

A Metrics-Based Software Maintenance Effort Model

Jane Huffman Hayes
Computer Science Department
Lab for Advanced Networking

University of Kentucky
hayes@cs.uky.edu

(corresponding author)

Sandip C. Patel
Computer Science Department

 University of Louisville
scapte2@uky.edu

Liming Zhao
Computer Science Department

University of Kentucky
lzhao2@uky.edu

Abstract

We derive a model for estimating adaptive software
maintenance effort in person hours, the Adaptive
Maintenance Effort Model (AMEffMo). A number of
metrics such as lines of code changed and number of
operators changed were found to be strongly correlated
to maintenance effort. The regression models performed
well in predicting adaptive maintenance effort as well as
provide useful information for managers and maintainers.

1. Introduction
 Software maintenance typically accounts for at least 50
percent of the total lifetime cost of a software system [16].
Schach et al. found that 0 – 13.8% of changes made fall
under the category of adaptive maintenance [25]. It is
wise to design software that is maintainable since 18.2%
of project time is devoted to adaptive maintenance [25].
 Software maintainability is defined as “the ease with
which a software system or component can be modified to
correct faults, improve performance, or other attributes, or
adapt to a changed environment” [15]. Unfortunately,
developers and managers underestimate the time and
effort required to change software. A lack of validated,
widely accepted, and adopted tools for planning,
estimating, and performing maintenance also contributes
to this problem.
 This paper addresses the aforementioned problem of
planning and estimating when change is required. A
metrics-based method is introduced that uses a model for
estimating adaptive maintenance effort. A study was
performed to determine metrics that correlated closely
with maintenance effort as measured in time (hours).
These metrics were then used to build a model for
estimating adaptive maintenance effort. Two simple
regression models were built. The result, the Adaptive
Maintenance Effort Model (AMEffMo), appears
promising from initial results.

2. Related Work

2.1 Effort Estimation Models
The Constructive Cost Model (COCOMO) [3,5,7,28]
supports the estimation of cost, effort, and schedule when

planning a new software development project. Albrecht
introduced the notion of function points (FP) to estimate
effort [1]. Mukhopadhyay [19] proposes early software
cost estimation based on requirements alone. Software
Life Cycle Management (SLIM) [23] is based on the
Norden/Rayleigh function and is suitable for large
projects. Shepperd et al. [27] argued that algorithmic cost
models such as COCOMO and those based on function
points suggested an approach based on using analogous
projects to estimate the effort for a new project.
 In addition to the traditional off-the-self models such as
COCOMO, machine-learning methods have surfaced
recently. In [17], Mair et al. compared machine-learning
methods in building software effort prediction systems.
There has also been some work toward applying fuzzy
logic to building software metrics models for estimating
software development effort [10]. Recent attempts have
also been made to evaluate the potential of genetic
programming in software effort estimation [6]. Putnam et
al. [24] argue that the relationship between the metrics
size, effort, and time is nonlinear. Mendes et al. [18]
suggest that stepwise regression provides better
predictions than linear regression.

2.2 Maintenance Effort Estimation Models

 Basili et al. [2] attempted to develop a model to estimate
the cost of software releases that includes large
enhancements. Gefen et al. [9] present a case study to
estimate total lifecycle cost of a software system. The
estimation techniques for large information systems use
lines of code or function points to calculate project effort
in person-months [3, 4, 23].
 The Albrecht Function Point model assumes that effort
is primarily related to the size of a change [20]. In [20],
Niessink et al state that the size of the component to be
changed (as opposed to the size of changes) is crucial. In
[21], they state that the size of the change and the size of
the component to be changed are equally important.
Niessink et al. [20, 21] also emphasize the consistency of
the process in maintenance effort data collection. Henry
et al. found that the number of requirements changes that
occur during maintenance can be used to improve effort
estimates [14].

 .

3. Metrics Identification

 We hypothesize that the maintenance effort for a
software application depends on measurable metrics that
can be derived from the software development process.
We first identified the metrics that could affect the effort
required for maintaining an application to help managers
use the right metrics. Next, we worked on establishing
correlation between maintenance effort and the identified
metrics.
 Our first set of metrics was primarily taken from the
results of two previous studies: [12] and [13]. The data
was taken from four sources: CS 499 and CS 616 courses
(taught at the University of Kentucky), the research
performed in [13] using Together® [29] and the industry
research data from [12].
 Table 1 displays the results of correlation analysis: the
higher the value of the coefficient, the stronger the
relationship between effort and the metric. The results
suggest that percentage of operators changed and the
number of lines of codes changed edited, added or
deleted (DLOC) were the most effective for predicting
adaptive maintenance effort. Note that these will have to
be estimated. Table 2 describes the metrics in Table 1.

Table 1. Correlation between metrics and effort.

Metrics

Coefficient of
Determination
(R²)

Significance
level
from ANOVA
Regression

1 %Operators
Changed 0.978 0.0002

2 LOC Delta -DLOC 0.779 0.00003
3 % Mod

change/add 0.192 0.117
4 Noprtr 0.152 0.444
5 CF 0.108 0.525
6 CR 0.071 0.358
7 Hdiff 0.046 0.683
8 LCOM 0.034 0.725
9 AC 0.033 0.518
10 CC 0.032 0.581
11 TCR 0.011 0.741
12 PM 0.008 0.77
13 MP 0.006 0.79
14 Classes Changed 0.006 0.8
15 MI 0.003 0.874
16 HPVol 0.0008 0.929
17 Classes Added 0.0006 0.946
18 Heff 0.0004 0.969
19 LOC 0.00001 0.991

Table 2. Metric description.
 Metrics Description
1

%Operators
Changed

Percent difference in total
number of operators in the
application after maintenance

2 LOC Difference
(DLOC)

Lines of code edited, added or
deleted during maintenance

3 % Mod
change/add

% Code modules changed during
maintenance

4 Noprtr Total number of operators
5 CF Coupling factor
6 CR Comment ratio
7 Hdiff Halstead’s difficulty
8 LCOM Lack of cohesion in methods
9 AC Attribute complexity
10 CC Cyclomatic complexity
11 TCR True comment ratio
12 PM Perceived maintainability
13 MP Maintainability product
14 Classes Changed Number of classes modified
15

MI
Welker’s[30] Maintainability
Index

16 HPVol Halstead program volume
17 Classes Added Number of classes added
18 Heff Halstead’s effort
19 LOC Total lines of code

4. Development and Validation of AMEffMo

 We built an analytical model called Adaptive
Maintenance Effort Model (AMEffMo) to predict
adaptive maintenance effort in terms of person-hours. We
took the top two metrics from Table 1 to build AMEffMo.
 “A typical estimation model is derived using regression
analysis on data collected from past software projects”
[22]. We used 70% of our data to build the model and the
remaining 30% to validate it. Table 3 lists the data
availability and the average size of the applications
constituting each dataset.

4.1 Our Approach

In addition to a variation of the “leave one out” approach
to evaluate the model, we performed standard checks such
as examining residues, coefficient of determination,
significance level, performing a bias reduction technique
[8], etc.

 .

Table 3. Number of data points per data source.
 Data

Source
Total
data
points

Data points
with DLOC
information

Data
points
with
DNoprtr
info

Avg size of
apps (lines
of code),
min, max

1 CS 499 9 81 02 2688.2,
101, 6201

2 CS 616 10 10 83 1934,
1192, 3425

3 Previous In-
house
Research
Data [12]

8 8 02 58.6, 35,
79

4 Industry
Research
Data [11]

6 6 6 2725.4, 238,
18952

4.2 Multiple Regression

First, we treated the percentage of operators changed and
the change in the total lines of code (DLOC) as multiple
variables for the data from CS 616. The multiple
regression output showed that none of the independent
variables related to effort. But the simple regression
performed showed that the independent variable was
strongly related to effort. Next, we performed simple
regression using the LOC difference (DLOC).

4.3 Simple Regression

 First, we used the data from the sources numbered 3
and 4 in Table 3. Table 4 indicates that our models were
built based on small- to medium-sized maintenance tasks.

Table 4. Descriptive statistics data of DLOC and
Effort Spent on Changes (in person hours).

DLOC Effort Spent on Changes

Mean 502.19 Mean 112.75
Standard
Deviation

194.87 Standard
Deviation

34.34

Minimum 0 Minimum 10
Maximum 6026 Maximum 1121
Sum 16070 Sum 3608

 Using the least square method, we produced the
following model:
 E = -40 + 6.56 DLOC (1)

1 Did not have enough information from one student team.
2 Source code was unavailable for generating metrics.
3 Two student teams used Visual Basic. Togethersoft does not calculate

the number of operators for Visual Basic.

where E is maintenance effort in person-hours. This
model shows a significant linear relationship between
DLOC and effort spent on changes (Figure 1.a and 1.b) in
which the R square value and significance are 0.78 and
0.000029 respectively.
 Then, by using the course data to build the model and
the rest of the data to validate, we obtained the following
model:
 E = 78 + .01DLOC (2)

Predicting by DLOC(E=-40+6.56DLOC)

-500

0

500

1000

1500

0 50 100 150

Effort
Changing

Predicted
Effort
Changing

 (a)

-400

-300

-200

-100

0

100

200

300

0 50 100 150

Residues VS DLOC (of E=-40+6.56DLOC)

 (b)

Residues vs DLOC- validating using course data

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0
0 2000 4000 6000 8000

 (c)

Figure 1. (a) Predicting Change Effort by E = -40 +
6.56 DLOC in modeling process; (b) Residue Plot of

predicting Change Effort by E = -40 + 6.56 DLOC in
modeling process; (c) Residue Plot of validating E = -

40 +6.56 DLOC using course data.

 .

 These two models have significantly different slopes and
intercept constants, resulting in failure to validate on the
validation dataset - the residue even increases as DLOC
increases (Figure 1.c , Figure 2).
 We built models from just one of the four data sets to
investigate this further. It shows that the maintenance
effort required in an industry environment is much more
dependent on the DLOC than that in a university
environment.
 We expected a generic model to have a slope between
that of the two preliminary models developed above.
Considering the 70/30 ratio for building/validating data,
we used the data sources numbered 1, 3, and 4 in Table 3
(a mix of industry and course data) for building the model
and the data source numbered 2 (one set of course data) as
the validation dataset. Before attempting to derive the
final AMEffMo, we tried to identify some outliers and
removed them. We received a very low statistical
significance level of 1.8% for this model. Pleased with
these values, we propose the following equation as our
AMEffMo based on LOC difference (DLOC):

 E = 63 + .1 DLOC (3)

When we validated AMEffMo as described above
(Figure 3), we got a standard error of the estimate se of
63 with average effort (y) equal to 74 (that is, standard
deviation of the line of regression). We consider this error
acceptable considering that AMEffMo was derived with
good statistical results and was validated on a dataset that
was very different from the one on which it was derived.

Validating E = 78 + .01 DLOC

0

200

400

600

800

1000

1200

LO
C Diff 65 35 33 20 13

8 18

Effort
Changing

predicted
Effort
changing

Figure 2. Line Fit Plot-Validating E = 78 +.01 DLOC

using Industry and Industry-like data.
 Next, we considered the other variable: number of
operators changed (DNoprtr). Building on the complete
data sets and excluding a few outliners, we propose the
following model from all the data that can be tested by
other researchers:

 E = -124 + 7.5 DNoprtr (4)

This model has a significance level of 1.6% and
coefficient of determination of .96, both well within
acceptable limits.

Residues vs DLOC-validating E = 63 + .1 DLOC

-150

-100

-50

0

50

100

0 500 1000 1500 2000

Figure 3. The residue plot- validating E = 63 + .1

DLOC on CS616 Data.

5. Conclusions And Future Work

 In this paper, we have proposed a method for estimating
the effort to perform adaptive maintenance based on the
estimated number of lines of code to be changed and/or
the number of operators to be changed. We first used our
prior research to generate a list of possible metrics that
could impact maintenance effort. We performed
correlation analysis and ranked the above metrics. After
several attempts we proposed two final models. A larger
scale study with a variety of industry projects across
diverse domains is required before any broad conclusions
can be reached.

6. Acknowledgements

 Our thanks to Perot Systems for their participation and
support. We thank the students of CS 616 (January 2001), CS
499 (August 2001), Inies Raphael Michael Chemmannoor, and
Senthil Karthikeyan Sundaram for their contributions. We thank
Togethersoft for their donation of Together® to our research
program.

7. References

[1] Albrecht, A. J. Measuring Application Development
Productivity. Proceedings SHARE/GUIDE IBM
Applications Development Symposium, Monterey, CA.,
Oct 14-17, 1979.

[2] Basili, V., Briand, L., Condon, S., Kim Y.-M., Melo, W.
L. and Valett, J. D. Understanding and Predicting the
Process of Software Maintenance Releases. Proceedings of
the 18th International Conference on Software
Engineering, Berlin, Germany, May 25-29, 1996, 464-474.

[3] Boehm, B.W. Software Engineering Economics. Prentice
Hall, NY, 1981.

 .

[4] Akiyama F. An example of software system debugging’’,
Inf Processing, Volume 71, 1971, 353-379.

[5] Boehm, B., Horowitz, E., Madachy, R Reifer, D., Clark,
B.K., Steece, B., Brown, A.W., Chulani, S., and Abts, C.
Software Cost Estimation with Cocomo II, Prentice-Hall
2000.

[6] Burgess, C.J. and Lefley, M. Can genetic programming
improve software effort estimation? A comparative
evaluation. Information and Software Technology, Volume
43, Number 14:863--873, December 2001.

[7] Conte, Dunsmore and Shen. Software Engineering Metrics
and Models. The Benjamin/Cummings Publishing
Company, Inc. 1996.

[8] http://www.esat.kuleuven.ac.be/sista/lssvmlab/tutorial/node
59.html

[9] Gefen D., and Schneberger, S. L. The Non-Homogeneous
Maintenance Periods: A Case Study of Software
Modifications. Proceedings of the International
Conference on Software Maintenance, pages, Monterey,
California, November 4-8, 1996, 134-141.

[10] Gray, A., and MacDonell, S.G. Applications of fuzzy logic
to software metric models for development effort
estimation. Proceedings of the 1997 Annual Meeting of the
North American Fuzzy Information Processing Society -
NAFIPS. Syracuse NY, IEEE (1997) 394-399.

[11] Hayes, J. Huffman. Energizing Software Engineering
Education through Real-World Projects as Experimental
Studies. Proceedings of the 15th Conference on Software
Engineering Education and Training (CSEET), Covington,
KY, February 2002.

[12] Hayes, J. Huffman, Mohamed, N., and Gao, T. The
Observe-Mine-Adopt Model: An Agile Way to Enhance
Software Maintainability. Journal of Software
Maintenance and Evolution: Research and Practice,
Volume 15, Issue 5, Pages 297 – 323, 1 Oct 2003.

[13] Hayes, J. Huffman. Evaluating the Reliability of
Maintained Applications. University of Kentucky
Computer Science Department Technical Report TR 367-
03, January 2003.

[14] Henry, J., Blasewitz, R., and Kettinger, D. Defining and
Implementing a Measurement-based Software Maintenance
Process. Software Maintenance: Research and Practice,
Volume 8, Number 2:79–100, 1996.

[15] Institute of Electrical and Electronics Engineers. IEEE
Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[16] Lientz, B.P., and Swanson, E.B. Software Maintenance
Management, Addison-Wesley Publishing Company, 1980.

[17] Mair, C., Kadoda, G., Lefley, M., Phalp, K. Schofield, C.,
Sheppard, M., and Webster, S. An investigation of
machine learning based prediction systems. The Journal of
Systems and Software, Volume 53, Number 1, 2000, 23-29.

[18] Mendes, E., and Mosley, N. Comparing effort prediction
models for web design and authoring using boxplots.
Proceedings of the 24th Australasian conference on
Computer science, Gold Coast, Queensland, Australia,
2001. ACM International Conference Proceeding Series,
125-133.

[19] Mukhopadhyay, T., and Kekre, S. Software Effort Models
for Early Estimation of Process Control Applications. IEEE
Transactions on Software Engineering, Volume 18,
Number 10, 1992, 915-924.

[20] Niessink, F., Vliet,H. Van. Predicting Maintenance Effort
with Function Points, International Conference on Software
Maintenance (ICSM '97), October 01 - 03, Bari, Italy,
1997.

[21] Niessink, F., and Vliet, H. Van. Two Case Studies in
Measuring Software Maintenance. Proceedings of the
International Conference on Software Maintenance,
Bethesda, Maryland, Nov. 16-20, 1988, 76-85.

[22] Pressman, R.S., Software Engineering A Practitioner’s
Approach, McGraw-Hill, 2001.

[23] Putnam, L. A general empirical solution to the macro
software sizing and estimating problem. IEEE Transactions
on Software Engineering., Volume 4, Number 4, , April
1978, 345-61.

[24] Putnam. L.H. and Myers, W. What We Have Learned.
Crosstalk, April 2000.

[25] Schach, S.R., Jin, B., Wright, D. R., Heller, G.Z., and
Offutt, J. Determining the Distribution of Maintenance
Categories: Survey Versus Empirical Study. Empirical
Software Engineering.. Accepted per revision by Kluwer
Publications, September 2002.

[26] Schofield, C. Non-Algorithmic Effort Estimation
Techniques. Talbot CampusPoole, BH12 5BB ESERG:
TR98-01, Department of Computing, Bournemouth
University England.

[27] Shepperd, M. J., Schofield, C., and Kitchenham, B.
Effort Estimation Using Analogy. Proceedings of
ICSE-18, IEEE Computer Society Press, Berlin,
1996.

[28] http://sunset.usc.edu/research/COCOMOII/index.html

[29] Togethersoft, http://www.togethersoft.com/

[30] Welker, K.D. and Oman, P.W. Software Maintainability
Metrics Models in Practice, Journal of Defense Software
Engineering, Volume 8, Number 11, November/December
1995, 19-23.

