
58

Lab: unit testing

In this lab, you will learn to implement classical Java unit testing in JUnit. You will use Eclipse's built-in
JUnit implementation to write JUnit 4.X (or 3.X) test cases for Stutter.java. You will install EclEmma to
facilitate generation of a code coverage report.

Code coverage is a common stopping criteria used in unit testing. The idea is: if you are executing every
line of code at least once, you are probably making a reasonably good effort to find bugs. White-box
testing is designed to achieve high code coverage. Concepts learned in this lab will serve as a foundation
for a future lab on Android unit and integration testing.

Deliverables – none are due
• Link to your Stutter.java GitHub, including new commit with test cases
• Code coverage report demonstrating 100% coverage

Instructions
Setup:

1. Start Eclipse
2. Go to Help → Install software
3. In the wizard that appears, add the site http://update.eclemma.org/
4. From the list of available software, check EclEmma and install it.
5. When prompted, restart Eclipse. (note: Eclipse may be hidden on restart; click the Eclipse icon

on the Windows taskbar to make it reappear)
6. Create a Stutter project – the Stutter.java code is on our course webpage.
7. Click File->New->Other->JUnit Test Case. Select JUnit 4.X (or 3.X) and call the class StutterTest.
8. Add a new test method to test the Stutter.isDelimit method. A test method has the annotation

@Test above it. The method should call isDelimit with a delimiter and use
org.junit.Assert.assertTrue to verify it returns true.

9. Add a second test method to test the Stutter.isDelimit method. The method should call
isDelimit with a delimiter and use org.junit.Assert.assertFalse verify it returns false.

10. In the Package Explorer, right-click on StutterTest->Run As->JUnit test. Verify all tests pass.
11. Continue writing test cases until every Stutter method has at least one test.

Generate code coverage:

12. In the Package Explorer (JUnit is hiding it; look in the top left of the screen next to the JUnit
summary of results), right-click on StutterTest → Coverage As → JUnit test

13. Open Stutter.java and notice now that the code is highlighted.
a. Red code was not executed.
b. Yellow code was partially executed (for instance: an if statement's condition was true,

but never false).

http://update.eclemma.org/

59

c. Green code was executed.
14. You will likely notice that it is tricky to cover the two lines in main() that read from System.in.

You need a way to automatically send input to the console. A combination of
System.setIn(InputStream in), ByteArrayInputStream, and String.getBytes() is sufficient to set
the standard input to any string you would like. Use this combination to create two test cases
to cover these lines.

15. Continue writing test cases until all lines are green.

Export the coverage report:

16. Go to File->Export
17. In the resulting dialog, expand Run/Debug and select Coverage Session.
18. Click Next.
19. In the resulting dialog, select your most recent coverage session. Select HTML as the format,

and select a destination directory (put the results in a new directory called emma).
20. Click Finish.
21. Go to the emma directory you selected and open index.html to browse the results.
22. git commit -a && git push.

Resources

• JUnit 4.0 Assert: http://junit.sourceforge.net/javadoc/org/junit/Assert.html

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#setIn(java.io.InputStream)
http://docs.oracle.com/javase/7/docs/api/java/io/ByteArrayInputStream.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#getBytes()
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

	Deliverables – none are due
	Instructions
	Resources

