
1

Software Engineering Experimentation

Software Engineering Specific Issues
(Mostly CS as well)

Jeff Offutt

http://www.ise.gmu.edu/~offutt/

©  Jeff Offutt, 2004 2

Software Engineering
1. The biggest obstacle to software engineering 

experimentation is that our populations are 
unknown

– What is a representative collection of programs?
– Faults?
– Developers?

2. Second : Industry won’t cooperate
– In other engineering fields, companies provide access 

to data, resources, processes, and people
3. Third : “Knowledge inversion” – senior scientists 

often do not know as much about experimentation 
as younger scientists



2

©  Jeff Offutt, 2004 3

1. Unknown Populations

• How many programs are enough for external 
validity?

• Are seeded faults as good as natural faults?
• Does using students bias the results?
• How do we analyze our results?

©  Jeff Offutt, 2004 4

1. Statistical Tests and Software

• Experimental data based on programs cannot, with 
validity, be subjected to inferential statistical tests 
since the population is unknown

• An unknown population nullifies any statistical 
result that would be obtained, regardless of the 
number of programs

• Only descriptive statistics can be used
– For example, log linear analysis

• That is, statistical hypothesis testing, at least in the 
statistical sense, is not accurate



3

©  Jeff Offutt, 2004 5

2. Industry Cooperation
• Researchers need access to data from industry to know how 

techniques work in practice
• Two years ago, my student applied a high-end testing 

technique to real-time, safety-critical software, finding 
several bugs
– She was refused permission to publish, because “customers might 

think our software is not perfect”
• Seven years ago, a former student applied mutation testing 

to Cisco’s routing software, finding several bugs, one very 
severe, saving millions of dollars
– $750,000 bonus!
– Almost fired for telling me
– Her boss asked me to sign a non-disclosure agreement, afterwards

• Very difficult to get research funding from industry

©  Jeff Offutt, 2004 6

3. Knowledge Inversion
• Every “generation” of computer scientists has taken 

a step forward
– ’70s – ’80s: No validation at all
– ’80s : We built systems
– ’80s – ’90s : Results on small sets of data
– ’90s : Careful experimental design, larger data sets
– 2000s : Sophisticated statistical analysis of results

• Many journal and conference reviewers do not have 
the knowledge to evaluate experiments



4

©  Jeff Offutt, 2004 7

Confounding Variables in Software

1. The Human Element
2. Scalability and Generality
3. Conduct of Experiment
4. Other

A partial list of confounding variables, 
from previous courses, started Fall 1994

©  Jeff Offutt, 2004 8

1. The Human Element
• Grant money

– source
– amount

• Motivation
– Sponsor
– Subject

• Capabilities of programmer
– knowledge
– experience
– skills
– birth order
– IQ
– status
– handedness
– personality traits
– attention to detail

• Physical environment
• Feedback to subjects

• Subjects expectations
• Learning curve
• Amount and type of training
• Natural language
• Time of day experimentation 

conducted
• Group organization
• Communication

– skills
– type allowed
– Structure

• Researchers
– knowledge
– experience
– skills

• Culture of subjects



5

©  Jeff Offutt, 2004 9

2. Scalability and Generality

• Size of project
• Application domain
• Programming language
• Number of artifacts/subjects
• Sampling of artifacts
• Source of artifacts

– real or custom built
– how created

©  Jeff Offutt, 2004 10

3. Conduct of Experiment

• Duration of experiment
• Measure of artifact
• Support tools
• Specifications
• Hardware
• Support software
• Method of data collection
• Order of experimental process



6

©  Jeff Offutt, 2004 11

4. Other

• Method
• Oracle quality
• Complexity of change
• Experimental design
• Direction of hypothesis

©  Jeff Offutt, 2004 12

Principles to Follow
1. Improvement is through continuous, sustained 

change, not technological breakthrough
• Scientists take baby steps
• The “big step” is the last of many
• OO and the Web were last of thousands of baby steps

2. Take great care in your data collection
• Identify and control variables carefully
• Document all decisions
• Save all data – you may have to repeat the experiment 

years later



7

©  Jeff Offutt, 2004 13

Principles to Follow (2)
3. Data collection is not the goal, analysis and 

application are the goals
• Don’t lose the forest in the trees
• Conclusions matter, measurement does not

4. Data are uncertain and fallible – design 
experiments to be fault tolerant

• Too many variables
5. Non-developers need to collect and analyze data

• Developers’ goal is the current product, not next
• Research lab or university who can cooperate with 

company

©  Jeff Offutt, 2004 14

Principles to Follow (3)

6. The goal of an experiment is to help companies 
develop better software, cheaper

– The goal is NOT to publish a paper


