
Quantifying
Software Validation:

When to Stop Testing?

John D. Muss. AT&J Bell Laboratories
A. Fmnk Ackerman, institute forZer&efect Sotiare

System testing
becomesgWsswork

- unless you set it up
to apply statistical

analysis. 7henyou can
ibcus attention on the

software’s use instead
of its StNctUre.

May 1989

H ow do you validate that a piece of
software loaded into a processor
functions correctly? One tradi-

tional answer is that you subject it to a rig-
orous system test. But there is a funda-
mental problem: For any but the most
trivial application, the number of distinct
input combinations you would need to
verify is enormous-orders and orders of
magnitude larger than any number that
can be tested exhaustively.

Furthermore, because of the discrete
nature of computer memory and process
ing, the difference ofasingle input bit out
of thousands may be all that separates an
input combination that runs successfully
from one that doesn’t.

How then do you validate software? In
hard engineering terms, the answer is that
up to now you really haven’t. There is a lot
of lore about system testing, but it all boils
down to guesswork. That is, it is guesswork
unless you can structure the problem and
perform the testing so that you can apply

0740-7459/89/0500/00l9~0l.ooO 19891EEE

mathematical statistics.
If you can do this, you can say some-

thing like “No, we cannot be absolutely
certain that the software will never fail, but
relative to a theoretically sound and ex-
perimentally validated statistical model,
we have done sufficient testing to say with
9lpercent confidence that the probabil-
ity of 1,000 CPU hours of failure-free oper-
ation in a probabilistically defined envi-
ronment is at least 0.995.”

When you do this, you are applying sofl-
ware-reliability measurement. In this situa-
tion, this is the best you can do. For purists,
this may not be a satisfactory answer to
our initial question. But with software-reli-
ability measurement, you do not deal ex-
plicitly with the vastness, discreteness, and
discontinuity of a program input space -
you sidestep these imponderables by
using statistics to provide concrete, quan-
titative guidance.

In this article, we define the basic con-
cepts of software-reliability measurement

19

and show you how to use them in software
validation.

Basic-pts
Consider some basic concepts of soft-

ware reliability:
l Run. Many kinds of software run con-

tinuously. Two examples are process-con-
trol systems and telephone-switching sys-
tems. Others, like automatic teller
machines and electronic mail, run on de-
mand. In either case, you can break down
the ongoing operation of the software
into a series of discrete runs. Each run
performs a mapping between a set of
input variables and a set of output vari-
ables and consumes a certain amount of
processor execution time. The specifica-
tions of this mapping are the require-
ments for the run.

l Software failures and faults. When a
run is made where the outputs do not con-
form to the requirements, one or more
failures have occurred. To prevent a partic-
ular failure from occurring on a subse-
quent run, you must modify the program
by changing the set of instructions that it
executes-you must correct the fault that
underlies the failure.

This is a very general definition of fail-
ure. It covers not only departures from de-
sired functionality but also performance
issues. For example, if a response to a
given input is required for a specified
hardware configuration and load within a
specified time and if this response is not
made within that time, a failure has oc-
curred.

l Operational profile. The exact inputs
that are presented moment by moment to
an operational piece of software must be
considered to be selected at random. But
some inputs will occur on the average
more frequently than others. The specifi-
cation of these inputs and their relative
frequencies iscalled the program’s opera-
tional profile.

l Software failure occurrence is a Pois
son process. Given a very general set of
assumptions, you can show that software
failure occurrence obeys a Poisson pro
cess.’ This is expected, since other similar
phenomena - like the number of phone
calls received at a switchboard in a given
period or the number of taxis that break
down each day in a given city - are also

20

modeled by Poisson processes. You can
characterize a Poisson process by its ex-
pected value function. In reliability mea-
surement, this is the cumulative number
of failures, P(T), expected to occur by the
time the software has experienced a given
amount of execution time, 7.

Execution time is the basic dimension
of reliability measurement because, given
a random selection of inputs based on an
operational profile, execution time accu-
rately reflects software stress: A piece of
software that is never executed never fails.
The use ofexecution time yields reliability
measures that are relative to the speed of
the processor executing the software.

Given that a Poisson process models fail-
ure occurrences in general, you provide
models for specific situations by specifying
the function P(T). Several functions have
been considered in the literature, but we
will describe only three because they
model most situations encountered in
practice. They are simple to use and pro

Execution time is the
basic dimension of

reliability measurement
because itaccurateiy

reflects soi%wafe stress
A piece of software

that is new81 executed
nevef fails

vide descriptive and predictive accuracy
commensurate with the other elements of
current software-engineering practice.
Figure 1 illustrates these functions.

l Modeling failure occurrence for un-
changing software (Figure la). The first
function is u(r) = hi, where his a constant.
This function models the case where both
the software and its operational profile re-
main unchanged. A good example is com-
puter-terminal software, which is usually
permanently installed in a terminal as
firmware.

This function simply says that the ex-
pected number of failures that will occur
after T units of execution time (measured

over all processors running this software)
is directly proportional to Z. The instanta-
neous rate of failure (that is, the derivative
of p), which is denoted by h(r), is an im-
portant function in reliability measure-
ment. It is called the failure-intensity func-
tion. In this case, h(z) equals h. We call this
the staticexecution-time model.

l Modeling failure occurrence for soft-
ware being debugged (Figure 1 b). During
system test, the faults revealed by test fail-
ures are constantly being corrected, so
failure intensity should decrease as testing
proceeds. If the faults in the software are
equally likely to cause failures so that the
average failure intensity improves by the
same amount whenever a correction is
made, you can show that

This function models the case where the
operational profile remains unchanged
but where an action (possibly imperfect)
is initiated to correct the responsible fault
whenever a software failure occurs. (Cor-
rection need not be immediate. If it isn’t,
we simply do not count repeated occur-
rences of the same failure.)

For this model, An h(T) = A”exp ---‘T [1 Vn
We call this the basicexecution-time
model.

Although the assumptions on which the
basic execution-time model are based
may not always be satisfied in practice, the
model still provides a reasonable repre-
sentation and usually provides useful re-
sults. The major advantage of this model is
that its parameters - h, (the initial soft-
ware failure intensity at the beginning of
the observation period) and v,, (the total
number of failures that will be experi-
enced in an infinite amount of execution
time) - can both be easily related to
other attributes of the software, to its exe-
cution environment, and to the develop
ment process.

l If you take the converse of one of the
assumptions that led to the previous
model - if you assume that some faults
are more likely to cause failures and that
on the average the improvement in fail-

IEEE Software

ure intensity with each correction de-
clines exponentially as corrections are
made -you can show that

p(z) = $ ln(ho Br + 1)

Like the previous function, this func-
tion also models the situation where the
operational profile remains unchanged
and where corrections (possibly imper-
fect) are made whenever a failure occurs.
For this model.

4’ h(T) = ___ A,&+ 1

We call this the logatithmic Poisson execu-
tion-time model (Figure lc).

The parameter h, of the logarithmic
Poisson model has the same meaning as it
did in the basic model (but it will usually
have a different value). The parameter 8
characterizes the exponential drop-off in
failure intensity as repairs are made. The

assumption about the relationship be-
tween faults and failures on which the log-
arithmic model is based is particularly
suited to when the operational profile is
highly nonuniform.

System testing
Applying reliability measurement dur-

ing system test provides quantitative infor-
mation on the validation process. System
testing has two distinct functions:

l to validate that the completed software
functions close enough to its require-
ments to warrant passing it on to the next
stage in the life cycle and

l to improve the quality of the com-
pleted software by first discovering the
input states on which it fails to meet re-
quirements and then eliminating these
failures by correcting the underlying
faults.

Reliability measurement is concerned
mostly with the first function. The discov-
ery of failure input states is outside reli-

ability measurement’s domain, but mea-
surement can help you concentrate test-
ing attention through the concept of the
operational profile.

Presuppositions. The use of reliability
measurement during system test presup
poses that

l the definition of significant failures
has been specified,

l an operational profile has been speci-
fied, and

l for the defined failures and opera-
tional profile, a failure-intensity objective
has been set to some desired level ofconfi-
dence.

The first presupposition can be met sim-
ply by defining a departure from any of
the functional requirements as a failure.
However, some types of failures are usu-
ally more significant than others; you han-
dle this reality by defining faihire-severity
classes. Ideally, all these presuppositions
would be clearly defined in the quality-

(a)

pm = A In W37+1)

W

Figure l. Three useful software-reliability models: (a) static, (b) basic, and (c)logarithmic Poisson. These are shown comparing both
failures experienced versus execution time and failure intensity versus execution time.

May 1989 21

Table 1.
Inputs to a reliability-measurement program

Parameter data

Parameter Value

Failure data
Failure CPU seconds Day of
number from last failure system test

Mode1 type

Failure-intensity
objective

Test-compression
factor

System-test resource
parameters

Current date

Basic 1 3 I
execution time

2 30 2

0.01 failures per 3 113 9
CPU hour

4 81 10

2.0 . . .

97 1,261 73

various values 98 1,800 73

05/03/89

attributes section of the requirements
specification you use.?

The use of reliability measurement dur-
ing system test also presupposes that you
can directly relate the occurrence of fail-
ures to the amount of execution time the
software has experienced when failures
occur - you need to be able to plot p
against 7. Often, you cannot measure the

a hardware analyzer to measure execution
time directly if you are validating software
for a small system, you tend to measure
execution time indirectly for larger, more
complex systems. One such indirect
method is to determine the average
amount of execution time used per com-
mand or transaction and then count the
commands executed to determine execu-

execution time directly. While you can use tion time.

0 2 4 6 a 10 12 14 16

execution tinie in CPU hours

F@re 2. Observed failures and the basic model.

At this point in system testing, you have
established with 95percent certainty that
the failure intensity of this system is not
greater than 1.467 failures per CPU hour.
Furthermore, if subsequent test results
follow this pattern, you can be 95-percent
certain that you will reach your release ob
jective of 0.05 failures per CPU hour in
less than 10.2 CPU hours of testing and
that during this period you will need to
address the faults responsible for no more
than 14 new failures. Figure 4 shows how
failure intensity changes with corrections
for each failure.

The procedure illustrated in Table 1
and Figures 2-4 requires that enough fail-
ures are being observed to obtain statisti-
cally valid results. In general, this means
that the individual system components to
which reliability measurement is applied
must be reasonably large, say 5,000 lines of
code when the initial fault density is five
per thousand lines. Given components of
at least this size, a test manager can use
reliability measurement to allocate test re-
sources among these components. For ex-

22 IEEE Software

Basic procedure. With these presuppe
sitions in place, all that is necessary to
apply reliability measurement during sys-
tem test is to

l select test cases in proportion to the
frequencies specified by the operational
profile,

l record, at least approximately, the
amount of execution time between fail-
ures, and

l continue testing until the selected
mode1 shows that the required failure-in-
tensity level has been met to the desired
level of confidence.

Table 1 and Figures 24 illustrate this
procedure. Table 1 shows the input to a
program that implements the basic and
the logarithmic Poisson models described
earlier and that performs the statistical
confidence-interval calculations. Figure 2
shows a plot of failure data similar to that
in Table 1 and a basic execution time func-
tion that fits this data (using maximum-
likelihood estimation). This fit provides
values for the model parameter v0 and &,.
You can then use these parameters to cal-
culate the other values shown in Figure 3,
which illustrates the use of reliability mea-
surement as a verification and validation
tool.

ample, components with higher-than-av-
erage initial failure intensities will require
more testing time to bring them to the
same reliability levels than components
with lower-than-average initial failure in-
tensities.

Testing compression. Figures 2 and 3
also illustrate another concept: testing
compression. Ifyou select test cases strictly
at random according to the operational
profile, the failure-intensity level com-
puted at the completion of system testing
should match the static level observed
later in the field. But - given the need to
conserve system-testing resources and the
need to accomplish the two objectives of
validation and quality improvement in the
least amount of time - software system
testing, like its hardware counterpart,
seeks to accelerate stress. In testing com-
pression, you select test cases so that repe-
tition is limited, thus eliminating redun-
dancies that are unlikely to lead to new
failures and thus speeding up reliability
improvement.

The project illustrated in Table 1 has a
testingcompression factor of two, so the
failure-intensity values expected in opera-
tion are half those measured in test and
the desired failure-intensity objective is
reached sooner.

Calendar-time component. The last two
lines of the output shown in Figure 3 are
the result of translating CPU time into
project time (given input about the
project’s system test resources) to predict
the actual calendar date on which testing
will be complete. This calculation re-
quires a separate calendar-time compo
nent, which is fully described in the book
by Musa, Iannino, and Okumoto.’

With this component, the system-test
manager can investigate the effect of re-
arranging system-test resources on the
completion date. For example, you might
investigate using additional computer
time for system testing or you might plan
for more system testers. Conversely, if you
are faced with a fixed release date and a
fixed quantity of testing resources, you
can use the program in Figure 3 to predict
the failure intensity that can be expected
at the end of the predefined test period.
Project managers can then use this infor-

May 1989

SOFTWARE RELIABILITY PREDICTION
BASIC MODEL

SYSTEM T98c2

BASED ON SAMPLE OF 98 TEST FAILURES
EXECUTION TIME IS 11.03 CPU HR
FAILURE-INTENSITY OBJECTIVE 50 E-01 FAILURE/CPU HR
CALENDAR TIME TO DATE IS 73 DAYS
CURRENT DATE: 05/03/89

CONF. LIMITS MOST CONF. LIMITS
95% 90% 75% 50% LIKELY 50% 75% 90% 95%

TOTAL FAILURES
101. 101. 102. 103. 0105. 107. 110. 113. 115.

FAILURE INTENSITIES (FAILURE/1000 CPU HR)

INITIAL F.I.
9884 10443 11181 11901 @12967 14054 14837 15663 16194

CURRENT F.I.
469.7 517.6 601.8 694.2 846.6 1027 1175 1347 1467

(D *** ADDITIONAL REQUIREMENTS TO MEET F.I. OBJECTIVE ***

FAILURE
1 2 2 3 5 7 9 12 14

EXECUTION TIME (CPU HOURS)
1.97 2.35 3.02 3.75 4.93 6.37 7.58 9.07 10.2

CALENDAR TIME (DAYS)
.932 1.18 1.65 2.22 3.28 4.76 6.16 8.04 9.53

COMPLETION DATE
41489 41589 41589 41689 41789 42089 42289 42489 42789

Key
0 Estimate for v,,
$ Estimate for k,, (12.97 failures per CPU hour)
(B These quantities are calculated by using the parameters just estimated to calculate the points at

which the failure-intensity objective will be reached.

Fmre 3. Annotated tabular output of a reliability-measurement program.

mation to adjust schedules and resources
or to renegotiate them with the customer.

Requirements definition
Although the application of reliability

measurement to data from observed fail-
ures must wait until system-test or later
phases, software-reliability engineering
nonetheless has important contributions
to make early in the project. For example,
during requirements definition, you must
determine the system-test failure-intensity
objective and the amount of system-test
resources required to reach this objective.

To define failures and the operational
profile for the system, engineers must ex-
tend their dialogue with customers and

users. Special studies of existing systems
may be needed to determine operational
profile frequencies, but the additional sys-
tem-specification effort required to apply
reliability measurement can have an im-
mediate benefit.

First, customers and users will become
aware that, within a given development
technology, higher levels of certified qual-
ity require more testing, which will be re-
flected in higher costs at some point. With
reliability measurement, you can speak
quantitatively and concretely about qual-
ity levels and thus about costs. Given the
cost constraints, customers and users will
have to make up-front choices and com-
municate these choices to your system en-

23

execution time in CPU hours

Rgure 4. Graphical output of a reliability-measurement program.

gineers.
Second, the definition of the opera-

tional profile will provide valuable infor-
mation on how the users expect to use the
software. The definition of failures is use-
ful in clarifying the requirements. The ad-
ditional information required for reliabil-
ity measurement will mean a better
requirements specification and more

complete information on which you can
base design and implementation deci-
sions.

Ultimately, you must take into account
all of the costs associated with a chosen
failure-intensity level. For the two reliabil-
itygrowth models we have presented, sys-
tem-test cost increases nonlinearly with in-
creasing quality (that is, with decreasing

Figure 5. Selecting a failure-intensity objective that will minimize the cost of failure over
the life cycle.

failure intensity). On the other hand, for a
given life (in total execution time across
all installations), the cost of cleaning up
after a failure or of making warranty pay-
ments for failure will generally increase
with decreasing levels of quality - the
higher the quality, the lower the postdeliv-
ery costs, as Figure 5 shows. The figure
suggests that you should select an optimal
failure-intensity objective that will mini-
mize the total life-cycle cost of failure.

You can estimate the amount of system
testing you will need to reach a specified
failure-intensity objective if you can deter-
mine the parameters for the appropriate
reliability-growth model. Such values
must be based on data from experience.
Ideally, such data would come from qual-
ity-assurance information about an earlier
release of the software, from releases of
similar software, or from the development
organization’s average experience. Lack-
ing any of these more desirable sources,
you can take parameter values from aver-
ages of published data. You can likewise
get the equations needed to predict the
parameters h, and v0 for the basic model
from published sources.

Acceptance testing
Suppose you receive a piece of software

from a supplier who claims this software
meets your reliability requirements. How
can you validate this claim? The answer is
to use an acceptance chart based on a se-
quential sampling technique.

Because failure occurrence is a Poisson
process, you can convert from reliability
to failure intensity by using R=&. You
then verify that the failure intensity of the
software fallswithin an acceptable interval
around h by making test runs selected at
random from the operational profile that
you and the supplier have agreed on.

Figure 6 shows an acceptance chart for
when you will accept a I@percent chance
of a false positive or a false negative that h
is in the interval [h/2, 2h]. Figure 6 is an
example of how this chart might apply to
the test results shown in Table 2 when h
equals 0.1 failures per CPU hour.

In this example, a total of eight CPU
hours of test runs were made before the
first failure. This first failure is point 1 on
the chart; it falls in the continue-testing
region. Similarly, if the second failure oc-

24 IEEE Software

curs at 16 CPU hours, you continue to test
because that is also in the continue-testing
region. But if the third failure does not
occur until 62 CPU hours, you are well
within the acceptance region.

The final reliability-measurement task is
to verify that the reliability observed in the
field conforms to that observed in the sys
tern-test laboratory or validated during ac-
ceptance testing. Field reliability should
improve with time - but only if the field
software is corrected as failures occur.

For the static case where the field soft-
ware is not corrected, you can use re-
ported failures to compute a failure-inten-
sity confidence interval. Again, to use
reliability measurement, you must have
information about the amount of soft-
ware execution. One way to obtain this in-
formation is to build usage meters into the
product. Such a meter might monitor
transaction or command counts. Cus
tomers could then report the values of
these meters periodically and whenever
they reported a failure. You could then
use this data to estimate total cumulative
execution time.

To get statistically valid data, suppliers
should devise ways to encourage cus-
tomers to report all failures - minor as
well as major. The suppliers’ customer-
support organizations can then catego
rize failures and apportion the estimated
overall failure intensity to the various fail-
ure-severity classes.

Actual appkatiom
H. Dean Drake and Duane E. Wolting of

Hewlett-Packard have described the appli-
cation of reliability measurement to firm-
ware for two new computer terminals.3
The system testing for these terminals was
performed by teams of engineers, each of
which was responsible for various fea-
tures. The operational profile was as-
sumed to be uniform across all the fea-
tures, and the random selection of inputs
from this profile was approximated by
having each engineer test part-time on a
haphazard, when-available basis. This en-
sured that the test cases were applied con-
currently across all of the firmware’s fimc-
tional areas, and it made test coverage
congruent with use coverage. Execution
time was measured by keeping a log of the
test periods on each test terminal. The test

May 1989

l-

8

6

4 / I
Q

Accept
8 I

0 2 4 6 8 10
normalized failure time

(x, p = 0.10, discrimination ratio = 2

Figure 6. A reliability-measurement acceptance chart used with the failures listed in
Table 2. The numbered points refer to the table’s failure numbers. The discrimination
ratio is the ratio by which the results can depart from the desired value.

failures discovered each day were divided
by the total number of test hours for that
day to determine a test-day failure inten-
sity. These daily intensities were then aver-
aged for successive periods of execution
time. The result is the plot shown in Fig-
ure 7.

Figure 7 also shows the regression curve
of the form A exp (Bx) that was fitted to
thisdata. When xisset to the total number
of test hours (647 in this case), the expres
sion A exp (Bx) gives the estimated failure
intensity at the end of testing. This value
was 29.4-percent failures per test hour, so
you would expect that 29.4 percent of the
terminals would fail per test hour if the
test were to continue with no further mod-

iftcations to the software.
To be useful, you must convert this fail-

ure-intensity level to a calendar-time rate.
Because the firmware is exercised when-
ever the customers use their terminals,
the relationship between execution time
and calendar time is roughly linear. Previ-
ous studies showed that customers oper-
ate this type of terminal an average of
2,fK?O hours out of 8,760 per year. The test-
failure rate is therefore 6.71-percent fail-
ures per hour.

But this is an accelerated rate. The test
engineers were exercising the terminal
much harder than the average user would
and were also trying to cause failures. By
estimating the actual failures experienced

Table 2.
Failures used with the software-acceptance chart in Figure 6.

Times are in CPU hours.

Failure Failure
number time

Normalized
failure time Decision

1 8 0.8 Continue

2 16 1.6 Continue

3 62 6.2 &bj met

25

Figure 7. Actual terminal-testing failure intensities.

Release

0 200 400 600 800

cumulative test time in hours
(equivalent to execution time)

by this terminal in the first nine months of
its distribution, you could compute an ac-
celeration factor by dividing the predicted
rate of 6.71-percent failures per hour by
the observed failure rate.

The actual failure rate was estimated by
assuming that the terminal firmware was
repaired when a revision was installed and

that a failure occurred on the same date as
the repair. (The failure rate was estimated
from unit revisions.) The acceleration fac-
tor estimated by this method was 47,805.
When this estimate was applied to test-fail-
ure data from a second terminal develop
ment effort, the result was a predicted fail-
ure rate of 1.41-percent failures per year.

weeks after first office in service

Figure 8. Predicted and observed problems for a switching office.

This value of 8 was then used to deter-
mine h, for a new release based on failures
reported during 13 weeks of beta testing.
With these two parameters known, it was
simple to predict the total number of fail-
ures that would be observed over the full
two-year life of the release. This predic-
tion was then compared with the actual,
observed number of failures. The results
were that after two full years of field expe-
rience, the predicted failure intensity for
release 1 was greater than the actual inten-
sity by a maximum of 13 percent. After
one year of field experience for release 2,
the predicted failure intensity overesti-
mated the actual intensity by 5 percent,
Christenson reported.

The plot of the observed failures against
the predicted failures is even more strik-
ing example of the degree to which a reli-
ability model can predict failure occur-
rence. Figure 8 shows this plot.

One criticism often raised against the
practical application of the models pre-
sented here is the assumed necessity to
carefully measure execution time be-
tween failures. While the concept of relat-

26 IEEE Software

The observed rate was 1.58-percent fail-
ures per year.

Dennis Christenson ofAT&T has shown
that reliability measurement can be used
to accurately predict field failure rates in
electronic switching systems.4 The failure
data in this case is the number of new
problems reported by customers each
day. Since electronic switching systems op
erate 24 hours a day and are down infre-
quently, the cumulative execution time is
proportional to the total number of
switching system modules in use each day
summed over the number of days the soft-
ware has been installed.

The logarithmic model is appropriate
because switching-system software is up
dated regularly to correct the faults that
underlie customer trouble reports and
because the faults in the more commonly
used parts of the software tend to be fixed
first, so the earlier fixes tend to yield
greater improvement than the later ones.
When the maximum-likelihood tech-
nique was used to determine the parame-
ters of the logarithmic Poisson model (h,
and 8, as described earlier), it was discov-
ered that 8 was essentially constant from
release to release.

ing failure occurrence to execution time
is fundamental, in practice you have many
ways to estimate this quantity. In the
Hewlett-Packard study, it was estimated
from hourly terminal-test logs and the
date on which each test failure occurred.
In the AT&T study, execution time was es
timated from total daily processor hours
and the date of each unique field failure.
In other applications, you might use other
quantities to obtain the p and T observa-
tions from which you would estimate the
model parameters.

H ow do you validate that a piece of
software loaded into a processor
functions correctly? The answer is

that you take advantage of both the fact
that you are dealing with a va.st number of
possible input states and the fact that for
commercial-grade software only a small
percentage of these stateswill result in fail-
ure. These conditions make a rigorous sta-
tistical approach possible - this is the
essence of the technology of software-reli-
ability measurement.

Software-reliability measurement is a
new technology. There are clearly areaS
that need further development to make
its application easier and more accurate,
but it is sufficiently well developed to be
used now. The development organiza-
tions that work on the leading edge of
technology are putting it to the test and,
by so doing, are adding powerful impetus
to its improvement. .:.

References
1. J.D. Muss, A Iannino, and K Okumoto,

Softuare Reliability: Mmurem& Predictia,
Application, McGraw-Hi& New York, 1987.

2. ANSI/IEEE Std 83@1984, fl?Z? Guide to
Software-Requiremats Speci&ztion, IEEE,
NewYork, 1984.

3. H.D. Drake and D.E. Welting, “Reliability
Theory Applied to Software Testing,”
Hewlett-PackardJ., April 1987, pp. 35-39.

4. D.A. Christenson, “Using Software-Reli-
ability Models to Predict Field Failure Rates
in ElectronicSwitchingSystems,“Proc. Nat 2
Secwity Industtial Assn. Ann. Joint Con/ soft-
ware Quuali~ andReliabil$y, Nat’1 Security In-
dustrial Assn., Washington, D.C., 1988.

May 1989

John D. Muss is supervisor of the Software
Quality Group at AT&T Bell Laboratories. He
has managed or participated in many software
projects. Musa has contributed extensively to
the fields of software engineering and reliabil-
ity measurement over the past 15 years (for
which he was elected an IEEE fellow).

Musa received an MS in electrical engineer-
ing from Dartmouth College. He is a senior ed-
itor of the Software Engineering Institute book
series, a founding editorial-board member of
ll?l% Software, an editor of .WlC Proceeding, and
an editor of Techniqzu rt Science Infonatiques.

A.FrankAckemanis presidentofthe Institute
for Zero-Defect Software in New Providence,
N.J. He has more than 25 years ofexperience in
all phases of software development. During the
past two years, he has been designing and deliv-
ering training for AT&T to support an active
technology-uansfer program for software-reli-
ability measurement.

Ackerman received a PhD in computer sci-
ence from the University of North Carolina at
Chapel Hill and a BS in mathematics from the
University of Chicago. He is a member of IEEE,
ACM, and the IEEE Computer Society’s Soft-
ware-Engineering Standards Subcommittee.

Address questions about this article to Muss atAT&T Bell laboratories, Rm. 6E-111 B, Whippany
Rd., Whippany, NJ 0798 l-0903.

FULL AT&T C ++: ANNOUNCING VERSION 1.2
Guidelines announces its port of version 1.2 of AT&T’s C++ translator. As an

object-oriented language C++ includes: classes, inheritance, member functions, con-
structors and destructors, data hiding, and data abstraction. “Object-oriented” means that
C++ code is more readable, more reliable and more reusable. And that means faster
development, easier maintenance, and the ability to handle more complex projects. C++
is Bell Labs’ answer to Ada and Modula 2. C++ will more than pay for itself in saved
development time on your next project.

C ++
from GUIDELINES for the IBM PC: $295

Requires IBM PC/XT/AT or compatible with 640K and a hard disk.
Note: C++ is a rrunslutor, and requires the use of Microsoft C 3.0 or later

Here is what you get for $295: NOW AVAILABLE FOR
0 The full AT&T ~1.2 C++ translator. UNIX V/386 - $495
l Libraries for stream I/O and complex math. To Order:
l The C++ Programming Language, the send check or money order to:

definitive 327-page tutorial and description
by Bjame Stroustrup, designer of C++.

GUIDELINES SOFTWARE, INC.
P. 0. Box 749, Dept. CT

l Sample programs written in C++. Orinda. CA 94563
l Improved installation guide and

documentation. To order with VISA or MC,
phone (415) 254-9183.

l 30-day money-back guarantee. (CA residents add 6% tax.)

C++ is ported to the PC by Guidelines under license from AT&T.
Call or write for a free C++ information package.

Reader Service Number 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

