1	Thu	Pressman Ch.	Product, Process	
	1/15/09	1,2		
2	Tue	Pressman Ch.	Project Management	
	1/20/09	3, Boehm S/W		
		Eng. paper		
2	Thu	Pressman Ch.	Metrics, Project Planning	
-	1/22/09	4,5		
3	Tue	Pressman Ch.	Systems Engineering	
2	1/27/09	10		
3	Thu	No class		
4	1/29/09	D Cl		
4	Tue	Pressman Ch.	Analysis Concepts	Resumes due
4	2/3/09	11 Draces Ch		
4	Thu 2/5/09	Pressman Ch. 12	Analysis Modeling	
5			Rials SOA	Hand out
5	Tue 2/10/09	Pressman Ch. 6,8	Risk, SQA	
	2/10/09	0,8		project, start Phase I
5	Thu	Pressman Ch.	Project Scheduling, SCM	
5	2/12/09	7,9	Tiojeet Scheduning, Seim	
6	Tue	No class		
0	2/17/09	100 01035		
6	Thu	Pressman Ch.	Design Concepts	
-	2/19/09	13, Parnas	e e e e e e e e e e e e e e e e e e e	
		paper		
7	Tue	Pressman Ch.	Architecture Design	
	2/24/09	14, Wirth	C C	
		paper		
7	Thu	Pressman Ch.	User Interface Design,	
	2/26/09	15,16	Other Design Topics	
8	Tue	None	Project Presentations	Project Phase I
	3/3/09			due, Start Phase
				II
8	Thu	Pressman Ch.	Technical Metrics, OO	
	3/5/09	19,20	Concepts	
9	Tue	No class		
	3/10/09			

9	Thu 3/12/09	Pressman Ch. 21,22	OOA, OOD	
10	3/16- 3/21	No class – SPRING BREAK. Be careful, have fun		
11	Tue 3/24/09	Pressman Ch. 17, 18	Software Testing Techniques and Strategies, Exam review	
11	Thu 3/26/09	Midterm exam	Midterm exam	Midterm exam
12	Tue 3/31/09	Pressman Ch. 18, 24, Chidamber paper	Software Testing Techniques and Strategies , OO Metrics	
12	Thu 4/2/09	Maintenance readings, Brooks Ch. 16	Software maintenance	
13	Tue 4/7/09	None	Project Presentations	Project Phase II due, Start Phase III
13	Thu 4/9/09	None	Project Presentations	
14	Tue 4/14/09	No class		
14	Thu 4/16/09	Experimental software eng. Readings, Brooks Ch. 17	Experimental software engineering	
15	Tue 4/21/09	Software reliability reading	Software reliability	Senior surveys due
15	Thu 4/23/09	Software reliability reading	Software reliability	
16	Tue 4/28/09	None	Project Presentations	Completed Project due
16	Thu 4/30/09	None	Project Presentations	

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Barry W. Boehm, Software Engineering, IEEE Trans. On Computers, 25(12):1226-1241, 19. – see course web page

Boehm, B. A Spiral Model for Software Development and Enhancement, Computer, Vol. 21, no. 5, May '88, pp. 61-72. - see course web page

Parnas, D.L., On criteria to be used in decomposing systems into modules, CACM, vol. 15, no. 12, April '72, pp.1053-1058. http://portal.acm.org/citation.cfm?id=361623

Wirth, N. Program development by stepwise refinement, CACM, vol. 14, no. 4, 1971, pp. 221-227. http://www.acm.org/classics/dec95/

Musa, J.D., and Ackerman, A.F., Quantifying software validation: when to stop testing? IEEE SW, May 1989, pp. 19-27. - see course web page

Chidamber, S.R. and C.F. Kemerer, A metrics suite for object-oriented design, IEEE TSE, vol. SE-20, no. 6, June '94, pp.476-493. http://portal.acm.org/citation.cfm?id=631131

Frakes, W.B. and T.P. Pole, An empirical study of representation methods for reusable software components, IEEE TSE, vol SE-20, no. 8, Aug '94, pp. 617-630. - see course web page

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., and Irwin, J. Aspect--Oriented Programming. In European Conference on Object--Oriented Programming, ECOOP'97,

LNCS 1241, pages 220--242, Finland, June 1997. Springer--Verlag. http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-web.pdf

[1] Dr. Judy Goldsmith[2] http://www.scs.ryerson.ca/~dwoit/failure.html.

Syllabus for CS 616-001 Software Engineering Spring 2009

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building 257-3171 Office hours 9:15 – 10:00 TR (Robotics 514D) **or by appointment**

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS616spring09.htm

Course:	CS 616	Software Engineering
Section:	001	
Meets:	TR 11:00 – 12:	15

Location: RGAN Room 202

Description:

This course provides an overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality. Traceability, testing, and validation techniques will be emphasized throughout the course. Programs and program fragments will be developed and studied throughout the course to illustrate specific problems encountered in the lifecycle development of software systems.

Course Outcomes:

- The student shall know the phases of the software development lifecycle and be able to define them. (CO1)
- The student shall know the definitions of key software engineering terms such as verification, validation, and formal technical review. (CO2)
- The student shall be familiar with a number of software process models such as waterfall and RAD. (CO3)
- The student shall be familiar with key software project management concepts such as communication. (CO4)
- The student shall know the difference between project and process metrics. (CO5)
- The student shall be able to list the key activities of software quality assurance. (CO6)
- The student shall be able to define the terms version control and change control. (CO7)
- The student shall be familiar with methods for performing requirements elicitation and requirements analysis. (CO8)
- The student shall be able to discuss important design principles such as information hiding and abstraction. (CO9)
- The student shall be able to discuss the differences between structured and object oriented analysis and design. (C10)
- The student shall be able to define key testing terms such as black box testing and white box testing. (C11)
- The student shall be able to perform the activities of the software lifecycle for a small to medium software project. (C12)

Course Materials:

Required Text:

Roger S. Pressman Software Engineering: A Practitioner's Approach, ***Fifth Edition *** McGraw-Hill ISBN: 0-07-052182-4 **You must obtain a copy of Pressman**

Recommended Texts:

Frederick P. Brooks, *Mythical Man Month*, 2nd Edition, Addison Wesley ISBN: 0-201-83595-9

You do not have to obtain these, though you may choose to. Also, copies have been placed on reserve in the Engineering Library $(3^{rd}$ floor Anderson Hall)

Other readings, as assigned:

these are available on-line (links embedded in this document) or via the course web page. See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 616 will be determined according to these weights:

Master's Students:

Attendance and participation	n: 10%	
Presentations:	20%	
Projects:		37%
Final:	33%	

Ph.D. Students:

Attendance and participation: 10%			
Presentations:	13%		
Projects:		36%	
Lecture:		10%	
Final:	31%		

Where:

•		
A=	92 -	100%
B =	83 -	91%
C=	74 -	82%
D=	65 -	73%
$\mathbf{F} =$	64 and below	

There will be a final. The exam will be an "in class" exam. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Attendance/Absences:

Arrival after class has started is disruptive to the class and is not appreciated. Arrival after team presentations or PhD lectures have begun will not be allowed. Please wait in the hall until the team is done, then come in and take your seat. Arrival after the quiz has commenced constitutes a 0 for the quiz. Absence the day of a quiz, test, or presentation constitutes a 0 for that grade element. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work between groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. Note that the minimum penalty for plagiarism is an E in the course.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?
As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department, located in Room 203 of the Engineering Annex as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (www.cs.uky.edu). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group project for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. **Proper language usage is required.**

Schedule:

Week	Date	Readings	Topics	Project, Exam
1	Thu	Pressman Ch.	Product, Process	
	1/15/09	1,2		
2	Tue	Pressman Ch.	Project Management	
	1/20/09	3, Boehm S/W		
		Eng. paper		
2	Thu	Pressman Ch.	Metrics, Project Planning	
	1/22/09	4,5		
3	Tue	Pressman Ch.	Systems Engineering	
	1/27/09	10		
3	Thu	Pressman Ch.	Analysis Concepts,	
	1/29/09	11, 12	Analysis Modeling	

4	Tue 2/3/09	Pressman Ch. 12, 6	Analysis Modeling, Risk	
4	Thu 2/5/09	Pressman Ch. 6,8	Risk, SQA	Ph.D. lecture topic due
5	Tue 2/10/09	Pressman Ch. 7,9	Project Scheduling, SCM	Hand out project, start Phase I
5	Thu 2/12/09	Requirements Management in Software Processes: Rational Unified Process	Rational Unified Process: Best Practices for Software Development Teams (see URL below) The Ten Essentials of RUP	
6	Tue 2/17/09	Pressman Ch. 13, Parnas paper	Design Concepts	
6	Thu 2/19/09	Pressman Ch. 14, Wirth paper	Architecture Design	
7	Tue 2/24/09	Pressman Ch. 15,16	User Interface Design, Other Design Topics	
7	Thu 2/26/09	Pressman Ch. 19,20	Technical Metrics, OO Concepts	
8	Tue 3/3/09	None	Project Presentations	Project Phase I due , Start Phase II
8	Thu 3/5/09	None	Project Presentations	
9	Tue 3/10/09	No class		
9	Thu 3/12/09	Pressman Ch. 21,22	OOA, OOD	Ph.D. lecture outline due
10	3/16- 3/21	No class – SPRING BREAK. Be careful, have fun		
11	Tue 3/24/09	Pressman Ch. 17, 18	Software Testing Techniques and Strategies, Exam review	
11	Thu 3/26/09	Pressman Ch. 18, 24, Chidamber paper	Software Testing Techniques and Strategies , OO Metrics	
12	Tue 3/31/09	Maintenance readings,	Software maintenance, Traceability	

		Brooks Ch. 16		
12	Thu 4/2/09	Pressman Ch. 25, Formal Specification: A Roadmap Axel van Lamsweerde, Kiczales paper	Formal Methods, formal specification techniques, AOP	
13	Tue 4/7/09	None	Project Presentations	Project Phase II due, Start Phase III
13	Thu 4/9/09	None	Project Presentations	
14	Tue 4/14/09	Pressman Ch. 27, 29, Frakes paper,	Component-Based Software Engineering, Web Engineering	
14	Thu 4/16/09	Experimental software eng. Readings, Brooks Ch. 17	Ethics, Experimental software engineering	
15	Tue 4/21/09	Assigned readings	Ph.D. Student lectures	
15	Thu 4/23/09	Software reliability reading	Software reliability, Review for Final	
16	Tue 4/28/09	None	Project Presentations	Completed Project due
16	Thu 4/30/09	None	Project Presentations	
Final	Thu 5/7/09 1300- 1530	Review all readings	Final	Final

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Barry W. Boehm, Software Engineering, IEEE Trans. On Computers, 25(12):1226-1241, 19. http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=/iel5/12/35145/01674590.pdf?tp=&arnumber=16 74590&isnumber=35145&code=2

Boehm, B. A Spiral Model for Software Development and Enhancement, Computer, Vol. 21, no. 5, May '88, pp. 61-72. <u>http://portal.acm.org/citation.cfm?id=12948</u>

Parnas, D.L., On criteria to be used in decomposing systems into modules, CACM, vol. 15, no. 12, April '72, pp.1053-1058. http://portal.acm.org/citation.cfm?id=12948

Wirth, N. Program development by stepwise refinement, CACM, vol. 14, no. 4, 1971, pp. 221-227. http://www.acm.org/classics/dec95/

Musa, J.D., and Ackerman, A.F., Quantifying software validation: when to stop testing? IEEE SW, May 1989, pp. 19-27. http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=28120

Chidamber, S.R. and C.F. Kemerer, A metrics suite for object-oriented design, IEEE TSE, vol. SE-20, no. 6, June '94, pp.476-493. http://twiki.im.ufba.br/pub/Aside/ProjetoPibicCassio/CKMetrics.pdf

Frakes, W.B. and T.P. Pole, An empirical study of representation methods for reusable software components, IEEE TSE, vol SE-20, no. 8, Aug '94, pp. 617-630. http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=310671

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., and Irwin, J. Aspect--Oriented Programming. In European Conference on Object--Oriented Programming, ECOOP'97,

LNCS 1241, pages 220--242, Finland, June 1997. Springer--Verlag. http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-web.pdf

Rational Unified Process: Best Practices for Software Development Teams http://www.augustana.ab.ca/~mohrj/courses/2000.winter/csc220/papers/rup_best_practices/r up_bestpractices.pdf

The Ten Essentials of RUP <u>http://www-</u>

128.ibm.com/developerworks/rational/library/content/RationalEdge/dec00/TheTenEssentialsofRUP Dec00.pdf

Formal Specification: A Roadmap Axel van Lamsweerde <u>http://www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalvanlamsweerde.pdf</u>

[1] Dr. Judy Goldsmith[2] http://www.scs.ryerson.ca/~dwoit/failure.html.

Syllabus for CS 499-001 Senior Design Project Fall 2009

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building Office hours TR 0915 - 1000 (Robotics (CRMS) Bldg, Room 514D) or by appointment

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS499fall09.htm

Course:	CS 499 Senior Design Project		
Section	001		
Meets:	TR 0800 - 0915		
Location:	Ralph G Anderson Ralph G Anderson-Rm.203-RGAN		

Description:

This is a project course. Students will work in small groups to design and implement systems of current interest to computer scientists. The course will also provide a high-level overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality.

Course Outcomes:

- The student shall know the phases of the software development lifecycle and be able to define them. (C1)
- The student shall know the difference between project and process metrics. (C2)
- The student shall be able to define the terms version control and change control. (C3)
- The student shall be familiar with methods for performing requirements elicitation and requirements analysis. (C4)
- The student shall be able to discuss important design principles such as information hiding and abstraction. (C5)
- The student shall be able to discuss the differences between structured and object oriented analysis and design. (C6)
- The student shall be able to define key testing terms such as black box testing and white box testing. (C7)
- The student shall be able to perform the activities of the software lifecycle for a small to medium software project. (C8)
- The student shall be aware of ethical considerations in software engineering. (C9)

CS Outcomes:

Specifically, students will be able to:

CS1. use accepted project development processes in the project implementation

CS2. implement a large project

CS3. work as part of a team

CS4. present results of their work orally

CS5. document their work in a written report

Course Materials:

Required Text:

Shari Lawrence Pfleeger and Joanne M. Atlee Software Engineering: Theory and Practice,* Fourth Edition* Prentice Hall ISBN: You must obtain a copy of this text.

Recommended Texts:

Frederick P. Brooks, *Mythical Man Month*, 2nd Edition, Addison Wesley ISBN: 0-201-83595-9

Martin Fowler and Kendall Scott UML distilled: a brief guide to the standard object modeling

language

(NOTE: 2nd edition available in library)

Gamma, Helm, Johnson & Vlissides Design Patterns : elements of reusable object-oriented software Addison-Wesley. ISBN 0-201-63361-2.

You do not have to obtain these, though you may choose to. Also, copies have been placed on reserve in the Engineering Library (3rd floor Anderson Hall)

Other readings, as assigned:

These are available via hyperlink in this syllabus or are on our course web page. See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 499 will be determined according to these weights:

Attendance and participation	10%	
Presentations:	25%	
Projects:		50%
Mid-term:	15%	

Where:

*Includes preparation of resume and completion of senior survey.

There will be a mid-term. The exam will be a 50 minute long "in class" exam. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work **between** groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. "All incidents of cheating and plagiarism are taken very seriously at this University. The minimum penalty for a first infraction is a zero on the assignment. [3]" **See attached policy on plagiarism, also <u>here.</u>**

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group project for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. **Proper language usage is required.**

Schedule:

Week	Date	Readings	Topics	Project, Exam
1	Thu	Chapter 1	Why Software	
	8/27/09		Engineering?, Career	
			Center Visitor	
2		Chapter 2 (2.1-	Process and Life Cycle	
	9/01/09	2), Boehm S/W		
2	Thu	Eng. paper Ch 11.1-11.3	Maintaining the System	
2	9/03/09	CII 11.1-11.5	Wantanning the System	
3	Tue	Ch 11.4-11.5	Maintaining the System	Resumes due,
	9/08/09			Hand out mini-
				project: Change
				Request
3	Thu	Ch 4	Requirements and Analysis	
	9/10/09			
4	Tue $0/15/00$	Ch 4	Requirements and Analysis	
4	9/15/09 Thu	Ch 4	Requirements and Analysis	
4	9/17/09	CII 4	Requirements and Analysis	
5	Tue	Ch 5, Parnas	Architecture (and HLD)	Change Request
5	9/22/09	Paper		due.
5	Thu	Ch 6, Wirth	Design	Hand out Phase I
	9/24/09	Paper		(Req/Anal/Arch)
6	Tue	Ch 6	Design	
	9/29/09			
6	Thu	Ch 6	Design	
	10/01/0			
	9			
7	Tue	No class –		
	10/06/0	work on		
7	9 Thu	projects	Waiting the Due - we we	
7	Thu 10/08/0	Ch 7	Writing the Program	
	9			
8	Tue	Ch 7	Writing the Program,	
	10/13/0		Midterm Review	
	9			

8	Thu		Midterm exam	
0	10/15/0		Whiter in exam	
	9			
9	Tue	Ch 8	Testing the Program	
-	10/20/0			
	9			
9	Thu	Ch 8	Testing the Program	
	10/22/0			
	9			
10	Tue	None	Project Presentations	Project Phase I
	10/27/0			due, Start Phase
	9			II
10	Thu	None	Project Presentations	
	10/29/0			
11	9			
11	Tue $11/2/00$	Ch 8	Testing the Program	
11	11/3/09	Ch 9	Testing the System	
11	Thu 11/5/09	Cn 9	Testing the System	
12	Tue	Ch 9	Testing the System	
12	100 11/10/0	CII 9	resting the System	
	9			
12	Thu	No class –		
	11/12/0	work on		
	9	projects		
13	Tue	Ch 10	Delivering the System	
	11/17/0			
	9			
13	Thu	Ch 3	Planning and Managing the	
	11/19/0		Project	
	9			
14	Tue	Ch 3	Planning and Managing the	
	11/24/0		Project	
1.4	9	 		
14	Thu	No class –		
	11/26/0	work on		
15	9 Tue	projects Ch 12	Evolucting Droducts	Sonior aurena
13	1 ue 12/1/09		Evaluating Products, Processes and Resources	Senior surveys due
15	T2/1/09	Ch 12	Evaluating Products,	
15	12/3/09		Processes and Resources	
16	Tue	None	Project Presentations	Phase II due
10	12/8/09		r oject i resentations	I huse If une
16	Thu	None	Project Presentations	
	12/10/0		a suger a resentations	
	9			
	1	1		1

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Barry W. Boehm, Software Engineering, IEEE Trans. On Computers, 25(12):1226-1241, 19. – see course web page

Boehm, B. A Spiral Model for Software Development and Enhancement, Computer, Vol. 21, no. 5, May '88, pp. 61-72. - see course web page

Parnas, D.L., On criteria to be used in decomposing systems into modules, CACM, vol. 15, no. 12, April '72, pp.1053-1058. http://portal.acm.org/citation.cfm?id=361623

Wirth, N. Program development by stepwise refinement, CACM, vol. 14, no. 4, 1971, pp. 221-227. http://www.acm.org/classics/dec95/

Musa, J.D., and Ackerman, A.F., Quantifying software validation: when to stop testing? IEEE SW, May 1989, pp. 19-27. - see course web page

Chidamber, S.R. and C.F. Kemerer, A metrics suite for object-oriented design, IEEE TSE, vol. SE-20, no. 6, June '94, pp.476-493. http://portal.acm.org/citation.cfm?id=631131

Frakes, W.B. and T.P. Pole, An empirical study of representation methods for reusable software components, IEEE TSE, vol SE-20, no. 8, Aug '94, pp. 617-630. - see course web page

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., and Irwin, J. Aspect--Oriented Programming. In European Conference on Object--Oriented Programming, ECOOP'97,

LNCS 1241, pages 220--242, Finland, June 1997. Springer--Verlag. http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-web.pdf

[1] Dr. Judy Goldsmith

[2] http://www.scs.ryerson.ca/~dwoit/failure.html.

[3] www.uky.edu/Ombud/acadoffenses/letterOfWarningExample.doc

Syllabus for CS 687 Empirical Software Engineering Fall 2009

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes)</u>. Room 233, Hardymon Building Office hours TR 0915 - 1000 (Robotics (CRMS) Bldg, Room 514D) or by appointment

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS687-emp-sw-engfall09.htm Course: CS 687 Empirical Software Engineering Section: 002 Meets: TR 11:00 – 12:15 Location: Oliver H Raymond Building-Rm.C226-OHR

Description:

The course will present the following: Detailed study of the scientific process; particularly using the experimental method. Examination of how empirical studies are carried out in software engineering (by industry and by researchers). Review of the distinction between analytical techniques and empirical techniques. Study of when experimentation is required in software engineering, and what kinds of problems can be solved using experimentation. Examination of how to control variables and to eliminate bias in experimentation. Examination of analysis and presentation of empirical data for decision making. Students will learn how the scientific process should be applied, how and when to apply it in the software engineering area, and how to evaluate empirical evidence. The principles will be reinforced by examination of published experimental studies, and through designing and carrying out small experiments. On completion of the course, students will be in a position to design and carry out experiments in ways appropriate for a given problem, and will acquire skills in analyzing and presenting experimental data.

Course Outcomes:

Outcome 1 - The student shall know the scientific process

Outcome 2 - The student shall understand and be able to perform experimental design

Outcome 3 - The student shall understand the principles of experimental research and be able to carry out small experiments

Outcome 4 - The student shall be able to critically evaluate the empirical research carried out by others

Outcome 5 – The student shall be aware of ethical considerations in software engineering.

Course Materials:

Required Text:

Clases Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, Anders Wesslen *Experimentation in Software Engineering: An Introduction* November 1999 Kluwer Academic Pub ISBN: 0792386825 **You must obtain a copy of Wohlin et al.**

Other readings, as assigned: See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 687 will be determined according to these weights:

M.S. students:

Attendance and participation: 10	%
Paper summaries:	20%
Team research project:	40%
Presentation: 30	%
Ph.D. students:	
Attendance and participation: 10	%
Attendance and participation: 10 Paper summaries:	% 20%
	20%
Paper summaries:	20% %
Paper summaries: Individual research project: 40	20% % %

Where:

A=	92 -	100%
$\mathbf{B} =$	83 -	91%
C=	74 -	82%
D=	65 -	73%
$\mathbf{F} =$	64 ai	nd below

Papers:

The first nine papers are about experimentation, and the rest are descriptions of experiments. It is important that you read the papers BEFORE the lectures, as the discussion will be very interactive. Turn in simple summaries and evaluations of **four** of the first nine **by Tuesday**, **9/15/09**. For **one half** of the remaining papers (10), turn in a short (about one page) summary of the paper by **Tuesday 12/1/09**. The summaries should: (1) describe the problem in general terms, (2) paraphrase the experimental hypothesis, (3) summarize and critique the design, (4) discuss the conduct of the experiment, (5) explain whether the hypothesis was proved or disproved, and (6) critique the presentation of the paper. *Paper evaluations will be graded according to the following scale: 0: not submitted, 1: marginal, 2: what was expected, 3: outstanding. You are expected to have read all articles. Proper language usage is required.*

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and assignments with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points are good ways to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted **in person** at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work **between** groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. "All incidents of cheating and plagiarism are taken very seriously at this University. The minimum penalty for a first infraction is a zero on the assignment. [3]" **See attached policy on plagiarism, also <u>here.</u>**

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex, as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group projects for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor retains the right to make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. Proper language usage is required.

Schedule:

Week	Date	Readings	Topics	Project, Homework, Exam
1	Thu	Paper 1	Introduction,	
	8/27/09		Overview of Scientific	
			Method	
			Lecture 1	

2	Tues 9/1/09	Paper 1,2	Lecture 1, Experimentation in Software Engineering, Lecture 2	
2	Thu 9/3/09	Papers 2 – 5, Wohlin Chapter 1, 2	Experimentation in Software Engineering, Lecture 2 – 4,	Hand out project assignment
3	Tues 9/8/09	Papers 6 - 9, Wohlin Chapter 3, 4, 5, 6, 7, 10	Experimentation in Software Engineering, Lecture 5 – 8, Guest from Ag Center (Dr. Joe Chappell)	
3	Thu 9/10/09	Papers 6 - 9, Wohlin Chapter 3, 4, 5, 6, 7, 10	Experimentation in Software Engineering, Lecture 5 - 8	
4	Tues 9/15/09	Papers 10, 11, 12, Wohlin Chapter 8, 9	Metrics and Complexity, Guest from the Writing Center	Four summaries due, Topic selection
4	Thu 9/17/09	Papers 10, 11, 12, Wohlin Chapter 8, 9	Metrics and Complexity, Ethics	
5	Tues 9/22/09	Wohlin Chapter 11, 12	Project Day	
5	Thu 9/24/09	Wohlin Chapter 11, 12	Project Day	
6	Tues 9/29/09	Papers 13, 14, 16	Testing, lecture Assert- Assess	Experiment Design Reviews
6	Thu 10/1/09	Papers 13, 14, 16	Testing, lecture Assert- Assess	Experiment Design Reviews
7	Tues 10/6/09	Papers 23a, 21, 22	Maintenance, lecture Writing	
7	Thu 10/8/09	Papers 23a, 21, 22	Maintenance, lecture Writing	
8	Tues 10/13/09	Papers 32, 33, 34, 35	Traceability	Hand out sample paper
8	Thurs 10/15/09	Papers 32, 33, 34, 35	Traceability	
9	Tues 10/20/09	Papers 23, 24	Requirements & Design	
9	Thurs 10/22/09	Papers 23, 24	Requirements & Design	Artifact Review
10	Tues 10/27/09	Papers 25, 26	Design	

10	Thurs 10/29/09	Papers 25, 26	Design	
11	Tues 11/3/09	Papers 27, 28	Design, Lecture Presentations	Draft paper due
11	Thurs 11/5/09	Papers 27, 28	Design, Lecture Presentations	
12	Tues 11/10/09	Papers 29, 30	HCI, Management and Inspections	Reviews due , Hand out sample presentation
12	Thu 11/12/09	Papers 29, 30	– No class – work on project	
13	Tues 11/17/09	None	HCI, Management and Inspections	
13	Thurs 11/19/09	None	Catch up	
14	Tues 11/24/09	None	Project Presentations	Final research papers due
14	Thurs 11/26/09	NO CLASS Have fun, be safe!		
15	Tues 12/1/09	None	Project Presentations	All reading paper summaries due
15	Thurs 12/3/09	None	Project Presentations	
16	Tues 12/8/09	None	Project Presentations	
16	Thurs 12/10/09	None	Project Presentations	
Final	Tues 12/15/09 1030 - 1300	None	Project Presentations – if time slot needed	

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Readings:

Empirical Methods Overview

- 35. National Research Council, Academic Careers for Experimental Computer Scientists and Engineers, Ch. 1, National Acadamy Press, pages 9-33, 1994. TOC PS
- 36. Fenton, Norman, Shari Lawrence Pfleeger and Robert L. Glass, "Science and Substance: A Challenge to Software Engineers", *IEEE Software*, V. 11, N. 4, pages 86-95, July 1994. <u>Paper</u>
- 37. **Tichy**, Walter F., "Hints for Reviewing Empirical Work in Software Engineering", *Empirical Software Engineering*, 5(4):309-312, December 2000. <u>EMSE Home</u>

- Amschler Andrews, Anneliese and Arundeep S. Pradhan, "Ethical Issues in Empirical Software Engineering: The Limits of Policy", *Empirical Software Engineering*, 6(2):105-110, June 2001. <u>EMSE Home</u>
- 39. Zendler, Andreas, "A Preliminary Software Engineering Theory as Investigated by Published Experiments", *Empirical Software Engineering*, 6(2):161-180, June 2001. <u>EMSE</u> <u>Home</u>
- 40. **Harrison**, Warren "Editorial: Open Source and Empirical Software Engineering", *Empirical Software Engineering*, 6(3):193-194, September 2001. <u>EMSE Home</u>
- 41. **Shull**, Forrest, Manoel G. Mendoncça, Victor Basili, et al. "Knowledge-Sharing Issues in Experimental Software Engineering", *Empirical Software Engineering*, (9)1-2:111-137, March 2004. <u>EMSE Home</u>
- 42. **Karahasanovic'**, Amela, Bente Anda, Erik Arisholm, Siw Elisabeth Hove, Magne Jørgensen, Dag I K Sjøberg and Ray Welland, "Collecting Feedback During Software Engineering Experiments", *Empirical Software Engineering*, 10(2):113-147, April 2005. <u>EMSE Home</u>
- 43. **Offutt**, Jeff, Yuan Yang and Jane Hayes, "SEEWeb: Making Experimental Artifacts Available", *Workshop on Empirical Research in Software Testing*, Boston, MA, July 2004. <u>PDF</u>

Metrics and Complexity

- 44. L. Briand and J. Wust, "Empirical Studies of Quality Models in Object-Oriented Systems", *Advances in Computers*, vol. 56, 2002, Academic Press. Briand's homepage
- 45. Fenton, Norman and Niclas Ohlsson, "Quantitative Analysis of Faults and Failures in a Complex Software System", *IEEE Transactions on Software Engineering*, (26)8:797-814, August 2000. PDF
- 46. Wohlin, Claes, and Anneliese Amschler Andrews "Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data", *Empirical Software Engineering*, (8)3:285-308, September 2003. EMSE Home

Testing

- 47. Juristo, Natalia, Ana M. Moreno, Sira Vegas "Reviewing 25 Years of Testing Technique Experiments", *Empirical Software Engineering*, (9)1-2:7-44, March 2004. <u>EMSE Home</u>
- 48. Ma, Yu-Seung, Jeff Offutt and Yong Rae Kwon, "MuJava: An Automated Class Mutation System", *Journal of Software Testing, Verification and Reliability*, 15(2):97-133, June 2005.
- 49. **Roger T. Alexander** and Jeff Offutt, "Empirical Evaluation of Coupling-based Testing Techniques for Object-oriented Programs", submitted. <u>PDF</u>
- 50. Lionel C. Briand, Massimiliano Di Penta and Yvan Labiche, "Assessing and Improving State-Based Class Testing: A Series of Experiments", *IEEE Transactions on Software Engineering*, 30(11), November 2004. PDF
- 51. Grindal, Mats, Jeff Offutt and Jonas Mellin, "State-of-Practice: An Investigation of Testing Maturity", submitted. <u>Preliminary version</u>
- 52. Stuart C. Reid, "An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and Random Testing", Proceedings of the 4th International Software Metrics Symposium (METRICS '97), 1997. <u>PDF</u>

Maintenance

53. • Kajko-Mattsson, Mira, "A Survey of Documentation Practice within Corrective Maintenance", *Empirical Software Engineering*, 10(1):31-55, January 2005. <u>EMSE Home</u>

- 54. Liguo Yu, Stephen R. Schach, Kai Chen and Jeff Offutt, "Categorization of Common Coupling and its Application to the Maintainability of the Linux Kernel", *IEEE Transactions on Software Engineering*, 30(10):694-706, October 2004. <u>PDF-local</u>
- 55. Kai Chen, Stephen R. Schach, Liguo Yu, Jeff Offutt and Gillian Z. Heller, "Open-Source Change Logs", *Kluwer's Empirical Software Engineering*, 9(3):197-210, September 2004. <u>online EMSE Home</u>
- 56. Stephen R. Schach, Bo Jin, Liguo Yu, Gillian Z. Heller and Jeff Offutt, "Determining the Distribution of Maintenance Categories: Survey versus Measurement", *Kluwer's Empirical Software Engineering*, 8(4):351-365, December 2003. <u>online EMSE Home</u>

23a. Hassan, A. E. 2009. Predicting faults using the complexity of code changes. In Proceedings of the

2009 IEEE 31st international Conference on Software Engineering - Volume 00 (May 16 - 24,

2009). International Conference on Software Engineering. IEEE Computer Society, Washington,

DC, 78-88 <u>PDF</u>

Requirements

57. • **Damian**, Daniela, James Chisan, Lakshminarayanan Vaidyanathasamy and Yogendra Pal, "Requirements Engineering and Downstream Software Development: Findings from a Case Study", *Empirical Software Engineering*, (10)3:255-28, July 2005. <u>EMSE Home</u>

Design

- 58. Iris Reinhartz-Berger and Dov Dori, "OPM vs. UML--Experimenting with Comprehension and Construction of Web Application Models", *Empirical Software Engineering*, 10(1), January 2005. <u>EMSE Home</u>
- 59. Marek Vokáccaron, Walter Tichy, Dag I. K. SjØberg, Erik Arisholm and Magne Aldrin, "A Controlled Experiment Comparing the Maintainability of Programs Designed with and without Design Patterns-A Replication in a Real Programming Environment", *Empirical Software Engineering*, 9(3):149-195, September 2004. <u>EMSE Home</u>
- 60. Anda, Bente and Dag I. K. Sjøberg, "Investigating the Role of Use Cases in the Construction of Class Diagrams", *Empirical Software Engineering*, (10)3:285-309, July 2005. <u>EMSE Home</u>
- 61. Svahnberg, Mikael and Claes Wohlin "An Investigation of a Method for Identifying a Software Architecture Candidate with Respect to Quality Attributes", *Empirical Software Engineering*, (10)2:149-181, April 2005. <u>EMSE Home</u>
- 62. Knight, John C. and Nancy G. Leveson, "An Experimental Evaluation of the Assumption of Independence in Multiversion Programming", *IEEE Transactions on Software Engineering*, (SE-12)1:96-109, January 1986. <u>NEC Research Index (CiteSeer)</u>

HCI

63. Miara, Richard J., Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman, "Program Indentation and Comprehensibility", *Communications of the ACM*, (26)11:861-867, November 1983. <u>ACM</u>

Management and Inspections

64. • McDonald, James, "The Impact of Project Planning Team Experience on Software Project Cost Estimates", *Empirical Software Engineering*, (10)2:219-234, April 2005. <u>EMSE Home</u>

65. • Thelin, Thomas, Per Runeson, Claes Wohlin, et al. "Evaluation of Usage Based Reading-Conclusions after Three Experiments", *Empirical Software Engineering*, (9)1-2:77-110, March 2004. <u>EMSE Home</u>

Traceability

- 66. O.C.Z. Gotel and A.C.W. Finkelstein. An analysis of the requirements traceability problem. In 1st International Conference on Requirements Engineering, pages 94--101, 1994. <u>PDF</u>
- 67. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. Recovering Traceability Links between Code and Documentation. IEEE Transactions on Software Engineering, Volume 28, No. 10, October 2002, 970-983. PDF
- 68. Jane Huffman Hayes, Alex Dekhtyar: A Framework for Comparing Requirements Tracing Experiments. International Journal of Software Engineering and Knowledge Engineering 15(5): 751-782 (2005) PDF
- 69. Jane Cleland-Huang, Raffaella Settimi, Oussama Ben Khadra, Eugenia Berezhanskaya, Selvia Christina: Goal-centric traceability for managing non-functional requirements. ICSE 2005: 362-371 PDF

[1] Dr. Judy Goldsmith

- [2] <u>http://www.scs.ryerson.ca/~dwoit/failure.html</u>.
- [3] www.uky.edu/Ombud/acadoffenses/letterOfWarningExample.doc

Syllabus for CS 499-001 Senior Design Project Fall 2010

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building Office hours TR 0915 - 1000 (Robotics (CRMS) Bldg, Room 514D) or by

appointment

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS499fall10.htm

Course:	CS 499 Senior Design Project			
Section	001			
Meets:	TR 0800 - 0915			
Location:	Ralph G Anderson Ralph G Anderson-Rm.203-RGAN			

Description:

This is a project course. Students will work in small groups to design and implement systems of current interest to computer scientists. The course will also provide a high-level overview of the software engineering discipline: software requirements, software design, software construction, software management, and software quality.

Course Outcomes:

- The student shall know the phases of the software development lifecycle and be able to define them. (C1)
- The student shall know the difference between project and process metrics. (C2)
- The student shall be able to define the terms version control and change control. (C3)
- The student shall be familiar with methods for performing requirements elicitation and requirements analysis. (C4)
- The student shall be able to discuss important design principles such as information hiding and abstraction. (C5)
- The student shall be able to discuss the differences between structured and object oriented analysis and design. (C6)
- The student shall be able to define key testing terms such as black box/white box testing. (C7)
- The student shall be able to perform the activities of the software lifecycle for a small to medium software project. (C8)
- The student shall be aware of ethical considerations in software engineering. (C9)

CS Outcomes:

Specifically, students will be able to:

- CS1. use accepted project development processes in the project implementation
- CS2. implement a large project
- CS3. work as part of a team
- CS4. present results of their work orally
- CS5. document their work in a written report

Course Materials:

Required Text:

Shari Lawrence Pfleeger and Joanne M. Atlee Software Engineering: Theory and Practice,* Fourth Edition* Prentice Hall ISBN: 0136061699 You must obtain a copy of this text.

Recommended Texts:

Frederick P. Brooks, *Mythical Man Month*, 2nd Edition, Addison Wesley ISBN: 0-201-83595-9

Martin Fowler and Kendall Scott UML distilled: a brief guide to the standard object modeling

language

(NOTE: 2nd edition available in library)

Gamma, Helm, Johnson & Vlissides Design Patterns : elements of reusable object-oriented software Addison-Wesley. ISBN 0-201-63361-2. **You do not have to obtain these,** though you may choose to. Also, copies have been placed on reserve in the Engineering Library (3rd floor Anderson Hall)

Other readings, as assigned:

These are available via hyperlink in this syllabus or are on our course web page. See list below.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 499 will be determined according to these weights:

Attendance and participa	10%	
Presentations:	15%	
Projects:		60%
Mid-term:	15%	

Where:

A=	92 -	100%
B =	83 -	91%
C=	74 -	82%
D=	65 -	73%
F =	64 a	nd below

*Includes preparation of resume and completion of senior survey.

There will be a mid-term. The exam will be an "in class" exam. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Attendance:

Students are expected to attend and participate in all scheduled classes. Arrival after attendance has been taken at the start of class will be considered an absence. The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family

member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class starts are **late**. Credit will be deducted for late assignments. Assignments will not be accepted after solutions have been distributed.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work **between** groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. "All incidents of cheating and plagiarism are taken very seriously at this University. The minimum penalty for a first infraction is a zero on the assignment. [3]" **See attached policy on plagiarism, also <u>here.</u>**

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department and located in Room 203 of the Engineering Annex. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>http://www.cs.uky.edu/</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Group Projects:

The group project for the course will require you to work together with other students in the class. You will be evaluated on your contribution to the group project and presentations of the project results. The instructor will make group assignments. Group members are not guaranteed to receive the same grade; evaluation of the group will be individualized to determine individual understanding, commitment, and mastery of the project goals. As part of the project, written reports will be required. **Proper language usage is required.**

Schedule:

Week	Date	Readings	Topics	Project, Exam
1	Thu	Chapter 1	Why Software	
	8/26/10		Engineering?, Career	
			Center Visitor	
2	Tue	Chapter 2 (2.1-	Process and Life Cycle	
	8/31/10	2),		
		Boehm S/W		
		Eng. paper		
2	Thu	Ch 3	Planning and Managing the	
	9/02/10		Project	
3	Tue	Ch 3	Planning and Managing the	Resumes due
	9/07/10		Project	
3	Thu	Ch 4	Requirements and Analysis	
	9/09/10			
4	Tue	Ch 4	Requirements and Analysis	
	9/14/10			
4	Thu	Ch 5, Parnas	Architecture (and HLD)	
	9/16/10	Paper		

5	Tue 9/21/10	Ch 6, Wirth Paper	Design	Hand out Phase I assignment
5	Thu	Ch 6	Design	
6	9/23/10 Tue 9/28/10	Ch 6	Design	
6	9/28/10 Thu 9/30/10	No class – work on projects		
7	Tue 10/05/1 0	Ch 7	Writing the Program	
7	Thu 10/07/1 0	Ch 7, 8	Writing the Program, Testing the Program	
8	Tue 10/12/1 0	None	Project Presentations	Project Phase I due, Start Phase II
8	Thu 10/14/1 0	Ch 8	Testing the Program	
9	Tue 10/19/1 0	Ch 8	Testing the Program, Midterm Review	
9	Thu 10/21/1 0		Midterm exam	
10	Tue 10/26/1 0	Ch 8, 9	Testing the Program, Testing the System	
10	Thu 10/28/1 0	Ch 9	Testing the System	
11	Tue 11/2/10	Ch 10	Delivering the System	
11	Thu 11/4/10	Ch 11.1-11.3	Maintaining the System	
12	Tue 11/09/1 0	No class – work on projects		
12	Thu 11/11/1 0	Ch 11.4-11.5	Maintaining the System	
13	Tue 11/16/1 0	None	Project Presentations	Project Phase II due, Start Phase III

13	Thu	Ch 12, Code of	Evaluating Products,	
	11/18/1	Conduct	Processes and Resources,	
	0		Ethics	
14	Tue	No class –		
	11/23/1	work on		
	0	projects		
14	Thu	No class	Fall break - Thanksgiving	
	11/25/1			
	0			
15	Tue	Ch 12	Evaluating Products,	Senior surveys
	11/30/1		Processes and Resources	due
	0			
15	Thu	Ch 14	Future of Software	
	12/2/10		Engineering	
16	Tue	None	Project Presentations	Completed
	12/7/10			projects due
16	Thu	None	Project Presentations	
	12/09/1		-	
	0			

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Barry W. Boehm, Software Engineering, IEEE Trans. On Computers, 25(12):1226-1241, 19. – see course web page

Boehm, B. A Spiral Model for Software Development and Enhancement, Computer, Vol. 21, no. 5, May '88, pp. 61-72. - see course web page

Parnas, D.L., On criteria to be used in decomposing systems into modules, CACM, vol. 15, no. 12, April '72, pp.1053-1058. http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Wirth, N. Program development by stepwise refinement, CACM, vol. 14, no. 4, 1971, pp. 221-227. http://sunnyday.mit.edu/16.355/wirth-refinement.html

Musa, J.D., and Ackerman, A.F., Quantifying software validation: when to stop testing? IEEE SW, May 1989, pp. 19-27. - see course web page

Chidamber, S.R. and C.F. Kemerer, A metrics suite for object-oriented design, IEEE TSE, vol. SE-20, no. 6, June '94, pp.476-493. http://portal.acm.org/citation.cfm?id=631131

Frakes, W.B. and T.P. Pole, An empirical study of representation methods for reusable software components, IEEE TSE, vol SE-20, no. 8, Aug '94, pp. 617-630. - see course web page

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., and Irwin, J. Aspect--Oriented Programming. In European Conference on Object--Oriented Programming, ECOOP'97,

LNCS 1241, pages 220--242, Finland, June 1997. Springer--Verlag. http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-ECOOP97/for-web.pdf

[1] Dr. Judy Goldsmith

[2] http://www.scs.ryerson.ca/~dwoit/failure.html.

[3] www.uky.edu/Ombud/acadoffenses/letterOfWarningExample.doc

Syllabus for CS 585-001 Software Testing

Instructor:

Dr. Jane Hayes (<u>www.cs.uky.edu/~hayes</u>). Room 233, Hardymon Building 257-3171 Office hours 1:00 – 1:50 pm T, 9:30-10:30 R or by appointment in Robotics (CRMS) Room 514D

Course information:

Course homepage http://selab.netlab.uky.edu/homepage/CS585_softwaretest_spr11.htm

Course:	CS 585 Software Testing
Section:	001
Meets:	TR 2:00 – 3:15
Location:	Gatton Business and Economics Bldg room 306 – NEW ROOM!

Description:

Concepts and techniques for testing software and assuring its quality. Topics cover software testing at the unit, module, subsystem, and system levels, automatic and manual techniques for generating and validating test data, the testing process, static vs. dynamic analysis, functional testing, inspections, and reliability assessment. *Professor's note*: The course will attempt to prepare students to test software in structured, organized ways. This course should provide practical knowledge of a variety of ways to test software, an understanding of some of the tradeoffs between testing techniques, and a feel for the practice of software testing **and** the research in software testing.

Course outcomes:

The student shall know the levels of testing and be able to define them. (C1)

The student shall understand the test process, including how to develop test plans, test cases, and test reports (results). (C2)

The student shall know the definitions of key testing terms such as coverage criterion, subsumption, and black box testing. (C3)

The student shall understand the difference between a fault and a failure. (C4)

The student shall understand how to generate test cases that achieve data flow coverage and/or determine if given test cases achieve data flow coverage for a given program. (C5)

The student shall know how to apply at least two test techniques, e.g. equivalence partitioning testing, random testing, control-flow based criteria testing, data-flow based criteria testing, mutation testing, object-oriented testing. (C6)

The student shall know how to evaluate and/or report test related measures such as coverage/thoroughness measures; remaining number of defects/Fault density; mutation score; reliability growth; etc. (C7)

The student shall understand class integration test order. (C8)

The student shall be aware of ethical considerations in software testing. (C9)

Course Materials:

Required Texts:

- Paul Ammann and Jeff Offutt, *Introduction to Software Testing*, Cambridge University Press, Cambridge, UK, ISBN 0-52188-038-1, 2008.
- CAST_CBOK_Ver-6-2-1 Certified Associate Software Tester (CAST) Common Body of Knowledge (CBOK), Version 6.2 © 2008, Quality Assurance Institute. – details will be given in class on downloading this document
- Various artifacts available over the web. Details as needed.

Other readings, as assigned: See end of syllabus, there may be additions.

Course web page:

Course materials will be available on the course web page. The course web page and e-mail will be important methods of distributing information for the course.

Grading:

Your grade in CS 585 will be determined according to these weights:

Undergraduate students:

Homework assignments/paper summaries: Quizzes: Project: Final: 10% Graduate students:	26% 22% 42%
Homework assignments/paper summaries: Additional paper summaries: 5%	19%
Quizzes: Project:	19% 35%
Short paper: 12%	
Final: 10%	

Where: A= 92 - 100% B= 83 - 91% C= 74 - 82% D= 65 - 73%F= 64 and below

The lowest homework grade will be dropped; allowing for a missed class.

There will be one closed book, in-class, comprehensive final. The date for the exam is listed in the schedule below.

Whining Lowers Grades [1]:

You are always welcome and encouraged to discuss exams and homework with your professor; it is an excellent way to learn from your mistakes. If the grading does not make sense to you, please ask. You may not yet have understood your mistake -- or there may be an error in the grading. However, whining, demanding a re-grade instead of requesting one, or saying that you deserve more points is a good way to convince a professor to re-grade your entire assignment or exam, perhaps with more careful attention to your mistakes.

Late Policy:

Assignments must be submitted in person at or before **class time** on the day the assignment is due. Assignments turned in after class has started are **late and will have points deducted.** Assignments will not be accepted after solutions have been distributed.

Attendance/Absences:

Arrival after class has started is disruptive to the class and is not appreciated. Arrival after student presentations have begun will not be allowed. Absence the day of a quiz, test or **presentation constitutes a 0 for that grade element.** The following are acceptable reasons for excused absences: 1) serious illness; 2) illness or death of family member; 3) University-related trips (S.R. 5.2.4.2.C); 4) major religious holidays; 5) other circumstances that the instructor finds to be "reasonable cause for nonattendance." It is the student's responsibility to provide sufficient documentation regarding the nature of the absence, and the instructor retains the right to ask for such proof.

Academic Honor Code:

Individual work (homework, exams) must be your own. No sharing of computer code or other work will be allowed. Group projects allow the sharing of ideas and computer code within the group. No sharing of work between groups will be acceptable. The University of Kentucky's guidelines regarding academic dishonesty will be strictly enforced. **Note that the minimum penalty for plagiarism is an E in the course.** A link to a paper "Plagiarism: What is it?" may be found at the UK Ombud web site or can be accessed at http://www.uky.edu/Ombud/Plagiarism.pdf.

Accepting Responsibility for Failure [2]:

Failure is an unpleasant word, with bleak connotations. Yet it is a word that applies to every one of us at different stages of our lives. No one is exempt. Our icons, gurus, religious leaders, politicians, rock stars and educators all fail. It is simply a reality of being human. It is also a label that we fight desperately to avoid. And it is this fight to avoid failure that drives us forward towards our life accomplishments. So--why can't we take responsibility for our own failure when it does occur?

We need to accept responsibility for a very important reason--namely, maturity. We cannot reach a full level of maturity until we accept ownership of our own mistakes. As an educator, I am confronted with this problem on a daily basis. When a student is late for class, it is because a parent failed to wake them up. A failed test becomes the responsibility of the teacher, the system, society, an after school job, but never the fault of the test taker. An incomplete assignment is inevitably due to the needy demands of a friend, or an electrical failure. I feel particularly blessed because the power circuits leading to my home must be exceptionally fine, as I have yet to experience the myriad of blackouts that have plagued my students.

Nevertheless, the daily onslaught of excuses has left me questioning the value of our education system. What, after all, is the point of "higher learning" if we fail to master the basic task of owning up to our own mistakes?

As we proceed through our education system and indeed life, our excuses for failure become more grandiose and perhaps more grotesque because the crude reality is that we have failed to mature in any significant sense of the word. To continually shift responsibility away from ourselves is worse than being a coward. Even a coward will admit that their failure is a result of their own lack of courage.

Accepting failure takes strength of character, honesty and humility. It provides a building block for future achievements. When we deny culpability, we rob ourselves of the chance to learn from our mistakes. We condemn ourselves to a lifetime pattern of avoidance and deception. Like Marley's ghost, dragging his chains of missed humanitarian opportunities behind him, we crawl forward pulling our chains of pathetic excuses behind us-never fully maturing, never fully reaching our true potential. This stale baggage is far more character eroding than any of our individual failures could ever be.

Computer Facilities:

You will be assigned an account for this course in the Multilab, a PC laboratory administered by the Computer Science department, located in Room 203 of the Engineering Annex as well as the CSLab. For information regarding these laboratories, see links under "facilities" from the Computer Science homepage (<u>www.cs.uky.edu</u>). You may use alternative computer systems for developing and testing your work, provided that your submitted work will compile and run under the proper software environment as directed in class.

Paper Summaries [3]:

You are required to read and evaluate each of the assigned readings prior to discussion in class. Summaries/evaluations are **due at the start of class**. Late paper summaries will have points deducted. Paper summaries will not be accepted after graded papers have been returned. Each paper summary should be on a separate sheet of paper (ONE page only), and include:

- \cdot The title and first author's name
- \cdot The main point that the article seemed to make (2-5 sentences)
- Two subjective numerical ratings on a 1-to-6 scale (1 low, 6 high):
- a) How important is the material covered in the article?
- b) How well-written was the article?
- \cdot Two to three paragraphs concerning the content of the article, containing either:

a) A question about the article, such as one that you or someone reading the paper for the first time might have to stop and study, look elsewhere, or re-read to find an answer. Questions should be accompanied by an elaboration of the question, and/or a discussion of its relevance.

b) A comment on the article, such as discussion of application, classification, comparison, and/or evaluation of methods.

c) What you liked, disliked, found interesting or found unclear in the article.

Also, see "How to Read an Engineering Research Paper" by Bill Griswold for additional ideas (<u>http://www-cse.ucsd.edu/users/wgg/CSE210/howtoread.html</u>).

Paper evaluations will be graded according to the following scale: 0: not submitted, 1: marginal, 2: what was expected, 3: outstanding. You are expected to have read all articles. Proper language usage is required.

Homework assignments:

There will be small computer and homework assignments for some of our topics. Some will require pencil and paper and others will require modest programming or use of tools available from the Web. Proper language usage is required.

Quizzes:

We will have periodic quizzes and no midterm exam. Quizzes will be given during the **first 10 - 20 minutes** of each class and no makeup or late quizzes will be given.

Short Paper and/or Presentation:

Graduate students will prepare a 3 to 4 page paper that describes a current testing topic of the student's choosing. Proper language usage is required.

Testing Project:

Students will develop and execute a testing approach for a software application of their choosing (there are many open source applications available, the professor also has access to three games: Mole Whacker, Spell Dodger, and Set). Students will develop a Test Plan, Test Description (test cases), and Test Report. Status reports may be due at various points to document progress. More details will be provided in class.

Schedule:

Week	Date	Readings	Topics	Assignments, Exam
1	Thu 1/13/11		Introduction and Background on Coverage	
	1/13/11	i Chapter 1.1-	Dackground off Coverage	

		1.3, CBOK 1.1 - 1.7	Based Testing	
2	Tue 1/18/11	Ammann/Offut t Chapter 1.1- 1.3, (Read Ariane 5 Flight Failure– graduate students), CBOK 1.1 – 1.7	Introduction and Background	Graduate student paper summary due
2	Thu 1/20/11	22 CB OK 2, 3	23 Test Environment, Test Management – visitor?	Homework 1 (1 st) due
3	Tue 1/25/11	24 CB OK 2, 3	25 Test Environment, Test Management	Quiz 1
3	Thu 1/27/11	CBOK 4	Test Planning	Will hand out graduate paper assignment
4	Tue 2/1/11	AO 2.1-2.2, (Read Offutt paper – graduate students)	Graph Coverage	Graduate student paper summary due
4	Thu 2/3/11	AO 2.1-2.2	Graph Coverage	Homework 2 (2 nd) due
5	Tue 2/8/11	CBOK 5, 6	Test Execution, Test Reporting	Will hand out testing project assignment
5	Thu 2/10/11	AO 2.3-2.5	Graph Coverage for code – to RGAN 102, start Homework 4 in lab	Topics for graduate papers due
6	Tue 2/15/11	AO 2.3-2.5	Graph Coverage for other artifacts – visitor?	Quiz 2
6	Thu 2/17/11	Web readings	Game testing- to RGAN 102	
7	Tue 2/22/11	AO 3.1, 3.2, 3.3, 3.5	Logic testing	Project proposal due
7	Thu 2/24/11	AO 3.1, 3.2, 3.3, 3.5	Logic testing	Homework 6 (3 rd) due
8	Tue 3/1/11	AO 4, Read Hutchins et al.	Input space partitioning	Paper Summary due

8	Thu 3/3/11	AO 4, Killer Robot article	Input space partitioning, Ethics	$\begin{array}{ccc} 26 & \text{Hom} \\ & \text{ewor} \\ & k 8 \\ & (4^{\text{th}}) \\ & \text{due} \end{array}$
9	Tue 3/8/11	AO 5.1-5.3, 5.5	Syntax testing/mutation analysis, Integration and OO, input space grammars	MIDTERM OF SEMESTER
9	Thu 3/10/11	AO 5.1-5.3, 5.5	Syntax testing/mutation analysis, Integration and OO, input space grammars – to RGAN 102	Test Plan/Description due
10	Tue 3/15/11	NO CLASS	NO CLASS	NO CLASS
10	Thu 3/17/11	NO CLASS	NO CLASS	NO CLASS
11	Tue 3/22/11	27 AO 6.1, 6.2	28 Practical considerations technologies – visitor?	Homework 9 (5 th) due
11	Thu 3/24/11	AO 6.3, 8.1	Practical considerations technologies, Building tools	Homework 4 (6 th) due
12	Tue 3/29/11	AO 6.3, 8.1	Practical considerations technologies, Building tools	Draft graduate papers due
12	Thu 3/31/11	AO 7.1, 7.2	Testing OO software– to RGAN 102	Quiz 3
13	Tue 4/5/11	AO 7.1, 7.2, CBOK 1.8, web readings	Testing OO software, coding standards, split testing, fuzz testing	Project Status report due (preliminary test report)
13	Thu 4/7/11	29 CB OK 6, 7, 8, 9, buff er over flo w read ing	30 Test Reporting, User Acceptance testing, Testing Contractor Software, Testing Software Controls, buffer overflow, information flow analysis	
14	Tue 4/12/11	31 CB OK 7, 8,	32 User Acceptance	Quiz 4

			0	1	<u> </u>	,
			9		Contractor	
					Software,	
					Testing	
					Software	
			~~		Controls	~ 1
14	Thu	33	CB	34	Testing New	Graduate papers
	4/14/11		OK		Technologies,	due
			10,		Vocabulary – to	
			CB		RGAN 102	
			OK			
			Voc			
			abul			
			ary			
15	Tue	35	CB	36	Testing New	
	4/19/11		OK		Technologies,	
			10,		Vocabulary –	
			CB		visitor?	
			OK			
			Voc			
			abul			
			ary			
15	Thu	37	We	38	Test driven	Project due –
	4/21/11		b		development	Test Reports
			read		(agile testing)	
			ings			
16	Tue	39	Rea	40	Web testing	Paper Summary
	4/26/11		d			due
			Fra			
			nkl			
			and			
			Wei			
			ss,			
			web			
			read			
			ings	~ *		
16	Thu			Course W	1 1	
	4/28/11	.		Final Exa	am Review	
Final	Fri	Review a				Exam (Final)
	5/6/201	readings				
	1	assignme	ents			
	0800-					
	1030					

The syllabus is subject to change, and you are responsible for keeping informed of any alterations.

Possible outside readings:

Report by the Inquiry Board. ARIANE 5 Flight 501 Failure. Technical report, European Space Agency, 1996. J.L. Lions, Chairman of the Board. <u>http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html</u>

Experiments of the effectiveness of dataflow- and controlflow-based test adequacy criteria

International Conference on Software Engineering Proceedings of the 16th international conference on Software engineering Sorrento, Italy, Pages: 191 – 200, Year of Publication: 1994, ISBN:0-8186-5855-X Authors: **Monica Hutchins,** Herb Foster, Tarak Goradia, Thomas Ostrand Paper available from our course web page

An experimental comparison of the effectiveness of the all-uses and all-edges adequacy

criteria International Symposium on Software Testing and Analysis Proceedings of the symposium on Testing, analysis, and verification, Victoria, British Columbia, Canada

Pages: 154 – 164, Year of Publication: 1991, ISBN:0-89791-449-X Authors: Phyllis G. **Frankl**, Stewart N. **Weiss** Paper available from our course web page

41 Investigations of the software testing coupling effect

ACM Transactions on Software Engineering and Methodology (TOSEM) Volume 1, Issue 1 (January 1992), Pages: 5 – 20, Year of Publication: 1992 ISSN:1049-331X Author: A. Jefferson Offutt Paper available from our course web page

[1] Dr. Judy Goldsmith

[2] <u>http://www.scs.ryerson.ca/~dwoit/failure.html</u>.

[3] http://www.cs.ucsc.edu/~ejw/courses/290gw02/assignments.htm