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Abstract 

We derive a model for estimating adaptive software 
maintenance effort in person hours, the Adaptive 
Maintenance Effort Model (AMEffMo).  A number of 
metrics such as lines of code changed and number of 
operators changed were found to be strongly correlated 
to maintenance effort. The regression models performed 
well in predicting adaptive maintenance effort as well as 
provide useful information for managers and maintainers. 

1. Introduction 
   Software maintenance typically accounts for at least 50 
percent of the total lifetime cost of a software system [16].  
Schach et al. found that 0 – 13.8% of changes made fall 
under the category of adaptive maintenance [25].  It is 
wise to design software that is maintainable since 18.2% 
of project time is devoted to adaptive maintenance [25]. 
   Software maintainability is defined as “the ease with 
which a software system or component can be modified to 
correct faults, improve performance, or other attributes, or 
adapt to a changed environment” [15]. Unfortunately, 
developers and managers underestimate the time and 
effort required to change software.  A lack of validated, 
widely accepted, and adopted tools for planning, 
estimating, and performing maintenance also contributes 
to this problem.   
   This paper addresses the aforementioned problem of 
planning and estimating when change is required.  A 
metrics-based method is introduced that uses a model for 
estimating adaptive maintenance effort.  A study was 
performed to determine metrics that correlated closely 
with maintenance effort as measured in time (hours).  
These metrics were then used to build a model for 
estimating adaptive maintenance effort.  Two simple 
regression models were built.  The result, the Adaptive 
Maintenance Effort Model (AMEffMo), appears 
promising from initial results.    

2. Related Work 

2.1 Effort Estimation Models 
The Constructive Cost Model (COCOMO) [3,5,7,28] 
supports the estimation of cost, effort, and schedule when 

planning a new software development project.  Albrecht 
introduced the notion of function points (FP) to estimate 
effort [1].  Mukhopadhyay [19] proposes early software 
cost estimation based on requirements alone.    Software 
Life Cycle Management (SLIM) [23] is based on the 
Norden/Rayleigh function and is suitable for large 
projects.  Shepperd et al. [27] argued that algorithmic cost 
models such as COCOMO and those based on function 
points suggested an approach based on using analogous 
projects to estimate the effort for a new project.   
   In addition to the traditional off-the-self models such as 
COCOMO, machine-learning methods have surfaced 
recently.  In [17], Mair et al. compared machine-learning 
methods in building software effort prediction systems.  
There has also been some work toward applying fuzzy 
logic to building software metrics models for estimating 
software development effort [10].  Recent attempts have 
also been made to evaluate the potential of genetic 
programming in software effort estimation [6]. Putnam et 
al. [24] argue that the relationship between the metrics 
size, effort, and time is nonlinear.  Mendes et al. [18] 
suggest that stepwise regression provides better 
predictions than linear regression.  
 
2.2 Maintenance Effort Estimation Models 
 

   Basili et al. [2] attempted to develop a model to estimate 
the cost of software releases that includes large 
enhancements.  Gefen et al. [9] present a case study to 
estimate total lifecycle cost of a software system. The 
estimation techniques for large information systems use 
lines of code or function points to calculate project effort 
in person-months [3, 4, 23].   
   The Albrecht Function Point model assumes that effort 
is primarily related to the size of a change [20].  In [20], 
Niessink et al state that the size of the component to be 
changed (as opposed to the size of changes) is crucial.  In 
[21], they state that the size of the change and the size of 
the component to be changed are equally important.  
Niessink et al. [20, 21] also emphasize the consistency of 
the process in maintenance effort data collection.  Henry 
et al. found that the number of requirements changes that 
occur during maintenance can be used to improve effort 
estimates [14].   
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3. Metrics Identification 
 
    We hypothesize that the maintenance effort for a 
software application depends on measurable metrics that 
can be derived from the software development process.   
We first identified the metrics that could affect the effort 
required for maintaining an application to help managers 
use the right metrics.    Next, we worked on establishing 
correlation between maintenance effort and the identified 
metrics.   
    Our first set of metrics was primarily taken from the 
results of two previous studies: [12] and [13]. The data 
was taken from four sources:  CS 499 and CS 616 courses 
(taught at the University of Kentucky), the research 
performed in [13] using Together® [29] and the industry 
research data from [12]. 
    Table 1 displays the results of correlation analysis: the 
higher the value of the coefficient, the stronger the 
relationship between effort and the metric.  The results 
suggest that percentage of operators changed and the 
number of lines of codes changed edited, added or 
deleted (DLOC) were the most effective for predicting 
adaptive maintenance effort.  Note that these will have to 
be estimated.  Table 2 describes the metrics in Table 1.   
   

Table 1.  Correlation between metrics and effort. 
 

Metrics 

Coefficient of 
Determination 
(R²) 

Significance 
level 
from ANOVA 
Regression 

1 %Operators 
Changed  0.978 0.0002 

2 LOC Delta -DLOC 0.779 0.00003 
3 % Mod 

change/add 0.192 0.117 
4 Noprtr 0.152 0.444 
5 CF 0.108 0.525 
6 CR 0.071 0.358 
7 Hdiff 0.046 0.683 
8 LCOM 0.034 0.725 
9 AC 0.033 0.518 
10 CC 0.032 0.581 
11 TCR 0.011 0.741 
12 PM 0.008 0.77 
13 MP 0.006 0.79 
14 Classes Changed 0.006 0.8 
15 MI 0.003 0.874 
16 HPVol 0.0008 0.929 
17 Classes Added 0.0006 0.946 
18 Heff 0.0004 0.969 
19 LOC 0.00001 0.991 
 

 

Table 2.  Metric description. 
 Metrics Description 
1 

%Operators 
Changed  

Percent difference in total 
number of operators in the 
application after maintenance   

2 LOC Difference 
(DLOC)  

Lines of code edited, added or 
deleted during maintenance 

3 % Mod 
change/add 

% Code modules changed during 
maintenance 

4 Noprtr Total number of operators 
5 CF Coupling factor 
6 CR Comment ratio 
7 Hdiff Halstead’s difficulty 
8 LCOM Lack of cohesion in methods 
9 AC Attribute complexity 
10 CC Cyclomatic complexity 
11 TCR True comment ratio 
12 PM Perceived maintainability 
13 MP Maintainability product 
14 Classes Changed Number of classes modified 
15 

MI 
Welker’s[30] Maintainability 
Index 

16 HPVol Halstead program volume 
17 Classes Added Number of classes added 
18 Heff Halstead’s effort 
19 LOC Total lines of code 
    

4. Development and Validation of AMEffMo 
 
   We built an analytical model called Adaptive 
Maintenance Effort Model (AMEffMo) to predict 
adaptive maintenance effort in terms of person-hours.  We 
took the top two metrics from Table 1 to build AMEffMo.   
    “A typical estimation model is derived using regression 
analysis on data collected from past software projects” 
[22].  We used 70% of our data to build the model and the 
remaining 30% to validate it. Table 3 lists the data 
availability and the average size of the applications 
constituting each dataset.  
 

4.1 Our Approach 
 

In addition to a variation of the “leave one out” approach 
to evaluate the model, we performed standard checks such 
as examining residues, coefficient of determination, 
significance level, performing a bias reduction technique 
[8], etc.  
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Table 3.  Number of data points per data source. 
 Data 

Source  
Total 
data 
points 

Data points 
with DLOC 
information 

Data 
points 
with 
DNoprtr  
info 

Avg size of 
apps (lines 
of code), 
min, max 

1 CS 499  9 81 02 2688.2, 
101, 6201 

2 CS 616 10 10 83 1934, 
1192, 3425 

3 Previous In-
house 
Research 
Data [12] 

8 8 02 58.6, 35, 
79 

4 Industry 
Research 
Data [11] 

6 6 6 2725.4, 238, 
18952 
 

4.2 Multiple Regression 
 

First, we treated the percentage of operators changed and 
the change in the total lines of code (DLOC) as multiple 
variables for the data from CS 616. The multiple 
regression output showed that none of the independent 
variables related to effort.  But the simple regression 
performed showed that the independent variable was 
strongly related to effort. Next, we performed simple 
regression using the LOC difference (DLOC). 
 

4.3 Simple Regression 
  
    First, we used the data from the sources numbered 3 
and 4 in Table 3.  Table 4 indicates that our models were 
built based on small- to medium-sized maintenance tasks.  
 

Table 4.  Descriptive statistics data of DLOC and 
Effort Spent on Changes (in person hours).  

 
DLOC Effort Spent on Changes 

Mean 502.19 Mean 112.75 
Standard 
Deviation 

194.87 Standard 
Deviation 

34.34 

Minimum 0 Minimum 10 
Maximum 6026 Maximum 1121 
Sum 16070 Sum 3608 

     Using the least square method, we produced the 
following model: 
      E = -40 + 6.56 DLOC                              (1) 
                                                                 
1 Did not have enough information from one student team. 
2 Source code was unavailable for generating metrics. 
3 Two student teams used Visual Basic.  Togethersoft does not calculate 

the number of operators for Visual Basic. 

 

 

where E is maintenance effort in person-hours.  This 
model shows a significant linear relationship between 
DLOC and effort spent on changes (Figure 1.a and 1.b) in 
which the R square value and significance are 0.78 and 
0.000029 respectively. 
   Then, by using the course data to build the model and 
the rest of the data to validate, we obtained the following 
model: 
       E = 78 + .01DLOC                                                (2) 

Predicting by DLOC(E=-40+6.56DLOC)
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Figure 1. (a) Predicting Change Effort by  E = -40 + 
6.56 DLOC in modeling process; (b) Residue Plot of 

predicting Change Effort by  E = -40 + 6.56 DLOC in 
modeling process;  (c) Residue Plot of validating E = -

40 +6.56 DLOC using course data. 
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   These two models have significantly different slopes and 
intercept constants, resulting in failure to validate on the 
validation dataset - the residue even increases as DLOC 
increases (Figure 1.c , Figure 2). 
   We built models from just one of the four data sets to 
investigate this further.  It shows that the maintenance 
effort required in an industry environment is much more 
dependent on the DLOC than that in a university 
environment. 
   We expected a generic model to have a slope between 
that of the two preliminary models developed above.  
Considering the 70/30 ratio for building/validating data, 
we used the data sources numbered 1, 3, and 4 in Table 3 
(a mix of industry and course data) for building the model 
and the data source numbered 2 (one set of course data) as 
the validation dataset. Before attempting to derive the 
final AMEffMo, we tried to identify some outliers and 
removed them. We received a very low statistical 
significance level of 1.8% for this model.  Pleased with 
these values, we propose   the   following equation as   our    
AMEffMo based on LOC difference (DLOC):   

    E = 63 + .1 DLOC                                                (3) 

When we validated AMEffMo as described above 
(Figure 3), we got a standard error of the estimate se of 
63 with average effort ( y ) equal to 74 (that is, standard 
deviation of the line of regression). We consider this error 
acceptable considering that AMEffMo was derived with 
good statistical results and was validated on a dataset that 
was very different from the one on which it was derived.    

Validating E = 78 + .01 DLOC 
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Figure 2.  Line Fit Plot-Validating E = 78 +.01 DLOC 

using Industry and Industry-like data. 
   Next, we considered the other variable: number of 
operators changed (DNoprtr).  Building on the complete 
data sets and excluding a few outliners, we propose the 
following model from all the data that can be tested by 
other researchers:   
 
    E = -124 + 7.5 DNoprtr                                        (4) 
 

This model has a significance level of 1.6% and 
coefficient of determination of .96, both well within 
acceptable limits. 

Residues vs DLOC-validating E = 63 + .1 DLOC
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Figure 3.  The residue plot- validating E = 63 + .1 

DLOC on CS616 Data. 

5. Conclusions And Future Work 
 
   In this paper, we have proposed a method for estimating 
the effort to perform adaptive maintenance based on the 
estimated number of lines of code to be changed and/or 
the number of operators to be changed.  We first used our 
prior research to generate a list of possible metrics that 
could impact maintenance effort.  We performed 
correlation analysis and ranked the above metrics.  After 
several attempts we proposed two final models. A larger 
scale study with a variety of industry projects across 
diverse domains is required before any broad conclusions 
can be reached. 
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