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Fault-based testing strategies test software by focusing on specific, common types of faulks. The

coupling effect hypothesizes that test data sets that detect simple types of faults are sensitive
enough to detect more complex types of faults. This paper describes empirical investigations into
the coupling effect over a specific class of software faults. All of the results from this investiga-
tion support the validity of the coupling effect. The major conclusion from this investigation is
the fact that by explicitly testing for simple faults, we are also implicitly testing for more
complicated faults, giving us confidence that fault-based testing is an effective way to test
software.
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1. INTRODUCTION

Fault-based testing is a general strategy for testing software that has been

widely studied in recent years [5, 6, 12, 17, 20, 21, 22]. Fault-based testing

strategies are based on the notion of testing for specific kinds of faults and

succeed because programmers tend to make certain types of faults that can

be well defined. Since the number of possible faults for a given program can

be large, fault-based testing strategies assume that by testing for certain

restricted classes of faults, we can find a wide class of faults. The set of faults

is commonly restricted by two principles, the competent programmer hypothe-

sis [11and the coupling effect [61.

The competent programmer hypothesis states that competent programmers

tend to write programs that are “close” to being correct. In other words, a

program written by a competent programmer may be incorrect, but it will

differ from a correct version by relatively simple faults. The coupling effect
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states that a test data set that detects all simple faults in a program is so

sensitive that it will also detect more complex faults [6]. Although the term

complex fault has never been formally defined, we introduce the following

working definitions for this paper:

Definition. A simple fault is a fault that can be fixed by making a single

change to a source statement. A complex fault is a fault that cannot be fixed

by making a single change to a source statement.

Thus, mutations introduce simple faults into a program. If higher-order

mutants, or complex mutants, are mutants that are generated by introducing

multiple mutations into the program, then it is clear that many uigher-order

mutants are complex faults. We also expect that there are complex faults

that cannot be generated by higher-order mutants (e.g., missing paths), thus

higher-order mutants form a proper subset of the complex faults. With this

definition of complex faults, we can define the coupling effect as follows:

Hypothesis. Coupling Effect: Complex faults are coupled to simple faults

in such a way that a test data set that detects all simple faults in a program

will detect a high percentage of the complex faults.

Since examples of complex faults that are not coupled to simple faults can

be constructed, the coupling effect is probabilistic rather than absolute. On

the other hand, we cannot show correctness through testing [10], software

testing is an imperfect science and we see no reason for the coupling effect to

be perfect. If it is usually true, it can help us to increase the reliability of our

software. In the above form, the coupling effect is a very general statement

that covers all faults, all programs, and all test generation methods. For the

empirical analysis of this paper, we restrict the coupling effect:

Hypothesis. Mutation Coupling Effect: Complex mutants are coupled to

simple mutants in such a way that a test data set that detects all simple

mutants in a program will detect a large percentage of the complex mutants.

This paper presents empirical analyses of the mutation coupling effect. The

experiments used a modified version of the Mothra mutation system [5] to

generate higher-order mutants for several programs. This study gives strong

evidence that the mutation coupling effect is true, and although more evi-

dence is certainly needed, we argue that this indicates that the more general
form of the coupling effect is valid.

1.1 Mutation Testing

Mutation analysis is a fault-based testing technique that helps the tester

create a set of test cases to detect specific, predetermined types of faults [6, 5].

Mutation analysis systems work by inducing a large number of simple faults,

called mutations, into a test program to create a set of mutant programs.

These mutants are created from the original program by applying mutation

operators, which describe syntactic changes on the programming language.
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Test cases are then measured by determining how many of the mutant

programs produce incorrect output when executed, Each live mutant is

executed with the test cases and when a mutant produces incorrect output on

a test case, that mutant is said to be “killed” by that test case and is not

executed against subsequent test cases. This shows that the current test case

set is able to find the faults represented by the dead mutants. Two programs

are functionally equivalent if they always produce the same output on every

input. Some mutants are functionally equivalent to the original program and

cannot be killed. Despite recent work in automating detection of equivalent

mutants [4], this is usually done manually, and is one of the greatest

expenses of current mutation systems.

A mutation score of a test set is the percentage of nonequivalent mutants

that are killed by a test case. More formally, if a program has M mutalnts, E

of which are equivalent, and a test set T kills K mutants, the mutation score

is defined to be

MS(P, T) = K
(M-E)”

A test set is mutation-adequate if its score is 100 percent (all nonequivalent

mutants were killed). In practice, data sets that score above 95 percent

on a mutation system tend to be difficult to create, but are effective at

finding faults. This has been demonstrated bc,th experimentally [8] and

analytically [3].

The function Sum in Figure 1 computes the sum of the integers from 1 to

N. The original version of Sum is shown on the left, and Sum with six of the

mutants that are generated by the Mothra mutation system [51 is shown on

the right, with the lines preceded by a “A” representing mutations of the

original function. Al is a constant replacement (crp) mutation replacing the

constant O with 1, A 2 is a scalar for constant replacement (scr) mutation

replacing the constant 0 with N, A3 is a scalar variable replacement (SW)

mutation replacing the variable Rslt with IN, A4 is a statement deletion (sdl)

mutation replacing the entire statement with a CONTINUE, A 5 is an arith-

metic operator replacement (aor) mutation replacing the arithmetic operator

+ with *, and A6 is another svr mutation replacing I with N. Note that each

of the six mutants in Figure 1 represents a separate program.

After all mutants have been executed, the tester is left with two pieces of
information. The number of dead mutants indicates how well the program

has been tested. The live mutants indicate inadequacies in the current test

set (and potential faults in the program). The tester then must add additional

test cases to kill the remaining live mutants. This process of adding test

cases, verifying the output of the test cases, and executing mutants continues

until the tester is satisfied with the mutation score.
The expected output verification is an important step in this process that is

often lost in descriptions of mutation testing. After executing a test case on

the original program, the tester must decide whether the output is correct on

that test case. ‘I’his action is commonly referred to as the oracle function, and

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, January 1992.
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Function Sum (NJ Function Sum (N)

C Sum the integers from 1 to N. c Sum the integers from 1 to N.

INTEGER N, I, Rslt INTEGER N, I, Rslt

1 Rslt = o 1 Rslt = o

2 DOIOI=l, N Al Rslt = 1

3 Rslt = Rslt + I A2 Rslt = PJ

4 10 CONTINUE A3 N=O

5 Sum = Rslt A4 CONTINUE

6 RETURN 2 DOIOI=l, N

7 END 3 Rslt = Rslt + I
Original Program A5 Rslt = Rslt * I

A6 IGJt = Rs.lt + N

4 10 CONTINUE
5 Sum = Rslt

6 RETURN
7 END

Mutated statements are shown with A

Fig. 1. Function SUM.

is common to all dynamic testing strategies, but unfortunately has not been

successfully automated. In mutation, this is the point at which the tester

finds bugs. The tester finds bugs because if the original program contains a

fault, there will usually be a set of mutants that remain alive. This has been

referred to as the fundamental premise of mutation analysis: if the software

contains a fault, it is likely that there is a mutant that can only be killed by a

test case that also detects that fault.

1.2 The Coupling Effect

The intuitive rationale of the coupling effect is that subtle faults are in some

sense “harder” to detect than simple faults. As Morell [171 pointed out, the

distinction between “simple” and “complex” faults is not always clear. In

this paper, we use mutation to model complex faults by inducing multiple

mutations into the program simultaneously. 2-order mutations are created by

combining 2 mutations, 3-order mutations are created by combining 3 muta-

tions, and in general, n-order mutations are mutations that are created by

combining n mutations.

Mothra’s mutation operators were derived so that they correspond to
typical programming errors [2]. This particular set of 22 mutation operators

[13] represents more than 10 years of refinement through several mutation

systems. They explicitly require the test data to meet criteria such as

statement and branch coverage, extremal values criteria, domain perturba-

tion, and they also directly model many types of faults. Whereas other

studies used only a few of the mutation operators (for example, Girgis

and Woodward [81, Howden [111 and Marick [151), it is important that all
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available mutation operators be used. Not using all operators severely biases

a study against mutation.

Although this study focuses on the validity of the mutation coupling effect,

a more general underlying question is whether the general coupling effect is

valid. The mutation coupling effect being valid implies the general coupling

effect in one of two cases. For case one, if the number of complex mutimts is

large in relation to the number of complex faults, then by detecting cc~mplex

mutants we at least detect most complex faults. Thus, in this case, demons-

trating the mutation coupling effect will be enough to validate the general

form of the coupling effect. For case two, it must be determined whether

complex faults are easier to detect than complex mutants. This has always

been the contention of mutation researchers [6, 14, 2], but only on an

intuitive basis. The first case seems unlikely, and there is some negative

evidence (e. g., Marick’s study [15]). The second case seems more likely, but

although anecdotal evidence abounds, it has never been carefully stuclied. If

true, it seems likely that there is a definable class of complex faults that do

not couple (perhaps missing paths or error of omission); these faults would

have to be targeted by a non-fault-based testing technique.

1.3 Previous Work

Even though the coupling effect has been mentioned by numerous re-

searchers [1, 2, 6, 16, 17], there has been little effort to verify or disprcwe the

effect. Morell [16] presented several theoretical results on coupling, using a

definition of coupling that differs slightly from earlier definitions. In l’d[orell’s

terms, two mutations are coupled for a test set if the test set kills each of the

mutants but does not kill the mutant composed from their combination. Note

that though this definition is essentially the inverse of the definition used

here, Morell’s results hold for both. Morell’s results indicate the fact that

there is no algorithm for determining if two mutations couple [16]. He also

gives a probabilistic argument to claim that for any given pair of nonequiva-

lent l-order mutations, there are relatively few test cases for which the two

mutations couple [161.

An experiment presented by Lipton and Sayward [14] gives some evidence

for the validity of the mutation coupling effect, In Lipton and Sayward’s

experiment, an adequate set of 49 test cases was derived for the program

FIND [9]. This set was heuristically reduced to a set of 7 test cases that were

also adequate. Then, random k-order mutations (where k > 1)were executed

on the 7 test cases. 21,100 2-order mutants vvere created and 19 were

determined to be equivalent to the original program. Impressively, every

nonequivalent 2-order mutant was killed by the test cases. This experiment

was extended to cover 3000 3-order and 3000 4-order randomly generated

mutants. Here, each of the k-order mutants involved combinations of ‘l-order

mutants where the l-order mutants were all related (for example, affecting

the same line). For this experiment, all of the k-order mutants were also

killed.

Although their experiment presents some evidence for be] ieving

the mutation coupling effect, there are compelling reasons for additional
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experimentation. Specifically, only a very small percentage of the h-order

mutants were generated (the experiments reported in this paper generated

over 500,000 2-order mutants for FIND, so 21,100 mutants represent less

than 5% of the total number). One is left wondering whether the perfect

results from the earlier experiment are significant, or an artifact of the small

percentage of mutants that were investigated. Also, the experimental data

was not completely reported, making it difficult to evaluate the data or the

process. Perhaps most importantly, some doubt remains about the validity of

the coupling effect, and with the increased attention being given to testing

strategies that depend on this effect, more evidence is needed to either verify

or disprove this principle.

2. AN EXPERIMENT IN COUPLING

One difficulty with this type of experimentation is the sheer number of

executions required. The number of mutations of a program is on the order of

the square of the number of variable references in the program [2]. The

number of 2-order mutations of a program is on the order of the square of the

number of l-order mutations —N4 in the number of variable references. For

this paper, 2-order mutants were constructed and executed with the Mothra

mutation system [51. 1

2.1 Experimental Procedure

As stated above, the mutation coupling effect claims that test cases that kill

simple, or l-order, mutants will also kill more complex, or n-order, mutants.

Thus, if faults are coupled, then a test data set that is mutation-adequate for

a set of l-order mutants should also be adequate for a set of 2-order mutants.

This assumption is the subject of the following procedure:

(1) A set of test data was constructed that killed all nonequivalent l-order

mutants for a program. To remove any bias contributed by the experi-

menter, this test data was constructed by the automated test data genera-

tor Godzilla [7].

(2) Ineffective test cases (test cases that killed no l-order mutants) were

eliminated from the set.

(3) The Mothra interpreter [13] was modified to generate and execute all

con netted 2-order mutants. A pair of mutants are considered connected if

they modify statements that can appear on the same execution path (as

determined by a reachability test on the program control flow graph).

Thus, mutation pairs that cannot both be executed simultaneously (such

as appearing on different branches of a decision statement) are not

considered.

1Information on acquiring the current version of the Mothra system can be obtained from the
Software Engineering Research Center, Purdue University, West Lafayette, IN 47907
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(4) Each 2-order mutant was executed against those test cases that caused

both of the mutated statements to be executed. That is, test cases that did

not execute both mutated statements were omitted.

The elimination of nonconnected mutation pairs in step 3 is intended to

remove a potential for experimental bias. Mutation pairs that modified

statements that could never both be reached during the same execution

would always be killed. Assume that the l-order mutation m, modifies

statement Si and is killed by test case t,. Similarly, the l-order mutation mJ

modifies statement s~ and is killed by test case t~. If s, and s,, are not

connected, then when we generate both mutations simultaneously, t, will

execute mutation m, on statement s, but will never execute statement s~,

and the 2-order mutant will be killed by t,. Mutants that are created by

mutations that appear on nonconnected statements will be called no-reach

mutants in the remainder of this paper.

Since killing no-reach mutants artificially inflates the 2-order mutation

score, mutations on nonconnected statements were not paired to create

2-order mutants. Thus bias was also avoided in step 4 by not executing

2-order mutants against test cases unless the test case executed both mutated

statements. By eliminating these executions, test cases were only executed

against mutants when there was a possibility for mutation interaction.2

2.2 2-Order Mutants

The technical problem of generating 2-order mutants was not difficult and

required minor modifications to Mothra’s interpreter. Normally, the inter-

preter operates in a loop over all test cases and within that loop, over dl live

mutants. For each mutant, the internal form of the test program is modified

to induce the mutation into the code and the mutant is executed. Then the

internal form is returned to its original state before executing the next

mutant. To generate and execute 2-order mutants, the interpreter wals exe-

cuted once for each mutant m,. It was modified so that it immediately

induced m, into the internal form, and then proceeded through the mutant

execution loop to execute m, with other mutants.

In the remainder of this paper, the notation (m,: m~) will refer to a Z!-order

mutant. If m, and mJ are both l-order mutants, then the 2-order mutant

( mi: mJ) is the mutant created by inducing both m, and m, into the program

simultaneously. The number of 2-order mutants for even a small program is

quite large. If there are N l-order mutants of a program, then there are N2

combinations of those mutants. We can reduce this number by a constant

factor by noting that the 2-order mutant (m,: m,) is usually equivalent to the

2-order mutant ( mJ: m,) (except when m, and mJ affect the same intermedi-

ate code instruction, as discussed below). Also, the mutant (m,: m,) produces

the same program as the l-order mutant m, and does not need to be

2A difference between this and an earlier study [18] is that these biases were not eliminated in
the earlier experiment.
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considered. Thus, if there are NR no-reach mutants, there are N2 – N/2 –

NR distinct 2-order mutants for a program (still on the order of N2 ). For this

reason, for each mutant m,, the mutant execution loop described above

generated and executed every mutant ml, where i < j < N and N is the total

number of l-order mutants. In addition, the no-reach mutants were skipped,

and test cases that did not execute both mutated statements were skipped.

Note that sometimes the second mutation that is induced into the program,

mJ, will change the same intermediate code instruction as the first mutation,

m,. This has the effect of only inducing one mutation into the program, and

the fact that ml is induced rather than m, is an artifact of the ordering of the

mutations. This situation is fairly rare and the affect is very small, falling

into one of three cases. First, if both m, and ml were killed as l-order

mutants, then either (m,: mJ ) or ( mJ: m,) will be killed as 2-order mutants.

Secondly, if both m, and mJ were equivalent as l-order mutants, then either

(m,: mj) or ( mJ: m,) will be equivalent as 2-order mutants. Thus, in these two

cases, the order the mutations are induced is irrelevant. The third case

occurs if m, was killed and mJ was equivalent. In this case, (m,: mJ) is an

equivalent 2-order mutant while ( mj: m,) will be killed as a 2-order mutant.

The bias introduced by this arbitrary ordering of the application of the

mutation operators is negligible, since there is very little difference in the

mutation score in killing a mutant as opposed to marking it equivalent.

Marking a killable mutant equivalent has the effect of reducing both the

numerator and denominator by one; which alters the result by only a small

amount. In no case was a killable 2-order mutant left alive or a 2-order

mutant that should have lived killed.

2.3 Experimental Programs

The experiment described above was performed with the three programs

MID, TRITYP and FIND. Because of the computational expense of executing

2-order mutants, the programs must be small. MID returns the middle value

of three integers. TRITYP has been widely studied in software testing and

inputs three integers that represent the relative lengths of the sides of a

triangle and classifies the triangle as equilateral, isosceles, scalene or illegal.

FIND was studied by Hoare [9] and DeMillo et al. [6] and accepts an array A

of integers and an index F. It returns the array with every element to the

left of A(F) less than or equal to A(F) and every element to the right of

A(F) greater than or equal to A(F). Some of the characteristics of these
programs are shown in Table I.

In Table I, the Ml column is the number of l-order mutants generated by

Mothra and the M2 column is the number of 2-order mutants generated for

this experiment (not counting the no-reach mutants). The number of no-reach

mutants is in the NR column. The T column refers to the number of test
cases that were generated to kill all nonequivalent l-order mutants. FIND

has no no-reach mutants because the body of the function is a loop, allowing

each statement to be reached from each other statement. This table graphi-

cally illustrates why the coupling effect is so important to the success of

ACM Transactions on Software Engineering and Methodology, Vol. 1, No 1, January 1992
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Table I. Experimental Programs

PROGRAM LINES Afl &fz — NR T—.
MID 16 183 10,388 6265 22

FIND 28 1022 521,731 0 19

TRITYP 28 951 350,982 100,743 53

Table II. 2-Order Results

fault-based testing strategies such as mutation analysis. Even with small

program modules like FIND and TRITYP, there are around a half lmillion

2-order mutants. If we need to perform this many executions to construct an

adequate set of test data, then fault-based techniques would be prohibitively

expensive.

2.4 Experimental Results

The 2-order mutants for the three programs were run on diskless Sun 3/50s,

using a Sun 4/280 file server. Since performance was not a critical factor in

this experiment, execution times were not carefully kept, however, each

program typically required over a week to execute. Table II summarizes the
results of running the 2-order mutants for the three programs above.

In Table II, the columns labeled M2, K, Eq and Live refer to the number of

2-order mutants that were created, killed, equivalent, and that remained

alive after execution of the test cases. The equivalent mutants were deter-

mined by an exhaustive hand analysis. The MS2 column is the resultant

mutation score, or the ratio of dead over nonequivalent 2-order mutants.

Even if one already had confidence in the coupling effect, the 2-order

mutation scores are surprisingly high. The fact that so few 2-order mutants

remained alive gives great credence to the validity of the mutation coupling

effect. However, the remaining 2-order mutants are worth examining in

depth. These mutants could have remained alive for one of two reasons. If the

2-order mutant has some characteristic that makes it unable to be killed by

test data generated for l-order mutants, we call the mutant strongly uncou-

pled. On the other hand, if the 2-order mutant just happened to be “missed”

by the test cases, then we call the mutant weakly uncoupled. Strongly

uncoupled mutants would indicate that the mutation coupling effect is seri -

ously flawed as a rationale for developing test data, whereas weakly uncou-
pled mutants merely mean that the mutation coupling effect does not always

hold, a less serious restriction for practical applications of fault-based testing.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No 1, January 1992.
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1

;
A46

A154

3

4

5

6

7

8

9

A33

A71

A171

10

A36

11
A179

12
13

14

15

INTEGER FUNCTION MID (X, Y, Z)

INTEGER X, Y, Z

MID = Z
IF (Y .LT. Z) THEN

IF (Y .LE. Z) THEN

IF (––Y .LT. Z) THEX

IF (X .LT. Y) THEN

MID = Y

ELSE IF (X .LT. Z) THEN

MID = X

ENDIF

ELSE

IF (X .GT. Y) THEN

IF (X .GE. ZPUSH(Y)) THEN

IF (X .GE. Y) THEN

IF (++X .GT. Y) THEN

MID = Y

MID = ZPUSH(Y)

ELSE IF (X .GT. Z) THEN

ELSE IF (–X .GT. ZPUSH(Z)) THEN

MID = X

ENDIF

ENDIF

RETURN

Fig. 2. Function MID

Since the first program, MID, is the smaller of the three programs, we shall

examine its live 2-order mutants. MID is shown in Figure 2 with seven

l-order mutants. The live 2-order mutants are all combinations of these
seven l-order mutants. 3

There were only six live 2-order mutants for MID, (33:46), (33:154), (36:46),

(36:154), (71:179), and (171:179). Interestingly, the four l-order mutants 46,

71, 154, and 171 are all equivalent to the original program. Although this is

certainly a surprising coincidence there is no obvious reason for this pattern.

It does, however, imply that we cannot ignore equivalent mutants when

going to higher order mutants, as Morell did [16].

Mutant 33 has a ZPUSH unary operator mutation that generates a failure

if the expression is zero and returns the value of the expression otherwise.

Thus, mutant 33 will only be killed when Y = O at statement 9. In addition,

3 The mutation numbers shown beside the mutated lines are the numbers used by Mothra to

reference the mutants The actual numbers are unimportant, except that they serve as conve

nient labels for this discussion.
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for statement 9 to be executed, the test case must have ( Y > Z) at statement

2. In the l-order case, mutant 33 was killed by the test case (X= 8, Y = O,

Z = O). When mutant 33 is combined with mutant 46, however, the test case

(X = 8, Y = 0, Z = O) executes a different path and never reaches statement

9. The other test cases in this set for which (Y = O) are (X = 97, Y = O,

Z = 1) and (X = – 29, Y = O, Z = 39). The first test case executes the path

(1, 2,3,5,7,14, 15), and the other executes the path (1, 2,3,4,7,14, 15); nei-
ther of which executes line 9.

This analysis explains why the 2-order mutant (33:46) did not die with this

particular set of test cases, but not why the coupling effect did not hold in

this case. In fact, there seems to be no subtle or generalizable reason why the

test set did not kill mutant (33:46), and we must hypothesize that a different

test case set developed for the same l-order mutants may well kill the

mutant.

When analyzing the other three 2-order mutants, we see a similar pattern

to that of mutant (33:46). In fact, mutant (33:154) is equivalent to mutant

(33:46) and both would be killed by the same test case, mutant (36:46) is

equivalent to mutant (36:46), and mutant (’71:179) is equivalent to (171:179).

All six 2-order mutants could be killed with the two test cases (X = 1, Y = O,

Z=–l)and (X=2, Y=4, Z= l).

The remaining live 2-order mutants for FIND and TRITYP follow a ~similar

analysis. There is no reason to believe that any of the live 2-order mutants

for these programs are in any way “special” and are particularly unlikely to

be killed by a set of test cases that is mutation-adequate for l-order mutants.

The remaining mutants for FIND and TRITYP do not seem to be strongly

uncoupled in any sense.

2.5 A Different Test Case Set

If it is true that the remaining live mutants were weakly uncoupled, then we

would expect a different test case set to leave a different set of 2-order

mutants alive. To verify this, three new sets of test data were generated for

MID. By using the fact that Godzilla incorporates some amount of random-

ness in its test case generation algorithm [19], different sets of test data were

generated that killed all nonequivalent l-order mutants for MID. The results

of this test data are shown in Table III.

The results of repeating the 2-order experiment for MID are comparable to

that of the first experiment. The set of mutants that remained alive were,

however, different. In the second experiment, for example, the only 2-order

mutant that remained alive was (46: 154). Not on] y ‘was this mutant killed by

all three of the other test case sets, but the mutants that remained alive in

the other experiments were killed by this test case set. In fact, the four

experiments in Table III left disjoint sets of mutants alive, lending support to

the hypothesis that the six 2-order mutants left alive by the first test case set

and the mutant left alive by this test case set are only weakly uncoupled.
An interesting characteristic of this data is that all of the 2-order mutants

that lived were composed of at least one equivalent l-order mutant. Hc)wever,
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Table III Repeated Results for MID

M2 K Eq Live MS2

MID 1 10,388 10,287 95 6 .9994

MID 2 10,388 10,292 95 1 .9999

MID 3 10,388 10,286 95 7 .9993

MID 4 10,388 10,287 95 6 .9994

the live 2-order mutants for FIND and TRITYP did not involve combinations

of any equivalent l-order mutants, so it seems that no general conclusions

can be drawn from this coincidence.

3. 1-ORDER VERSUS 2-ORDER MUTATION SCORE

If the mutation coupling effect is valid, we would expect that the more

complex a fault is, the more likely we are to detect that fault with test data

sets derived for simple faults. In other words, when j > i, j-order mutants

are easier to detect than i-order mutants. This implies that for the same test

data set, the 2-order mutation score should be higher than the l-order

mutation score. We rephrase this in a modified form of the mutation coupling

effect:

H-vpothesis. Mutation Coupling Effect, Modified Form. Complex mutants

are coupled to simple mutants in such a way that a test data set will detect a

higher percentage of complex mutants than of simple mutants.

To test this hypothesis, sets of test data were generated for MID and

TRITYP that were not fully mutation-adequate. To avoid any bias, test cases

were automatically generated and as in the experiments in Section 2, no-

reach mutants were not considered. To get a weaker set of test cases, the data

was generated randomly until the desired mutation score was reached. This

test data was executed against the l-order mutants and then the 2-order

mutants. The results of this experiment are shown in Table IV.

All four sets of test data resulted in a significant increase in mutation score

from the l-order case to the 2-order case. These increases in mutation scores

indicate that the above hypothesis is true, giving us some confidence that

repeating the above experiments with k-order mutants, where k > 2, would

yield even higher mutation scores.

From the data in the previous section, one might conclude that as we go

from l-order to 2-order mutants, the mutation score actually decreases, so

these two experiments may superficially seem to contradict each other. In

reality, when applying a test data set to 2-order mutants, we expect some of

the 2-order mutants to live, and some to die. The first experiment shows that

many more live than die; the second experiment implies that the mutation

score for 2-order mutants in the first experiment should be very close

to 1.0, rather than exactly 1.0. The 2-order mutants that lived in the first
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Table IV, Coupling With a Weaker Test Case Set

M K Eq Live MS

MID l-order 183 148 16 19 .89

MID 2-order 10,388 9,955 95 338 .97

MID l-order 183 126 16 41 .75

MID 2-order 10,388 9,450 95 843 .92

TRITYP 1-order 951 746 108 97 .88

TRITYP 2-order 350,982 332,628 4838 13516 .96

TRITYP l-order ’951 ’622 108 221 .741

TRITYP 2-order 350,982 304,935 4838 41209 .88 J

Table V. 3-Order Mutants

M

7

Live MS
——

MAX l-order 43 10 .75

MAX 2-order 903 53 .94

MAX 3-order 12,341 64 .99

MID l-order 183 -z .75

MID 2-order 10,388 145!3 .92

MID 3-order 602,841 409’7 .99

experiment (a very small percentage, ranging from .0001 to .0007) are an

artifact of the probabilistic nature of the coupling effect.

4. SOME 3-ORDER RESULTS

If test data developed for l-order mutants kills a higher percentage of 2-

order mutants, we would expect it to kill a still higher percentage of 3-order

mutants. In fact, as N gets large, we would expect the percentage of N-order

mutants killed to tend towards 1.0. To investigate this, two 3-order experi-

ments were performed. Since the number of 3-order mutants is so huge, the

first program was a two-line function that returned the maximum of two

integers; the other program was MID.

There were 1,004,731 3-order mutants for MID, 401,890 of which were

no-reach mutants. Since MAX is a straight-line program, there were no

no-reach mutants. This experiment was not performed for a larger function

such as TRITYP or FIND because of the sheer numbers of 3-order mutants. If

there are M l-order mutants for a program, then there are

()M=
M3–3M2+2M

3 6-

3-order mutants. For example, FIND has 177,388,540 3-order mutants!
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The results shown in Table V indicate that the strength of the mutation

coupling effect increases with 3-order mutants. This is strong evidence that

as the number of faults in a program that contribute to a failure increases,

our test data is more likely to detect the failures.

5. CONCLUSIONS

This paper presents several results about the coupling effect as measured

over the domain of mutation analysis. First, we found the test data developed

to kill l-order mutants are very successful at killing 2-order mutants. Of

course, the fact that two mutants are executed on the same path does not

necessarily mean that they interact in any meaningful way, but such interac-

tions are difficult to determine analytically. By including all 2-order muta-

tions on the same paths, we include all those than can interact. Second, we

observed that the 2-order mutants that remained alive exhibited no charac-

teristics that would lead one to believe that they were impossible or difficult

to kill using test data developed for l-order mutants. Third, we found that

the set of test data developed for l-order mutants actually killed a higher

percentage of mutants when applied to 2-order mutants. Finally, test data

generated for l-order mutants killed a higher percentage of mutants when

applied to 3-order mutants.

The important result is that when using mutation testing we can focus on

l-order mutants, and ignore n-order mutants. Whether killing n-order mu-

tants means we can detect complex faults is yet to be determined. As

discussed in the introduction, the set of higher-order mutants is a subset of

the complex faults. The ability to kill higher-order mutants implies the

ability to detect complex faults if either the higher-order mutants are a large

percentage of the complex faults or if the complex faults are easier to detect

than higher-order mutants. Although it was argued in Section 1.2 that both

seem likely, we cannot be sure without further evidence. Regardless of the

relationship between complex mutants and complex faults, it is encouraging

that the coupling effect manifested itself quite emphatically when restricted

to mutation analysis.

The fact that such a tiny number of second-order mutants survived the test

cases is pleasantly surprising. This leads us to conjecture that the mutation

coupling effect holds true a very large percentage of the time, agreeing with

the probabilistic analysis given by Morell [16]. These results are very encour-

aging for software-testing researchers and practitioners. This positive empiri-

cal evidence about the coupling effect indicates that fault-based strategies are

based on a firm foundation. The important practical implication of this result

is that when we test software by focusing on a small restricted class of faults

we can expect to detect more complicated faults as well, giving us confidence

that fault-based testing strategies can provide effective ways to test software.
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