
Empirical Software Engineering, 8, 351–365, 2003.

# 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Determining the Distribution of Maintenance

Categories: Survey versus Measurement

STEPHEN R. SCHACH srs@vuse.vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235,

USA

BO JIN bo.jin@vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235,

USA

LIGUO YU liguo.yu@vanderbilt.edu

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235,

USA

GILLIAN Z. HELLER gheller@efs.mq.edu.au

Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia

JEFF OFFUTT ofut@ise.gmu.edu

Department of Information and Software Engineering, George Mason University, Fairfax, VA 22030, USA

Editor: Marvin Zelkowitz

Abstract. In 1978, Lientz, Swanson, and Tompkins published the results of a survey on software

maintenance. They found that 17.4% of maintenance effort was categorized as corrective in nature, 18.2%

as adaptive, 60.3% as perfective, and 4.1% was categorized as other. We refer to this as the ‘‘LST’’ result.

We contrast this survey-based result with our empirical results from the analysis of data for the repeated

maintenance of three software products: a commercial real-time product, the Linux kernel, and GCC. For

all three products and at both levels of granularity we considered, our observed distributions of

maintenance categories were statistically very highly significantly different from LST. In particular,

corrective maintenance was always more than twice the LST value. For the summed data, the percentage

of corrective maintenance was more than three times the LST value. We suggest various explanations for

the observed differences, including inaccuracies on the part of the maintenance managers who responded

to the LST survey.

Keywords: Maintenance categories, open-source software, repeated maintenance, real-time product,

Linux, GCC.

1. Introduction

One of the most widely cited papers on software maintenance is ‘‘Characteristics of
Application Software Maintenance’’ (Lientz et al., 1978). The authors of that paper
analyzed 69 responses from maintenance managers to a 35-page questionnaire
containing 50 different questions. Even though the survey was conducted 25 years



ago, one result from that survey continues to be quoted regularly, namely, the
relative frequency of adaptive, corrective, and perfective maintenance. For example,
the latest editions of all three top-selling textbooks in software engineering quote this
result (Schach, 2002; Pressman, 2001; Sommerville, 2001).
In more detail, Lientz et al. (1978) stated that 17.4% of maintenance effort was

categorized as corrective in nature (‘‘emergency fixes, routine debugging’’); 18.2% as
adaptive (‘‘accommodation of changes to data inputs and files and to hardware and
system software’’); 60.3% as perfective (‘‘user enhancements, improved documenta-
tion, recoding for computational efficiency’’); and 4.1% was categorized as ‘‘other’’
(Lientz et al., 1978). For brevity in what follows, we will refer to this as the LST
result.
Although these results are valuable and useful, they are somewhat dated. Since the

paper’s 1978 publication date, there have been considerable changes in the IT
industry. We use new technologies, new processes and procedures to design and
develop software, and there are numerous new types of applications. A significant
change is that software now heavily relies on reuse, which can directly impact
maintenance. Thus, we have decided to revisit the categorization of maintenance
changes.
We have recently compiled detailed data for the repeated maintenance of three

software products: RTP, a widely used commercial real-time product (Wang et al.,
2001); Linux, the open-source operating system (Linux Online, 2000); and GCC, the
open-source set of compilers (GCC Home Page, 2001). One of the items we
measured was the distribution of maintenance categories. We fully expected that our
results would be in accordance with LST. Much to our surprise, the distributions we
observed were vastly different from LST.
We therefore felt that it would be appropriate to carefully reexamine LST. For

example, suppose that a software organization is devoting 50% of its maintenance
effort to corrective maintenance. If LST is correct then the number of faults in the
software developed by that organization is unacceptably high. But if the results
presented in this paper can be validated for software as a whole, then the number of
faults is slightly below average. LST is widely accepted, so correcting LST could have
major implications for the management of maintenance.
Previous work in this area includes (Nosek and Palvia, 1990), in which results

similar to LST were obtained when the same questionnaire was sent out 10 years
later. Results of automatic categorization of maintenance performed on a real-time
software system are described in Mockus and Votta (2000). Unfortunately, the
maintenance categorization used in that paper is inconsistent with other papers, so
the results are hard to compare. For example, Mockus and Votta (2000) use the term
‘‘adaptive maintenance’’ to mean ‘‘adding new features.’’ They also introduce
additional categories, such as ‘‘inspection maintenance’’ (the result of a code
inspection).
In Section 2, we discuss possible granularities for measuring maintenance

categories, and in Section 3, we describe the granularities we used in this study.
Sections 4, 5, and 6 contain our maintenance data for RTP, Linux, and GCC,
respectively. In Section 7, we discuss LST. Our conclusions are in Section 8.

352 SCHACH ET AL.



2. Granularity of Maintenance Category Data Measurement

Suppose we wish to categorize maintenance activities as adaptive, corrective,
perfective, or other. This categorization can be performed on the basis of
measurements at various levels of granularity, including the line of code level,
change-log level, module level, and program level. At the end of this section, we
contrast measurements made at these levels of granularity with the approach used in
determining LST.

2.1. Line of Code Level

Using a utility like diff, each line that was changed (inserted, modified, or deleted) in
the course of producing a new version of the program is flagged. Then, the category
of the change to that line is determined by examining the change and deciding
whether it is adaptive, corrective, perfective, or other (the categorization used in
LST). This level of categorization clearly provides maximal information regarding
the nature of the maintenance performed. A disadvantage is that we have found that
gathering data at this level of granularity is exceedingly time consuming. Also, it can
be hard to analyze such changes statistically when the number of lines of code
decreases from one version to the next, especially when the decrease is large. For
example, version 2.3.31 of Linux kernel module Sched.c has 2090 lines of code,
whereas version 2.3.32 has only 1420 lines of code, a 32% decrease.

2.2. Change-Log Level

Typically, a change-log text file consists of entries like ‘‘warn the user that all but
four cases have been disabled’’ or ‘‘prevent an endless loop when – 1 is
stored in the hash table.’’ Implementing these changes could require the addition,
deletion, and modification of several lines of code in several different modules. At
the change-log level, all these changes to the code are considered to be one unit of
maintenance and are recorded on that basis. A strength of this approach is that it
reflects the maintenance programmers’ view of the different activities that were
performed. The major weakness is that it does not distinguish between correcting
just one line of one comment within one module (which we have actually observed),
and completely rewriting many modules to correct one fault (which we have not yet
observed). Both maintenance operations would be recorded as one corrective
change-log level modification.

2.3. Module Level

At the change-log level, as explained in the previous section, each entry in the change
log constitutes one unit of maintenance. At the module level, we treat all the changes

DISTRIBUTION OF MAINTENANCE CATEGORIES 353



made to a module as a single unit of maintenance. If all the changes made to a
specific module are (say) adaptive, then we classify that unit of maintenance as
adaptive. However, if at least one change is (say) corrective, then we classify the
maintenance as adaptive/corrective. Then, for the purpose of statistical analysis, the
set of changes to that module are deemed to be half adaptive and half corrective. A
disadvantage is that this may not be an accurate measure of the relative effort when
maintenance of more than one category is performed on a module.

2.4. Program Level

Here we consider the program as a whole and treat all the changes made from one
version to the next as one unit of maintenance. As with module level categorization,
we then categorize the change to a program as (say) adaptive or (say) adaptive/
perfective. The strength of this approach is that we get the ‘‘big picture.’’ The major
weakness is that the resulting data do not indicate the scale of the change, for
example, how many modules were changed, let alone the extent of the changes to
each module. As with module level categorization, there is also the problem of how
to treat (say) adaptive/corrective/perfective maintenance accurately; the assumption
that equal effort was devoted to adaptive, corrective, and perfective maintenance
may not be a fair reflection of what was actually done.

2.5. Approach used to Determine LST

As explained in Section 6, Lientz et al. (1978) asked maintenance managers to
estimate the relative percentage of effort devoted to specific maintenance activities
for a specific application software system. That is, no measurements as such were
performed. Instead, managers estimated how much effort was devoted to each of the
activities, and then stated how confident they felt about their estimate. The activities
were then grouped into four categories: corrective, adaptive, perfective, and other
(Swanson, 1976). For example, the two activities ‘‘emergency fixes’’ and ‘‘routine
debugging’’ were grouped into corrective maintenance.
In order to ensure that our results were comparable with those of LST, in our

study we used the same four categories as LST.

3. Methodology

For RTP (Section 4), we determined the maintenance categories at only the module
level. In the case of Linux and GCC (Sections 5 and 6), we determined the
maintenance categories at both the module level and the change-log level in order to
obtain two different views of repeated maintenance. In this paper, we report on all
the distribution data we obtained at both the module level and the change-log level.

354 SCHACH ET AL.



For many software products, there is no change log per se. In such cases, entries
similar to those of change logs are sometimes found as comments in the code; this is
how changes to RTP are notated. When neither a change log nor comments were
available (as, for example, with much of Linux), we used diff to find what changes had
been made and then constructed a change log on the basis of the changes to the code.
At both the change-log level and the module level, we categorized each change

using the LST categories. This approach is potentially subjective, so we wanted to
make the categorization as objective as possible. Accordingly, we performed each
classification twice and computed the cross-rater reliability. Two researchers
independently categorized each change. Their evaluations were then compared
using Cohen’s Kappa test (Cohen, 1960).
Cohen’s Kappa coefficient k (Cohen, 1960) is an index of cross-rater reliability.

That is, k is a measure of the extent to which two raters agree. Let PO denote the
proportion of ratings on which the two raters agree, and Pe denote extent of
agreement expected by chance, that is, the expected proportion of ratings that agree,
assuming the raters are statistically independent. Then k is defined as

k ¼ PO � Pe

1� Pe

That is, k is the ratio of the observed excess over chance agreement to the maximum
possible excess over chance agreement. We used the Kappa threshold values
determined by El Emam (1998); these values appear in Table 1.
We now present our results on the repeated maintenance of RTP, Linux, and

GCC, in each case identifying the level of granularity of the maintenance data that
we extracted, and indicating the level of agreement regarding the categorization.

4. Repeated Maintenance of RTP

We have analyzed the repeated maintenance of RTP, a widely used PC-based
commercial real-time product written in a combination of Assembler and C. The size
of the product is about 12 KLOC. Procedures are grouped into 10 files; seven of the
files consist of Assembler procedures and the other three contain C functions. We
were provided with 148 versions of those 10 files, that is, the 10 original versions plus
138 modified versions created between 1987 and 1996 (for reasons of trade secrecy,

Table 1. Threshold values for Cohen’s

Kappa statistic (El Emam, 1998).

Kappa value Strength of agreement

< 0.45 Poor (bottom 25%)

0.45 – 0.62 Moderate (bottom 50%)

0.63 – 0.78 Substantial (top 50%)

> 0.78 Excellent (top 25%)

DISTRIBUTION OF MAINTENANCE CATEGORIES 355



we were not given access to the latest versions). Our complete results may be found in
a companion paper (Wang et al., 2001). Table 2 contains module level data for the
138 modified versions.
The chi-square test (Weiss, 1995) was used to compare the observed distribution of

maintenance categories with the distribution expected according to LST. As can be
seen from Table 3, the probability that the distribution of maintenance categories we
observed was drawn from a population distributed according to LST is < 0.001.
That is, statistically the distribution of maintenance categories that we have observed
is very highly significantly different from that in LST.
As stated in Section 3, two different evaluators categorized the changes separately.

The cross-rater reliability analysis is presented in Table 3. The second column of
Table 4 shows that the value of the Kappa coefficient is 0.87. From Table 1, this
means that the strength of the agreement is considered excellent.

Table 2. Data at the module level for the 138 changed modules of RTP.

Maintenance category Observed

number

Observed

percentages (%)

Expected percentages

(LST) (%)

Adaptive 19 13.8 18.2

Corrective 59 42.8 17.4

Perfective 37 26.8 60.3

Other 23 16.7 4.1

Chi-square test P< 0.001

Table 3. The cross-rater reliability analysis for RTP at the module level.

Rater 2 Rater 1

Adaptive Corrective Perfective Other Total

Adaptive 17 0 0 0 17

Corrective 2 58 4 2 66

Perfective 0 1 32 2 35

Other 0 0 1 19 20

Total 19 59 37 23 138

Table 4. The value of the Kappa coefficient of reliability for each

categorization.

RTP Linux GCC

Module level

0.87

First set of versions 0.81 0.81

Middle set of versions 0.92 0.82

Last set of versions 0.70 0.82

Change-log level

—

First set of versions 0.81 0.80

Middle set of versions 0.81 0.86

Last set of versions 0.74 0.89

356 SCHACH ET AL.



5. Repeated Maintenance of the Linux Kernel

We then examined 391 versions of Linux, from version 1.0 through version 2.3.51
(Schach et al. 2001). We concentrated our efforts on the Linux kernel because there
are only 17 kernel modules and 6506 versions of those modules; in contrast, the
current version of Linux has nearly 2000 modules, and there are up to 390 previous
versions of each of those modules. In other words, our Linux maintenance research
project was manageable because we restricted our efforts to measuring various
aspects of ‘‘only’’ 6506 modules.
Here we report on both module level and change-log level data, as explained in

Section 3. (As stated in Section 3, we constructed a change log from the changes to
the source code.) We were particularly interested in determining whether the
maintenance phase can be divided into subphases, so we considered the first 20
versions, the middle 20 versions, and the last 20 versions of the 391 versions of Linux
at our disposal. The result of comparing each set of 20 versions against the LST
distribution at the module level data is shown in Table 5, and at the change-log level
data in Table 6. (In Table 5, two of the ‘‘observed numbers’’ are fractions. This is
because the 15 instances of corrective/perfective maintenance at the module level are
treated as 7.5 instances of corrective maintenance and 7.5 of perfective maintenance,
as explained in Section 2.3.)
Chi-square tests were again used to compare the observed distributions of

maintenance categories with the distribution expected according to LST. As can be

Table 5. Data at the module level for the first 20, middle 20, and last 20 versions of the Linux kernel.

Maintenance

category

First 20 versions Middle 20 versions Last 20 versions Expected

percentages

(LST) (%)Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Adaptive 2 2.2 0 0.0 0 0.0 18.2

Corrective 48 53.3 42 73.7 30.5 50.8 17.4

Perfective 34 37.8 11 19.3 25.5 42.5 60.3

Other 6 6.7 4 7.0 4 6.7 4.1

Chi-square test P< 0.001 P< 0.001 P< 0.001

Table 6. Data at the change-log level for the first 20, middle 20, and last 20 versions of the Linux kernel.

Maintenance

category

First 20 versions Middle 20 versions Last 20 versions Expected

percentages

(LST) (%)Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Adaptive 2 0.9 0 0.0 0 0.0 18.2

Corrective 87 40.5 151 78.6 75 53.6 17.4

Perfective 115 53.5 37 19.3 61 43.6 60.3

Other 11 5.1 4 2.1 4 2.9 4.1

Chi-square test P< 0.001 P< 0.001 P< 0.001

DISTRIBUTION OF MAINTENANCE CATEGORIES 357



seen from Tables 5 and 6, in all cases the probability that an observed distribution
came from a population with the LST distribution is < 0.001. We again deduce that
the observed distribution of maintenance categories is statistically very highly
significantly different from the LST distribution.
Again, two different evaluators categorized the changes separately. For the sake of

space, only the cross-rater reliability analysis for the first 20 versions of the Linux
kernel at the change-log level is presented here (Table 7). The values of all six Kappa
coefficients appear in the fourth column of Table 4; four of the six Kappa coefficients
were 0.80 or higher so, from Table 1, the strength of the agreement is considered
excellent. The other two coefficients were 0.74 and 0.70; here, the strength of the
agreement is considered substantial.

6. Repeated Maintenance of GCC

Next, we examined versions 2.4.0 through 2.7.2.3 of GCC (GNU Compiler
Collection), a set of open-source compilers for C, Cþþ, Fortran, Objective C, and
other languages, published by the Free Software Foundation (GCC Home Page,
2001). The current version of the source code consists of over 1000 modules totaling
nearly 850,000 lines of code. Just under 200 of the modules are procedural C code
(.c) and just under 500 are C header modules (.h).
Again, we report on both module level and change-log level data, for the reason

given in Section 3. Also, as with Linux, we wanted to determine whether or not the
maintenance phase can be divided into subphases, so we considered the first five
versions, the middle five versions, and the last five versions of GCC. Unlike the
Linux data, in the case of GCC we did have access to a change log.
The module level data are shown in Table 8, and the change-log level data in

Table 9. Once again using chi-square tests, we deduce that, as in the case of Linux
and RTP, the observed distribution of maintenance categories is statistically very
highly significantly different from that expected according to LST.

Table 7. The cross-rater reliability analysis for the first 20 versions of

the Linux kernel at the change-log level.

Rater 2 Rater 1

Adaptive Corrective Perfective Other Total

Adaptive 2 0 0 0 2

Corrective 0 82 16 0 98

Perfective 0 5 99 2 106

Other 0 0 0 9 9

Total 2 87 115 11 215

358 SCHACH ET AL.



As before, two different evaluators categorized the changes separately. Again for
the sake of space, only one cross-rater reliability analysis is presented here. Table 10
shows the cross-rater reliability analysis for the first five versions of GCC at the
change-log level. The values of all six Kappa coefficients appear in the fifth column
of Table 4; all six of the Kappa coefficients were 0.80 or higher. From Table 1, we
deduce that the strength of the agreement is considered excellent.
Figures 1 and 2 summarize the results of Sections 4, 5, and 6. Figure 1 shows the

distribution of maintenance categories at the module level, and Figure 2 shows the
distribution at the change-log level.

Table 8. Data at the module level for the first five, middle five, and last five versions of GCC.

Maintenance

category

First five versions Middle five versions Last five versions Expected

percentages

(LST) (%)Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Adaptive 1.833 1.0 3.5 3.3 4.333 6.3 18.2

Corrective 87.833 50.2 56.5 53.8 46.833 67.9 17.4

Perfective 85.333 48.8 42 40.0 17.833 25.8 60.3

Other 0 0.0 3 2.9 0 0.0 4.1

Chi-square test P< 0.001 P< 0.001 P< 0.001

Table 9. Data at the change-log level for the first five, middle five, and last five versions of GCC.

Maintenance

category

First five versions Middle five versions Last five versions Expected

percentages

(LST) (%)Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Observed

number

Observed

percentages

(%)

Adaptive 3 1.0 8 3.9 13 11.8 18.2

Corrective 155 51.5 117 57.1 74 67.3 17.4

Perfective 143 47.5 75 36.6 23 20.9 60.3

Other 0 0.0 5 2.4 0 0.0 4.1

Chi-square test P< 0.001 P< 0.001 P< 0.001

Table 10. The cross-rater reliability analysis for the first five versions

of GCC at the change-log level.

Rater 2 Rater 1

Adaptive Corrective Perfective Other Total

Adaptive 3 1 1 0 5

Corrective 0 139 14 0 153

Perfective 0 15 128 0 143

Other 0 0 0 0 0

Total 3 155 143 0 301

DISTRIBUTION OF MAINTENANCE CATEGORIES 359



Figure 1. Distribution of maintenance categories at the module level.

Figure 2. Distribution of maintenance categories at the change-log level.

360 SCHACH ET AL.



7. Discussion

We have observed significantly more corrective maintenance than LST, and less
adaptive and perfective maintenance. Table 11 shows the comparisons for the
nonweighted sum of our data, at both the module level and the change-log level.
It should come as no surprise that the observed distributions of the maintenance

types are different from the values predicted by LST. After all, the LST distribution
was derived from a survey, whereas the distributions presented in this paper are
empirical results obtained by measuring the source code itself.
What is surprising, however, is that the two distributions are so utterly different.

When the same result is obtained in two different ways (from a survey and from
measurements, in this instance), we do not anticipate that the two answers will be
identical, but we would certainly expect that the two answers would show some
similarity. Referring again to Table 11, according to the LST survey 17.4% of effort
is devoted to corrective maintenance, whereas the summed data reflects 53.4%

(module level) and 56.7% (change-log level), more than three times the LST value.
This huge discrepancy between the measured results and the results of the LST
survey needs to be understood.
One possible explanation is the LST values were obtained from data processing

software, not operating systems or compilers. However, RTP is a commercial real-
time product. In passing, only one of the three top-selling software engineering
textbooks (Schach, 2002; Pressman, 2001; Sommerville, 2001) points out that LST
cannot necessarily be extrapolated to all types of software. Sommerville (2001)
restricts the result to ‘‘custom software.’’ Furthermore, all three textbooks imply that
the LST result still holds, 25 years later.
Another possible explanation is that the nature of software development has

changed since 1978 as a consequence of the transition to the object-oriented
paradigm. However, RTP was started in 1987, Linux in 1991, and GCC in 1985, and
none of them was designed or developed as object-oriented software.
A third possible explanation for the vast discrepancy is that the LST values

appertain to effort, whereas our results relate to the number of changes of each type.
Graves and Mockus (Graves and Mockus, 1998) found that the effort in performing
corrective maintenance is about 1.8 times greater than for comparably sized
perfective maintenance. In view of the fact that all our observed percentages for
corrective maintenance are already more than twice as large as the percentages
predicted by LST, converting our numerical data to effort data on the basis of

Table 11. Comparison of the summed data of Tables 2, 5, 6, 8 and 9 with LST.

Maintenance category Module level

percentages (%)

Change-log level

percentages (%)

LST

percentages (%)

Adaptive 4.4 2.2 18.2

Corrective 53.4 56.7 17.4

Perfective 36.4 39.0 60.3

Other 0.0 2.4 4.1

DISTRIBUTION OF MAINTENANCE CATEGORIES 361



Graves and Mockus’s conversion factor would only make the discrepancies with
LST considerably worse, both at the module level and the change-log level. For
example, consider the change-log level data for the middle 20 versions of Linux,
shown in Table 6. (We chose this data set because there is no adaptive maintenance;
no conversion factor for the effort in performing adaptive maintenance has yet been
published. Also, the number of changes in category ‘‘other’’ is only four.) Table 12
shows the effect of scaling the corrective maintenance by 1.8 (that is, from 151 to
271.8). The deviation from LST is even more pronounced.
A fourth possible reason relates to the way that we measured maintenance activity.

The LST maintenance percentages are derived from estimates of effort. In this paper,
we measured maintenance activity in two ways, namely, the number of changes at
the module level and the number of changes at the change-log level (where one
change can span multiple modules). Although the results from the two levels of
granularity are different, at both levels the observed percentages are statistically very
highly significantly different from the LST percentages, and the deviations were even
greater when we used Graves and Mockus’ factor to convert our number data to
effort data. However, it is possible that, had we measured maintenance activity in yet
another way (at the code level, say), it is conceivable that the deviation from LST
would not have been quite so pronounced.
A fifth possible explanation is that participants in the survey from which LST was

derived simply did not have adequate data to respond to the survey. The
participating software maintenance managers were asked whether their response
to each question was based on reasonably accurate data, minimal data, or no data.
In the case of the LST question, 49.3% stated that their answer was based on
reasonably accurate data, 37.7% on minimal data, and 8.7% on no data. In fact, we
seriously question whether any respondents had ‘‘reasonably accurate data’’
regarding the percentage of effort devoted to the categories of maintenance included
in the survey, and most of them may not have had even ‘‘minimal data.’’ In the
survey, participants were asked to state what percentage of maintenance consisted of
items like ‘‘emergency fixes’’ or ‘‘routine debugging’’; from this raw information, the
percentage of adaptive, corrective, and perfective maintenance was computed.
Software engineering was just starting to emerge as a discipline in 1978, and it was

Table 12. Data at the change-log level for the middle 20 versions of the Linux kernel

converted to effort data.

Maintenance

category

Number data Effort data Expected

percentages

(LST) (%)Observed

number

Observed

percentages

(%)

Converted

number

Converted

percentages

(%)

Adaptive 0 0.0 0 0.0 18.2

Corrective 151 78.6 271.8 86.9 17.4

Perfective 37 19.3 37 11.8 60.3

Other 4 2.1 4 1.3 4.1

Chi-square test P< 0.001 P< 0.001

362 SCHACH ET AL.



the exception for software maintenance managers to collect the detailed information
needed. Indeed, in 1978 almost all organizations were at what we now call CMM
level 1 (Schach, 2002). There is also the issue of the time needed to collect
maintenance data. It took us three weeks to analyze various aspects of the changes to
the 138 versions of RTP we investigated, and over nine months to analyze the 6506
Linux versions. Today, CASE environments are used in software development and
maintenance, and these environments can assist in data collection. Nevertheless, our
experience has been that, even when such CASE environments are used, software
engineers are reluctant in the extreme to spend even a minute or two entering
information that they do not view as relevant to their day-to-day tasks, even when
their managers have mandated this data collection. In 1978, before such CASE tools
existed, it seems most unlikely that software maintenance managers would have had
much in the way of ‘‘reasonably accurate’’ maintenance data of any kind.
A sixth possible reason is that the managers did not tell the truth when responding

to the survey. After all, corrective maintenance is performed to fix a fault; had the
software been better developed, the fault would not have been present. Even though
the managers were promised anonymity, it is possible that they wanted to paint their
companies in a good light.

8. Conclusions and Future Work

We have examined maintenance data from three different sources, namely, RTP, a
commercial real-time program, and Linux and GCC, two open-source programs. In
all three cases, the distribution of maintenance categories was statistically very highly
significantly different from the distribution described in Lientz et al. (1978). In
particular, in every case the percentage of corrective maintenance was at least twice
as large as predicted, and three times larger for the summed data.
To evaluate the reliability of our categorization results, Cohen’s Kappa coefficient

was calculated for all 13 sets of categorizations. In 11 instances, the reliability was
found to be excellent, and it was substantial in the other two instances.
We then reexamined the part of the survey conducted by Lientz et al. (1978) that

relates to the distribution of maintenance categories. We are highly skeptical about
the accuracy of the responses of the managers who participated in the survey.
Furthermore, we seriously doubt that the results of a survey of software managers
can ever be as accurate as empirical results based on measurements of the software
itself.
We are currently examining the repeated maintenance of other software products

to obtain more actual data on the distribution of maintenance categories.

Acknowledgment

This work was sponsored in part by the National Science Foundation under grant
number CCR-0097056.

DISTRIBUTION OF MAINTENANCE CATEGORIES 363



References

Cohen, J. 1960. A coefficient of agreement for nominal scales. Educ. Psych. Meas. 20: 37–46.

El Emam, K. 1998. Benchmarking Kappa for Software Process Assessment Reliability Studies. International

Software Engineering Research Network Technical Report ISERN-98–02.

GCC Home Page—GNU Project—Free Software Foundation (FSF), http://www.gnu.org/software/gcc/

gcc.html, October 12, 2001.

Graves, T. L., and Mockus, A. 1998. Inferring change effort from configuration management data.

Proceedings of the Fifth International Symposium on Software Metrics, Bethesda, MD, 267–273.

Lientz, B. P., Swanson, E. B., and Tompkins, G. E. 1978. Characteristics of application software

maintenance. Communications of the ACM 21(6): 466–471.

Linux Online—About the Linux operating system, http://www.linux.org/info/index.html, March 6, 2000.

Mockus, A., and Votta, L. 2000. Identifying reasons for software changes using historic databases.

Proceedings of the 2000 International Conference on Software Maintenance, San Jose, CA, 120–130.

Nosek, J. T., and Palvia, P. 1990. Software maintenance management: Changes in the last decade. Journal

of Software Maintenance: Research and Practice 2(3): 157–174.

Pressman, R. S. 2001. Software Engineering, A Practitioner’s Approach, 5th edition. Boston, MA:

McGraw-Hill, 805.

Schach, S. R. 2002. Object-Oriented and Classical Software Engineering, 5th edition. Boston, MA: WCB/

McGraw-Hill, 10, 52, 181–189, 426.

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., and Offutt, A. J. 2002. Maintainability of the Linux

kernel. IEE Proceedings—Software 149(1): 18–23.

Sommerville, I. 2001. Software Engineering, 6th edition. Harlow, UK: Addison-Wesley, 606.

Swanson, E. B. 1976. The dimension of maintenance. Proceedings of the Second International Conference

on Software Engineering, San Francisco, CA, 492–497.

Wang, S., Schach, S. R., and Heller, G. Z. 2001. A case study in repeated maintenance. Journal of Software

Maintenance and Evolution: Research and Practice 13(2): 127–141.

Weiss, N. A. 1995. Introductory Statistics, 4th edition. Reading, MA: Addison-Wesley.

Stephen R. Schach is an Associate Professor in the Department of Electrical Engineering and Computer

Science at Vanderbilt University in Nashville, Tennessee. Steve is the author of over 100 refereed

publications. He has written 10 software engineering textbooks, including Object-Oriented and Classical

Software Engineering, Sixth Edition, to be published by WCB/McGraw-Hill in 2004. He consults

internationally on software engineering topics. Steve’s current research interests are empirical software

engineering, software maintenance, and open-source software engineering. He obtained his PhD from the

University of Cape Town in South Africa.

Bo Jin obtained his MS in Computer Science at Vanderbilt University in Nashville in Tennessee in 2002.

His main research interest is in software maintenance.

364 SCHACH ET AL.



Liguo Yu is a PhD student of Vanderbilt University, EECS department. His research topic concentrates on

the maintainability of the Linux kernel and open source-software development. Before working on software

engineering, his research focused on modeling and system identification, fault detection and isolation of

hybrid systems.

Gillian Z. Heller is a Senior Lecturer in the Department of Statistics at Macquarie University, Sydney,

Australia, where she has been for the last 10 years. Her BSc (Hons) and PhD degrees are in Mathematical

Statistics, from the University of Cape Town, South Africa, and her MSc in Operations Research is from

the University of South Africa. Gillian’s research interests are in discrete distribution theory, with

applications in biostatistics.

Jeff Offutt is an Associate Professor of Information and Software Engineering at George Mason

University and holds part-time visiting positions at NIST and Skövde University. His current research

interests include software testing, analysis and testing of web applications, software maintenance and

object-oriented program analysis. He has published over 75 refereed papers. He was program chair for

ICECCS 2001 and is on the editorial boards for the IEEE Transactions on Software Engineering, the

Journal of Software Testing, Verification and Reliability, the Journal of Software and Systems Modeling and

the Software Quality Journal. His PhD is from the Georgia Institute of Technology. He previously held a

faculty position in the Department of Computer Science at Clemson University.

DISTRIBUTION OF MAINTENANCE CATEGORIES 365


