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H ow do you validate that a piece of 
software loaded into a processor 
functions correctly? One tradi- 

tional answer is that you subject it to a rig- 
orous system test. But there is a funda- 
mental problem: For any but the most 
trivial application, the number of distinct 
input combinations you would need to 
verify is enormous-orders and orders of 
magnitude larger than any number that 
can be tested exhaustively. 

Furthermore, because of the discrete 
nature of computer memory and process 
ing, the difference ofasingle input bit out 
of thousands may be all that separates an 
input combination that runs successfully 
from one that doesn’t. 

How then do you validate software? In 
hard engineering terms, the answer is that 
up to now you really haven’t. There is a lot 
of lore about system testing, but it all boils 
down to guesswork. That is, it is guesswork 
unless you can structure the problem and 
perform the testing so that you can apply 
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mathematical statistics. 
If you can do this, you can say some- 

thing like “No, we cannot be absolutely 
certain that the software will never fail, but 
relative to a theoretically sound and ex- 
perimentally validated statistical model, 
we have done sufficient testing to say with 
9lpercent confidence that the probabil- 
ity of 1,000 CPU hours of failure-free oper- 
ation in a probabilistically defined envi- 
ronment is at least 0.995.” 

When you do this, you are applying sofl- 
ware-reliability measurement. In this situa- 
tion, this is the best you can do. For purists, 
this may not be a satisfactory answer to 
our initial question. But with software-reli- 
ability measurement, you do not deal ex- 
plicitly with the vastness, discreteness, and 
discontinuity of a program input space - 
you sidestep these imponderables by 
using statistics to provide concrete, quan- 
titative guidance. 

In this article, we define the basic con- 
cepts of software-reliability measurement 
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and show you how to use them in software 
validation. 

Basic-pts 
Consider some basic concepts of soft- 

ware reliability: 
l Run. Many kinds of software run con- 

tinuously. Two examples are process-con- 
trol systems and telephone-switching sys- 
tems. Others, like automatic teller 
machines and electronic mail, run on de- 
mand. In either case, you can break down 
the ongoing operation of the software 
into a series of discrete runs. Each run 
performs a mapping between a set of 
input variables and a set of output vari- 
ables and consumes a certain amount of 
processor execution time. The specifica- 
tions of this mapping are the require- 
ments for the run. 

l Software failures and faults. When a 
run is made where the outputs do not con- 
form to the requirements, one or more 
failures have occurred. To prevent a partic- 
ular failure from occurring on a subse- 
quent run, you must modify the program 
by changing the set of instructions that it 
executes-you must correct the fault that 
underlies the failure. 

This is a very general definition of fail- 
ure. It covers not only departures from de- 
sired functionality but also performance 
issues. For example, if a response to a 
given input is required for a specified 
hardware configuration and load within a 
specified time and if this response is not 
made within that time, a failure has oc- 
curred. 

l Operational profile. The exact inputs 
that are presented moment by moment to 
an operational piece of software must be 
considered to be selected at random. But 
some inputs will occur on the average 
more frequently than others. The specifi- 
cation of these inputs and their relative 
frequencies iscalled the program’s opera- 
tional profile. 

l Software failure occurrence is a Pois 
son process. Given a very general set of 
assumptions, you can show that software 
failure occurrence obeys a Poisson pro 
cess.’ This is expected, since other similar 
phenomena - like the number of phone 
calls received at a switchboard in a given 
period or the number of taxis that break 
down each day in a given city - are also 
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modeled by Poisson processes. You can 
characterize a Poisson process by its ex- 
pected value function. In reliability mea- 
surement, this is the cumulative number 
of failures, P(T), expected to occur by the 
time the software has experienced a given 
amount of execution time, 7. 

Execution time is the basic dimension 
of reliability measurement because, given 
a random selection of inputs based on an 
operational profile, execution time accu- 
rately reflects software stress: A piece of 
software that is never executed never fails. 
The use ofexecution time yields reliability 
measures that are relative to the speed of 
the processor executing the software. 

Given that a Poisson process models fail- 
ure occurrences in general, you provide 
models for specific situations by specifying 
the function P(T). Several functions have 
been considered in the literature, but we 
will describe only three because they 
model most situations encountered in 
practice. They are simple to use and pro 

Execution time is the 
basic dimension of 

reliability measurement 
because itaccurateiy 

reflects soi%wafe stress 
A piece of software 

that is new81 executed 
nevef fails 

vide descriptive and predictive accuracy 
commensurate with the other elements of 
current software-engineering practice. 
Figure 1 illustrates these functions. 

l Modeling failure occurrence for un- 
changing software (Figure la). The first 
function is u(r) = hi, where his a constant. 
This function models the case where both 
the software and its operational profile re- 
main unchanged. A good example is com- 
puter-terminal software, which is usually 
permanently installed in a terminal as 
firmware. 

This function simply says that the ex- 
pected number of failures that will occur 
after T units of execution time (measured 

over all processors running this software) 
is directly proportional to Z. The instanta- 
neous rate of failure (that is, the derivative 
of p), which is denoted by h(r), is an im- 
portant function in reliability measure- 
ment. It is called the failure-intensity func- 
tion. In this case, h(z) equals h. We call this 
the staticexecution-time model. 

l Modeling failure occurrence for soft- 
ware being debugged (Figure 1 b). During 
system test, the faults revealed by test fail- 
ures are constantly being corrected, so 
failure intensity should decrease as testing 
proceeds. If the faults in the software are 
equally likely to cause failures so that the 
average failure intensity improves by the 
same amount whenever a correction is 
made, you can show that 

This function models the case where the 
operational profile remains unchanged 
but where an action (possibly imperfect) 
is initiated to correct the responsible fault 
whenever a software failure occurs. (Cor- 
rection need not be immediate. If it isn’t, 
we simply do not count repeated occur- 
rences of the same failure.) 

For this model, An h(T) = A”exp ---‘T [ 1 Vn 
We call this the basicexecution-time 
model. 

Although the assumptions on which the 
basic execution-time model are based 
may not always be satisfied in practice, the 
model still provides a reasonable repre- 
sentation and usually provides useful re- 
sults. The major advantage of this model is 
that its parameters - h, (the initial soft- 
ware failure intensity at the beginning of 
the observation period) and v,, (the total 
number of failures that will be experi- 
enced in an infinite amount of execution 
time) - can both be easily related to 
other attributes of the software, to its exe- 
cution environment, and to the develop 
ment process. 

l If you take the converse of one of the 
assumptions that led to the previous 
model - if you assume that some faults 
are more likely to cause failures and that 
on the average the improvement in fail- 
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ure intensity with each correction de- 
clines exponentially as corrections are 
made -you can show that 

p(z) = $ ln(ho Br + 1) 

Like the previous function, this func- 
tion also models the situation where the 
operational profile remains unchanged 
and where corrections (possibly imper- 
fect) are made whenever a failure occurs. 
For this model. 

4’ h(T) = ___ A,&+ 1 

We call this the logatithmic Poisson execu- 
tion-time model (Figure lc). 

The parameter h, of the logarithmic 
Poisson model has the same meaning as it 
did in the basic model (but it will usually 
have a different value). The parameter 8 
characterizes the exponential drop-off in 
failure intensity as repairs are made. The 

assumption about the relationship be- 
tween faults and failures on which the log- 
arithmic model is based is particularly 
suited to when the operational profile is 
highly nonuniform. 

System testing 
Applying reliability measurement dur- 

ing system test provides quantitative infor- 
mation on the validation process. System 
testing has two distinct functions: 

l to validate that the completed software 
functions close enough to its require- 
ments to warrant passing it on to the next 
stage in the life cycle and 

l to improve the quality of the com- 
pleted software by first discovering the 
input states on which it fails to meet re- 
quirements and then eliminating these 
failures by correcting the underlying 
faults. 

Reliability measurement is concerned 
mostly with the first function. The discov- 
ery of failure input states is outside reli- 

ability measurement’s domain, but mea- 
surement can help you concentrate test- 
ing attention through the concept of the 
operational profile. 

Presuppositions. The use of reliability 
measurement during system test presup 
poses that 

l the definition of significant failures 
has been specified, 

l an operational profile has been speci- 
fied, and 

l for the defined failures and opera- 
tional profile, a failure-intensity objective 
has been set to some desired level ofconfi- 
dence. 

The first presupposition can be met sim- 
ply by defining a departure from any of 
the functional requirements as a failure. 
However, some types of failures are usu- 
ally more significant than others; you han- 
dle this reality by defining faihire-severity 
classes. Ideally, all these presuppositions 
would be clearly defined in the quality- 

(a) 

pm = A In W37+1) 

W 

Figure l. Three useful software-reliability models: (a) static, (b) basic, and (c)logarithmic Poisson. These are shown comparing both 
failures experienced versus execution time and failure intensity versus execution time. 

May 1989 21 



Table 1. 
Inputs to a reliability-measurement program 

Parameter data 

Parameter Value 

Failure data 
Failure CPU seconds Day of 
number from last failure system test 

Mode1 type 

Failure-intensity 
objective 

Test-compression 
factor 

System-test resource 
parameters 

Current date 

Basic 1 3 I 
execution time 

2 30 2 

0.01 failures per 3 113 9 
CPU hour 

4 81 10 

2.0 . . . 

97 1,261 73 

various values 98 1,800 73 

05/03/89 

attributes section of the requirements 
specification you use.? 

The use of reliability measurement dur- 
ing system test also presupposes that you 
can directly relate the occurrence of fail- 
ures to the amount of execution time the 
software has experienced when failures 
occur - you need to be able to plot p 
against 7. Often, you cannot measure the 

a hardware analyzer to measure execution 
time directly if you are validating software 
for a small system, you tend to measure 
execution time indirectly for larger, more 
complex systems. One such indirect 
method is to determine the average 
amount of execution time used per com- 
mand or transaction and then count the 
commands executed to determine execu- 

execution time directly. While you can use tion time. 

0 2 4 6 a 10 12 14 16 

execution tinie in CPU hours 

F@re 2. Observed failures and the basic model. 

At this point in system testing, you have 
established with 95percent certainty that 
the failure intensity of this system is not 
greater than 1.467 failures per CPU hour. 
Furthermore, if subsequent test results 
follow this pattern, you can be 95-percent 
certain that you will reach your release ob 
jective of 0.05 failures per CPU hour in 
less than 10.2 CPU hours of testing and 
that during this period you will need to 
address the faults responsible for no more 
than 14 new failures. Figure 4 shows how 
failure intensity changes with corrections 
for each failure. 

The procedure illustrated in Table 1 
and Figures 2-4 requires that enough fail- 
ures are being observed to obtain statisti- 
cally valid results. In general, this means 
that the individual system components to 
which reliability measurement is applied 
must be reasonably large, say 5,000 lines of 
code when the initial fault density is five 
per thousand lines. Given components of 
at least this size, a test manager can use 
reliability measurement to allocate test re- 
sources among these components. For ex- 
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Basic procedure. With these presuppe 
sitions in place, all that is necessary to 
apply reliability measurement during sys- 
tem test is to 

l select test cases in proportion to the 
frequencies specified by the operational 
profile, 

l record, at least approximately, the 
amount of execution time between fail- 
ures, and 

l continue testing until the selected 
mode1 shows that the required failure-in- 
tensity level has been met to the desired 
level of confidence. 

Table 1 and Figures 24 illustrate this 
procedure. Table 1 shows the input to a 
program that implements the basic and 
the logarithmic Poisson models described 
earlier and that performs the statistical 
confidence-interval calculations. Figure 2 
shows a plot of failure data similar to that 
in Table 1 and a basic execution time func- 
tion that fits this data (using maximum- 
likelihood estimation). This fit provides 
values for the model parameter v0 and &,. 
You can then use these parameters to cal- 
culate the other values shown in Figure 3, 
which illustrates the use of reliability mea- 
surement as a verification and validation 
tool. 



ample, components with higher-than-av- 
erage initial failure intensities will require 
more testing time to bring them to the 
same reliability levels than components 
with lower-than-average initial failure in- 
tensities. 

Testing compression. Figures 2 and 3 
also illustrate another concept: testing 
compression. Ifyou select test cases strictly 
at random according to the operational 
profile, the failure-intensity level com- 
puted at the completion of system testing 
should match the static level observed 
later in the field. But - given the need to 
conserve system-testing resources and the 
need to accomplish the two objectives of 
validation and quality improvement in the 
least amount of time - software system 
testing, like its hardware counterpart, 
seeks to accelerate stress. In testing com- 
pression, you select test cases so that repe- 
tition is limited, thus eliminating redun- 
dancies that are unlikely to lead to new 
failures and thus speeding up reliability 
improvement. 

The project illustrated in Table 1 has a 
testingcompression factor of two, so the 
failure-intensity values expected in opera- 
tion are half those measured in test and 
the desired failure-intensity objective is 
reached sooner. 

Calendar-time component. The last two 
lines of the output shown in Figure 3 are 
the result of translating CPU time into 
project time (given input about the 
project’s system test resources) to predict 
the actual calendar date on which testing 
will be complete. This calculation re- 
quires a separate calendar-time compo 
nent, which is fully described in the book 
by Musa, Iannino, and Okumoto.’ 

With this component, the system-test 
manager can investigate the effect of re- 
arranging system-test resources on the 
completion date. For example, you might 
investigate using additional computer 
time for system testing or you might plan 
for more system testers. Conversely, if you 
are faced with a fixed release date and a 
fixed quantity of testing resources, you 
can use the program in Figure 3 to predict 
the failure intensity that can be expected 
at the end of the predefined test period. 
Project managers can then use this infor- 
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SOFTWARE RELIABILITY PREDICTION 
BASIC MODEL 

SYSTEM T98c2 

BASED ON SAMPLE OF 98 TEST FAILURES 
EXECUTION TIME IS 11.03 CPU HR 
FAILURE-INTENSITY OBJECTIVE 50 E-01 FAILURE/CPU HR 
CALENDAR TIME TO DATE IS 73 DAYS 
CURRENT DATE: 05/03/89 

CONF. LIMITS MOST CONF. LIMITS 
95% 90% 75% 50% LIKELY 50% 75% 90% 95% 

TOTAL FAILURES 
101. 101. 102. 103. 0105. 107. 110. 113. 115. 

FAILURE INTENSITIES (FAILURE/1000 CPU HR) 

INITIAL F.I. 
9884 10443 11181 11901 @12967 14054 14837 15663 16194 

CURRENT F.I. 
469.7 517.6 601.8 694.2 846.6 1027 1175 1347 1467 

(D *** ADDITIONAL REQUIREMENTS TO MEET F.I. OBJECTIVE *** 

FAILURE 
1 2 2 3 5 7 9 12 14 

EXECUTION TIME (CPU HOURS) 
1.97 2.35 3.02 3.75 4.93 6.37 7.58 9.07 10.2 

CALENDAR TIME (DAYS) 
.932 1.18 1.65 2.22 3.28 4.76 6.16 8.04 9.53 

COMPLETION DATE 
41489 41589 41589 41689 41789 42089 42289 42489 42789 

Key 
0 Estimate for v,, 
$ Estimate for k,, (12.97 failures per CPU hour) 
(B These quantities are calculated by using the parameters just estimated to calculate the points at 

which the failure-intensity objective will be reached. 

Fmre 3. Annotated tabular output of a reliability-measurement program. 

mation to adjust schedules and resources 
or to renegotiate them with the customer. 

Requirements definition 
Although the application of reliability 

measurement to data from observed fail- 
ures must wait until system-test or later 
phases, software-reliability engineering 
nonetheless has important contributions 
to make early in the project. For example, 
during requirements definition, you must 
determine the system-test failure-intensity 
objective and the amount of system-test 
resources required to reach this objective. 

To define failures and the operational 
profile for the system, engineers must ex- 
tend their dialogue with customers and 

users. Special studies of existing systems 
may be needed to determine operational 
profile frequencies, but the additional sys- 
tem-specification effort required to apply 
reliability measurement can have an im- 
mediate benefit. 

First, customers and users will become 
aware that, within a given development 
technology, higher levels of certified qual- 
ity require more testing, which will be re- 
flected in higher costs at some point. With 
reliability measurement, you can speak 
quantitatively and concretely about qual- 
ity levels and thus about costs. Given the 
cost constraints, customers and users will 
have to make up-front choices and com- 
municate these choices to your system en- 
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execution time in CPU hours 

Rgure 4. Graphical output of a reliability-measurement program. 

gineers. 
Second, the definition of the opera- 

tional profile will provide valuable infor- 
mation on how the users expect to use the 
software. The definition of failures is use- 
ful in clarifying the requirements. The ad- 
ditional information required for reliabil- 
ity measurement will mean a better 
requirements specification and more 

complete information on which you can 
base design and implementation deci- 
sions. 

Ultimately, you must take into account 
all of the costs associated with a chosen 
failure-intensity level. For the two reliabil- 
itygrowth models we have presented, sys- 
tem-test cost increases nonlinearly with in- 
creasing quality (that is, with decreasing 

Figure 5. Selecting a failure-intensity objective that will minimize the cost of failure over 
the life cycle. 

failure intensity). On the other hand, for a 
given life (in total execution time across 
all installations), the cost of cleaning up 
after a failure or of making warranty pay- 
ments for failure will generally increase 
with decreasing levels of quality - the 
higher the quality, the lower the postdeliv- 
ery costs, as Figure 5 shows. The figure 
suggests that you should select an optimal 
failure-intensity objective that will mini- 
mize the total life-cycle cost of failure. 

You can estimate the amount of system 
testing you will need to reach a specified 
failure-intensity objective if you can deter- 
mine the parameters for the appropriate 
reliability-growth model. Such values 
must be based on data from experience. 
Ideally, such data would come from qual- 
ity-assurance information about an earlier 
release of the software, from releases of 
similar software, or from the development 
organization’s average experience. Lack- 
ing any of these more desirable sources, 
you can take parameter values from aver- 
ages of published data. You can likewise 
get the equations needed to predict the 
parameters h, and v0 for the basic model 
from published sources. 

Acceptance testing 
Suppose you receive a piece of software 

from a supplier who claims this software 
meets your reliability requirements. How 
can you validate this claim? The answer is 
to use an acceptance chart based on a se- 
quential sampling technique. 

Because failure occurrence is a Poisson 
process, you can convert from reliability 
to failure intensity by using R=&. You 
then verify that the failure intensity of the 
software fallswithin an acceptable interval 
around h by making test runs selected at 
random from the operational profile that 
you and the supplier have agreed on. 

Figure 6 shows an acceptance chart for 
when you will accept a I@percent chance 
of a false positive or a false negative that h 
is in the interval [h/2, 2h]. Figure 6 is an 
example of how this chart might apply to 
the test results shown in Table 2 when h 
equals 0.1 failures per CPU hour. 

In this example, a total of eight CPU 
hours of test runs were made before the 
first failure. This first failure is point 1 on 
the chart; it falls in the continue-testing 
region. Similarly, if the second failure oc- 
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curs at 16 CPU hours, you continue to test 
because that is also in the continue-testing 
region. But if the third failure does not 
occur until 62 CPU hours, you are well 
within the acceptance region. 

The final reliability-measurement task is 
to verify that the reliability observed in the 
field conforms to that observed in the sys 
tern-test laboratory or validated during ac- 
ceptance testing. Field reliability should 
improve with time - but only if the field 
software is corrected as failures occur. 

For the static case where the field soft- 
ware is not corrected, you can use re- 
ported failures to compute a failure-inten- 
sity confidence interval. Again, to use 
reliability measurement, you must have 
information about the amount of soft- 
ware execution. One way to obtain this in- 
formation is to build usage meters into the 
product. Such a meter might monitor 
transaction or command counts. Cus 
tomers could then report the values of 
these meters periodically and whenever 
they reported a failure. You could then 
use this data to estimate total cumulative 
execution time. 

To get statistically valid data, suppliers 
should devise ways to encourage cus- 
tomers to report all failures - minor as 
well as major. The suppliers’ customer- 
support organizations can then catego 
rize failures and apportion the estimated 
overall failure intensity to the various fail- 
ure-severity classes. 

Actual appkatiom 
H. Dean Drake and Duane E. Wolting of 

Hewlett-Packard have described the appli- 
cation of reliability measurement to firm- 
ware for two new computer terminals.3 
The system testing for these terminals was 
performed by teams of engineers, each of 
which was responsible for various fea- 
tures. The operational profile was as- 
sumed to be uniform across all the fea- 
tures, and the random selection of inputs 
from this profile was approximated by 
having each engineer test part-time on a 
haphazard, when-available basis. This en- 
sured that the test cases were applied con- 
currently across all of the firmware’s fimc- 
tional areas, and it made test coverage 
congruent with use coverage. Execution 
time was measured by keeping a log of the 
test periods on each test terminal. The test 
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Figure 6. A reliability-measurement acceptance chart used with the failures listed in 
Table 2. The numbered points refer to the table’s failure numbers. The discrimination 
ratio is the ratio by which the results can depart from the desired value. 

failures discovered each day were divided 
by the total number of test hours for that 
day to determine a test-day failure inten- 
sity. These daily intensities were then aver- 
aged for successive periods of execution 
time. The result is the plot shown in Fig- 
ure 7. 

Figure 7 also shows the regression curve 
of the form A exp (Bx) that was fitted to 
thisdata. When xisset to the total number 
of test hours (647 in this case), the expres 
sion A exp (Bx) gives the estimated failure 
intensity at the end of testing. This value 
was 29.4-percent failures per test hour, so 
you would expect that 29.4 percent of the 
terminals would fail per test hour if the 
test were to continue with no further mod- 

iftcations to the software. 
To be useful, you must convert this fail- 

ure-intensity level to a calendar-time rate. 
Because the firmware is exercised when- 
ever the customers use their terminals, 
the relationship between execution time 
and calendar time is roughly linear. Previ- 
ous studies showed that customers oper- 
ate this type of terminal an average of 
2,fK?O hours out of 8,760 per year. The test- 
failure rate is therefore 6.71-percent fail- 
ures per hour. 

But this is an accelerated rate. The test 
engineers were exercising the terminal 
much harder than the average user would 
and were also trying to cause failures. By 
estimating the actual failures experienced 

Table 2. 
Failures used with the software-acceptance chart in Figure 6. 

Times are in CPU hours. 

Failure Failure 
number time 

Normalized 
failure time Decision 

1 8 0.8 Continue 

2 16 1.6 Continue 

3 62 6.2 &bj met 
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Figure 7. Actual terminal-testing failure intensities. 

Release 

0 200 400 600 800 

cumulative test time in hours 
(equivalent to execution time) 

by this terminal in the first nine months of 
its distribution, you could compute an ac- 
celeration factor by dividing the predicted 
rate of 6.71-percent failures per hour by 
the observed failure rate. 

The actual failure rate was estimated by 
assuming that the terminal firmware was 
repaired when a revision was installed and 

that a failure occurred on the same date as 
the repair. (The failure rate was estimated 
from unit revisions.) The acceleration fac- 
tor estimated by this method was 47,805. 
When this estimate was applied to test-fail- 
ure data from a second terminal develop 
ment effort, the result was a predicted fail- 
ure rate of 1.41-percent failures per year. 

weeks after first office in service 

Figure 8. Predicted and observed problems for a switching office. 

This value of 8 was then used to deter- 
mine h, for a new release based on failures 
reported during 13 weeks of beta testing. 
With these two parameters known, it was 
simple to predict the total number of fail- 
ures that would be observed over the full 
two-year life of the release. This predic- 
tion was then compared with the actual, 
observed number of failures. The results 
were that after two full years of field expe- 
rience, the predicted failure intensity for 
release 1 was greater than the actual inten- 
sity by a maximum of 13 percent. After 
one year of field experience for release 2, 
the predicted failure intensity overesti- 
mated the actual intensity by 5 percent, 
Christenson reported. 

The plot of the observed failures against 
the predicted failures is even more strik- 
ing example of the degree to which a reli- 
ability model can predict failure occur- 
rence. Figure 8 shows this plot. 

One criticism often raised against the 
practical application of the models pre- 
sented here is the assumed necessity to 
carefully measure execution time be- 
tween failures. While the concept of relat- 
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The observed rate was 1.58-percent fail- 
ures per year. 

Dennis Christenson ofAT&T has shown 
that reliability measurement can be used 
to accurately predict field failure rates in 
electronic switching systems.4 The failure 
data in this case is the number of new 
problems reported by customers each 
day. Since electronic switching systems op 
erate 24 hours a day and are down infre- 
quently, the cumulative execution time is 
proportional to the total number of 
switching system modules in use each day 
summed over the number of days the soft- 
ware has been installed. 

The logarithmic model is appropriate 
because switching-system software is up 
dated regularly to correct the faults that 
underlie customer trouble reports and 
because the faults in the more commonly 
used parts of the software tend to be fixed 
first, so the earlier fixes tend to yield 
greater improvement than the later ones. 
When the maximum-likelihood tech- 
nique was used to determine the parame- 
ters of the logarithmic Poisson model (h, 
and 8, as described earlier), it was discov- 
ered that 8 was essentially constant from 
release to release. 



ing failure occurrence to execution time 
is fundamental, in practice you have many 
ways to estimate this quantity. In the 
Hewlett-Packard study, it was estimated 
from hourly terminal-test logs and the 
date on which each test failure occurred. 
In the AT&T study, execution time was es 
timated from total daily processor hours 
and the date of each unique field failure. 
In other applications, you might use other 
quantities to obtain the p and T observa- 
tions from which you would estimate the 
model parameters. 

H ow do you validate that a piece of 
software loaded into a processor 
functions correctly? The answer is 

that you take advantage of both the fact 
that you are dealing with a va.st number of 
possible input states and the fact that for 
commercial-grade software only a small 
percentage of these stateswill result in fail- 
ure. These conditions make a rigorous sta- 
tistical approach possible - this is the 
essence of the technology of software-reli- 
ability measurement. 

Software-reliability measurement is a 
new technology. There are clearly areaS 
that need further development to make 
its application easier and more accurate, 
but it is sufficiently well developed to be 
used now. The development organiza- 
tions that work on the leading edge of 
technology are putting it to the test and, 
by so doing, are adding powerful impetus 
to its improvement. .:. 
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FULL AT&T C ++: ANNOUNCING VERSION 1.2 
Guidelines announces its port of version 1.2 of AT&T’s C++ translator. As an 

object-oriented language C++ includes: classes, inheritance, member functions, con- 
structors and destructors, data hiding, and data abstraction. “Object-oriented” means that 
C++ code is more readable, more reliable and more reusable. And that means faster 
development, easier maintenance, and the ability to handle more complex projects. C++ 
is Bell Labs’ answer to Ada and Modula 2. C++ will more than pay for itself in saved 
development time on your next project. 

C ++ 
from GUIDELINES for the IBM PC: $295 

Requires IBM PC/XT/AT or compatible with 640K and a hard disk. 
Note: C++ is a rrunslutor, and requires the use of Microsoft C 3.0 or later 

Here is what you get for $295: NOW AVAILABLE FOR 
0 The full AT&T ~1.2 C++ translator. UNIX V/386 - $495 
l Libraries for stream I/O and complex math. To Order: 
l The C++ Programming Language, the send check or money order to: 

definitive 327-page tutorial and description 
by Bjame Stroustrup, designer of C++. 

GUIDELINES SOFTWARE, INC. 
P. 0. Box 749, Dept. CT 

l Sample programs written in C++. Orinda. CA 94563 
l Improved installation guide and 

documentation. To order with VISA or MC, 
phone (415) 254-9183. 

l 30-day money-back guarantee. (CA residents add 6% tax.) 

C++ is ported to the PC by Guidelines under license from AT&T. 
Call or write for a free C++ information package. 
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