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Abstract There are lots of different software metrics discovered and used for defect
prediction in the literature. Instead of dealing with so many metrics, it would be
practical and easy if we could determine the set of metrics that are most important
and focus on them more to predict defectiveness. We use Bayesian networks to de-
termine the probabilistic influential relationships among software metrics and defect
proneness. In addition to the metrics used in Promise data repository, we define two
more metrics, i.e. NOD for the number of developers and LOCQ for the source code
quality. We extract these metrics by inspecting the source code repositories of the
selected Promise data repository data sets. At the end of our modeling, we learn the
marginal defect proneness probability of the whole software system, the set of most
effective metrics, and the influential relationships among metrics and defectiveness.
Our experiments on nine open source Promise data repository data sets show that
response for class (RFC), lines of code (LOC), and lack of coding quality (LOCQ)
are the most effective metrics whereas coupling between objects (CBO), weighted
method per class (WMC), and lack of cohesion of methods (LCOM) are less effective
metrics on defect proneness. Furthermore, number of children (NOC) and depth of
inheritance tree (DIT) have very limited effect and are untrustworthy. On the other
hand, based on the experiments on Poi, Tomcat, and Xalan data sets, we observe
that there is a positive correlation between the number of developers (NOD) and the
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level of defectiveness. However, further investigation involving a greater number of
projects is needed to confirm our findings.

Keywords Defect prediction ·Bayesian networks

1 Introduction

Developing a defect free software system is very difficult and most of the time there
are some unknown bugs or unforeseen deficiencies even in software projects where
the principles of the software development methodologies were applied carefully.
Due to some defective software modules, the maintenance phase of software projects
could become really painful for the users and costly for the enterprises. That is
why, predicting the defective modules or files in a software system prior to project
deployment is a very crucial activity, since it leads to a decrease in the total cost of
the project and an increase in overall project success rate.

Defect prediction will give one more chance to the development team to retest the
modules or files for which the defectiveness probability is high. By spending more
time on the defective modules and no time on the non-defective ones, the resources
of the project would be utilized better and as a result, the maintenance phase of the
project will be easier for both the customers and the project owners.

While making a critique of the software defect prediction studies, Fenton and Neil
(1999) argue that although there are many studies in the literature, defect prediction
problem is far from solution. There are some wrong assumptions about how defects
are defined or observed and this causes misleading results. Their claim can be
understood better when we notice that some define defects as observed deficiencies
while some others define them as residual ones.

When we look at the publications about defect prediction we see that in early
studies static code features were used more. But afterwards, it was understood that
beside the effect of static code metrics on defect prediction, other measures like
process metrics are also effective and should be investigated. For example, Fenton
and Neil (1999) argue that static code measures alone are not able to predict software
defects accurately. To support this idea we argue that, if a software is defective this
might be related to one of the following:

– The specification of the project may be wrong either due to contradictory
requirements or missing features. It may be too complex to realize or not very
well documented.

– The design might be poor, it may not consider all requirements or it may reflect
some requirements wrongly.

– Developers are not qualified enough for the project.
– There might be a project management problem and the software life cycle

methodologies might not be followed very well.
– The software may not be tested enough, so some defects might not be fixed

during the test period.

None of the above factors are related to code metrics and all of them may very
well affect defect proneness. So, the question is which factors or metrics are effective
on defectiveness and how can we measure their effect?
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In defect prediction literature, there are many defect prediction algorithms stud-
ied like regression (Suffian and Abdullah 2010; Ekanayake et al. 2009; Shepperd and
Kadoda 2001), rule induction (Shepperd and Kadoda 2001), decision tree approaches
like C4.5 (Song et al. 2006), case-based reasoning (CBR) (Khoshgoftaar et al.
1997, 2000; Shepperd and Kadoda 2001), artificial neural networks (Khoshgoftaar
et al. 1995; Thwin and Quah 2002; Kaur et al. 2009; Shepperd and Kadoda 2001),
linear discriminant analysis (Munson and Khoshgoftaar 1992), k-nearest neighbour
(Boetticher 2005), k-star (Koru and Liu 2005), Bayesian networks (Fenton et al.
2002; Pai and Dugan 2007; Zhang 2000) and support vector machine based classifiers
(Lessmann et al. 2008; Hu et al. 2009; Jin and Liu 2010; Shivaji et al. 2009). According
to the no free lunch theorem (Wolpert and Macready 1997), there is no algorithm
which is better than other algorithms on all data sets. That is why, most of the
time it is difficult to generalize the performance of one algorithm and say that it
is the best technique for defect prediction. According to Myrtveit et al. (2005), “we
need to develop more reliable research procedures before we can have confidence in
the conclusion of comparative studies of software prediction models”. Furthermore,
Shepperd and Kadoda (2001) argues that the accuracy of a specific defect prediction
method is very much dependent on the attributes of the data set like its size, number
of attributes and distribution. That is why, it is better to ask which method is the best
in a specified context rather than asking which one is the best in general.

Bayesian network is a graphical representation that shows the probabilistic causal
or influential relationships among a set of variables that we are interested in.
There are a couple of practical factors for using Bayesian networks. First, Bayesian
networks are able to model probabilistic influence of a set of variables on another
variable in the network. Given the probability of parents, the probability of their
children can be calculated. Second, Bayesian networks can cope with the missing data
problem. This aspect of Bayesian networks is very important for defect prediction
since some metrics might be missing for some modules in defect prediction data sets.

Looking at the defect prediction problem from the perspective that all or an
effective subset of software or process metrics must be considered together besides
static code measures, Bayesian network model is a very good candidate for taking
into consideration several process or product metrics at the same time and measuring
their effect. In this paper, we build a Bayesian network among metrics and defec-
tiveness, to measure which metrics are more important in terms of their effect on
defectiveness and to explore the influential relationships among them. As a result of
learning such a network, we find the defectiveness probability of the whole software
system, the order of metrics in terms of their contribution to accurate prediction
of defectiveness, and the probabilistic influential relationships among metrics and
defectiveness.

Menzies and Shepperd explain the possible reasons behind the conclusion insta-
bility problem (Menzies and Shepperd 2012). In their analysis, they state that there
are two main sources of conclusion instability, (1) bias showing the distance between
the predicted and actual values and (2) variance measuring the distance between
different prediction methods. The bias can be decreased by using separate training
and validation data sets and the variance can be decreased by repeating the validation
many times. We use different stratified training and test sets in each experiment to
avoid conclusion instability.

In another research, Menzies et al. show what appears to be useful in a global
context is often irrelevant for particular local contexts in effort estimation or defect
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prediction studies. They suggest to test if the global conclusions found are valid for
the subsets of the data sets used (Menzies et al. 2011). We repeat our experiments 20
times with 2/3 rd subsets of each data set to check if our results suffer from conclusion
instability.

Posnett et al. explains the ecological inference risk which arises when one builds a
statistical model at an aggregated level (e.g., packages), and infers that the results of
the aggregated level are also valid for the disaggregated level (e.g., classes), without
testing the model in the disaggregated level (Posnett et al. 2011). They show that
modeling defect prediction in two different aggregation levels can lead to different
conclusions. To be on the safe side in terms of ecological inference risk, we not only
perform our experiments at class level rather than file, package or module levels, but
we also test our proposed method with the subsets of the data sets we use, before
making a generalization.

This paper is organized as follows: In Section 2, we give a background on Bayesian
networks. In Section 3, we present a brief review of previous work on software defect
prediction using Bayesian networks. We explain our proposed method in Section 4
and give the experiments and results in Section 5 before we conclude in Section 7.

2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG), composed of E edges and
V vertices which represent joint probability distribution of a set of variables. In this
notation, each vertex represents a variable and each edge represents the causal or
associational influence of one variable to its successor in the network.

Let X = {X1, X2, ...Xn} be n variables taking continuous or discrete values. The
probability distribution of Xi is shown as P(Xi|axi) where axi ’s represent parents of
Xi if any. When there are no parents of Xi, then it is a prior probability distribution
and can be shown as P(Xi).

The joint probability distribution of X can be calculated using chain rule:

P(X) = P(X1|X2, X3, ..., Xn)P(X2, X3, ..., Xn)

= P(X1|X2, ..., Xn)P(X2|X3, ..., Xn)P(X3, ..., Xn)

= P(X1|X2, ..., Xn)P(X2|X3, ..., Xn)...P(Xn−1|Xn)P(Xn)

=
n∏

i=1

P(Xi|Xi+1, ..., Xn) (1)

Given the parents of Xi, other variables are independent from Xi, so we can write
the joint probability distribution as

P(X) =
n∏

i=1

P(Xi|axi) (2)

On the other hand, Bayes’ rule is used to calculate the posterior probability
of Xi in a Bayesian network based on the evidence information present. We can
calculate probabilities either towards from causes to effects (P(Xi|E)) or from
effects to causes (P(E|Xi)). Calculating probability of effects from causes is called
causal inference whereas calculating probability of causes from effects is called
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diagnostic inference (Alpaydın 2004). Figure 1 shows a sample Bayesian network and
conditional probability tables. Assume that we would like to investigate the effect of
using experienced developers (ED) and applying unit testing methodology (UT) on
defectiveness (FP). Furthermore, each variable can take discrete values of on/off,
that is developers are experienced or not, unit testing used or not used. Suppose
we would like to make a causal inference and calculate the probability of having
a fault prone software if we know that the developers working on the project are
experienced. We shall calculate

P(F P|ED) = P(F P|ED, UT)P(UT|ED) + P(F P|ED,∼ UT)P(∼ UT|ED)

We can write P(UT|ED) = P(UT) and P(∼ UT|ED) = P(∼ UT) since the vari-
ables ED and UT are independent. Then we have,

P(F P|ED) = P(F P|ED, UT)P(UT) + P(F P|ED,∼ UT)P(∼ UT)

Feeding up the values in the conditional probability table, P(F P|ED) is calculated
as 0.34. Assume that we are asked to calculate the probability of having experienced
developers given the software is fault prone, i.e. P(ED|F P).

Using Bayes’ rule we write

P(ED|F P) = P(F P|ED)P(ED)

P(F P)
(3)

We can also write

P(F P) = P(F P|UT, ED)P(UT)P(ED)

+P(F P|UT,∼ ED)P(UT)P(∼ ED)

+P(F P| ∼ UT, ED)P(∼ UT)P(ED)

+P(F P| ∼ UT,∼ ED)P(∼ UT)P(∼ ED) (4)

Since P(F P|UT, ED), P(F P|UT,∼ ED), P(F P| ∼ UT, ED), and P(F P| ∼ UT,∼
ED) can be read from the conditional table, the diagnosis probability P(ED|F P)

can also be calculated. As it can be seen in these examples of causal and diagnostic
inferences, it is possible to propagate the effect of states of variables (nodes) to

Fig. 1 A sample Bayesian network to illustrate Bayesian inference
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calculate posterior probabilities. Propagating the effects of variables to the succes-
sors, or analyzing the probability of some predecessor variable based on the prob-
ability of its successor is very important in defect prediction since software metrics
are related to each other and that is why the weight of a metric might be dependent
on another metric based on this relationship.

2.1 K2 Algorithm

In Bayesian network structure learning, the search space is composed of all of the
possible structures of directed acyclic graphs based on the given variables (nodes).
Normally, it is very difficult to enumerate all of these possible directed acyclic graphs
without a heuristic method. Because, when the number of nodes increases, the search
space grows exponentially and it is almost impossible to search the whole space.
Given a data set, the K2 algorithm proposed by Cooper and Herskovits, heuristically
searches for the most probable Bayesian network structure (Cooper and Herskovits
1992). Based on the ordering of the nodes, the algorithm looks for parents for each
node whose addition increases the score of the Bayesian network. If addition of a
certain node X j to the set of parents of node Xi does not increase the score of
the Bayesian network, K2 stops looking for parents of node Xi further. Since the
ordering of the nodes in the Bayesian network is known, the search space is much
more smaller compared to the entire space that needs to be searched without a
heuristic method. Furthermore, a known ordering ensures that there will be no cycles
in the Bayesian network, so there is no need to check for cycles too.

K2 algorithm takes a set of n nodes, an initial ordering of the n nodes, the
maximum number of parents of any node denoted by u and a database D of m
cases as input and outputs a list of parent nodes for every node in the network. The
pseudo code of the K2 algorithm is given in Algorithm 1. For every node in the
network, the algorithm finds the set of parents with the highest probability taking
into consideration the upper bound u for the maximum number of parents a node
can have. During each iteration, the function Pred(xi) is used to determine the set of
nodes that precede xi in the node ordering.
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The algorithm calculates the probability that the parents of xi are πi using the
following equation:

f (i, πi) =
qi∏

j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏

k=1

Nijk! (5)

where πi is the set of parents of xi, qi = |φi| where φi is the set of all possible instances
of the parents of xi for database D. Furthermore, ri = |Vi| where Vi is the set of
all possible values of the xi. On the other hand, Nijk is the number of instances in
database D for which xi is instantiated with its kth value, and the parents of xi in the
set πi are instantiated with the jth instantiation in the set φi. And lastly,

Nij =
ri∑

k=1

Nijk

gives the number of instances in D where the parents of xi are instantiated with the
jth instantiation in φi.

3 Previous Work

Pai and Dugan (2007) use Bayesian networks to analyze the effect of object oriented
metrics (Chidamber and Kemerer 1991) on the number of defects (fault content)
and defect proneness using KC1 project from the Nasa metrics data repository. They
build a Bayesian network where parent nodes are the object oriented metrics (also
called C-K metrics) and child nodes are the random variables fault content and fault
proneness. After the model is created, they make a Spearman correlation analysis to
check whether the variables of the model (metrics) are independent or not. They
have found that SLOC, CBO, WMC, and RFC are the most significant metrics
to determine fault content and fault proneness. They discover that the correlation
coefficients of these metrics (SLOC, CBO, WMC, and RFC) with fault content are
0.56, 0.52, 0.352, and 0.245 respectively. On the other hand, they also find that neither
DIT nor NOC are significant and depending on the underlying model, LCOM seems
to be significant for determining fault content.

According to Zhang (2000), Bayesian networks provide a very suitable and
useful method for software defect prediction. They suggest to build a Bayesian
network that reflects all software development activities like specification, design,
implementation, testing and consider Bayesian network generation in three steps:
defining Bayesian network variables, defining the causal relationships among the
network variables and generating the probability distribution of each variable in
the network and calculating the joint probability distribution of the hypothesis
variables.

Fenton et al. (2002) suggest to use Bayesian networks for defect, quality, and risk
prediction of software systems. They use the Bayesian network shown in Fig. 2 to
model the influential relationships among target variable “defects detected” (DD)
and the information variables “test effectiveness” (TE) and “defects present” (DP).
In this network, DP models the number of bugs/defects found during testing. TE
gives the efficiency of testing activities and DD gives the number of defects delivered
to the maintenance phase. For discretization, they assign two very simple states to
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Fig. 2 Bayesian network
suggested by Fenton et al.
(2002)

each variable namely low and high. Using the Bayesian network model, Fenton et al.
show how Bayesian networks provide accurate results for software quality and risk
management in a range of real world projects. They conclude that Bayesian networks
can be used to model the causal influences in a software development project and the
network model can be used to ask “what if?” questions under circumstances when
some process underperforms (Fenton et al. 2002).

Furthermore, Gyimothy et al. use regression and machine learning methods (de-
cision tree and neural networks) to see the importance of object oriented metrics for
fault proneness prediction (Gyimothy et al. 2005). They formulate a hypothesis for
each object oriented metric and test the correctness of these hypotheses using open
source web and email tool Mozilla. For comparison they use precision, correctness
and completeness. They find that CBO is the best predictor and LOC is the second.
On the other hand, the prediction capability of WMC and RFC is less than CBO
and LOC but much better than LCOM, DIT, and NOC. According to the results,
DIT is untrustworthy and NOC can not be used for fault proneness prediction.
Furthermore, the correctness of LCOM is good although it has a low completeness
value.

On the other hand, Zhou and Leung use logistic regression and machine learning
methods (naive Bayes network, random forest, and nearest neighbor with general-
ization) to determine the importance of object oriented metrics for determining fault
severity (Zhou and Leung 2006). They state a hypothesis for each object oriented
metric and test them on open source Nasa data set KC1 (2010). For ungraded
severity, they observe that SLOC, CBO, WMC, and RFC are significant in fault
proneness prediction. Furthermore, LCOM is also significant but when tested with
machine learning methods the usefulness of NOC is poor and the result is similar
for DIT.

Bibi et al. use iterative Bayesian networks for effort estimation by modeling the
sequence of the software development processes and their interactions. They state
that Bayesian networks provide a highly visual interface to explain the relation-
ships of the software processes and provide a probabilistic model to represent the
uncertainty in their nature. They conclude that Bayesian networks could be used
for software effort estimation effectively (Bibi and Stamelos 2004). Furthermore
Minana and Gras use Bayesian networks to predict the level of fault injection during
the phases of a software development process. They show that Bayesian networks
provide a successful fault prediction model (Pérez-Miñana and Gras 2006).

Amasaki et al. propose to use Bayesian networks to predict the quality of a
software system. To generate a Bayesian network they use certain metrics collected
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during the software development phase like product size, effort, detected faults, test
items, and residual faults. They conclude that the proposed model can estimate the
residual faults that the software reliability growth model can not handle (Amasaki
et al. 2003).

Fenton et al. review different techniques for software defect prediction and
conclude that traditional statistical approaches like regression alone is not enough.
Instead they believe that causal models are needed for more accurate predictions.
They describe a Bayesian network, to model the relationship of different software
life cycles and conclude that there is a good fit between predicted and actual defect
counts (Fenton et al. 2007). In another study, Fenton et al. propose to use Bayesian
networks to predict software defects and software reliability and conclude that
using dynamic discretization algorithms while generating Bayesian networks leads
to significantly improved accuracy for defects and reliability prediction (Fenton et al.
2008).

In another research, Dejaeger et al. compare 15 different Bayesian network clas-
sifiers with famous defect prediction methods on 11 Data sets in terms of the AUC
and H-measure. They observe that simple and comprehensible Bayesian networks
can be constructed other than the simple Naive Bayes model and recommend to use
augmented Bayesian network classifiers when the cost of not detecting a defective or
non defective module is not higher than the additional testing effort (Dejaeger et al.
2012). Furthermore, as future work, they propose to discover the effects of different
information sources with Bayesian networks which is something we consider by
defining two extra metrics i.e. LOCQ and NOD and measuring their relationship
with other metrics and defectiveness.

Regarding the effects of the number of developers on defect proneness there
are contradictory findings in the literature. For example Norick et al. use eleven
open source software projects, to determine if the number of committing developers
affects the quality of a software system. As a result, they could not find significant
evidence to claim that the number of committing developers affects the quality of
software (Norick et al. 2010). Furthermore, Pendharkar and Rodger investigate the
impact of team size on the software development effort using over 200 software
projects and conclude that when the size of the team increases, no significant
software effort improvements are seen (Pendharkar and Rodger 2007). On the other
hand, Nagappan et al. define a metric scheme that includes metrics like number
of engineers, number of ex-engineers, edit frequency, depth of master ownership,
percentage of organization contributing to development, level of organizational code
ownership, overall organization ownership, and organization intersection factor to
quantify organizational complexity. They use data from Windows Vista operating
system and conclude that the organizational metrics predict failure-proneness with
significant precision, recall, and sensitivity. Furthermore, they also show that organi-
zational metrics are better predictors of failure-proneness than the traditional met-
rics used so far like code churn, code complexity, code coverage, code dependencies,
and pre-release defect measures (Nagappan et al. 2008). Furthermore Mockus et al.
use two open source projects, the Apache web server and the Mozilla browser to
define several hypotheses that are related to the developer count and the team size.
They test and refine some of these based on an the analysis of Mozilla data set. They
believe that when several people work on the same code, there are many potential
dependencies among their work items. So they suggest that regarding to the team
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size, around an upper limit of 10–15 people, coordination of the work for the team
becomes inadequate (Mockus et al. 2002).

4 Proposed Approach

4.1 Bayesian Network of Metrics and Defect Proneness

It is very important to model the associational relationships among the metrics and
defect proneness. We first generate a Bayesian network among software metrics
and defect proneness and then using this network, we calculate an overall marginal
defectiveness probability of the software system. This network provides us two very
important results:

– The dependencies among the metrics we choose. Which metrics are affected by
other metrics and which ones are the most effective on defect proneness.

– The defect proneness probability of the software system itself. By learning from
the data set, the Bayesian network tells us the marginal defectiveness probability
of the whole system and one can interpret this as the probability of having at
least one or more defects in a software module that is selected randomly.

In defect prediction studies, using static code metrics alone may ignore some very
crucial causes of defects like poor requirement analysis or design, lack of quality
of design or coding, unexperienced developers, bad documentation, managerial or
financial problems. Although all of these factors could lead to an increase in defect
proneness, static code metrics do not consider them effectively. Using Bayesian net-
works might be much more meaningful when additional data on causal, explanatory
variables are available and included in the model. Unfortunately, it is not too easy
to measure these causal and explanatory variables when there is no information
regarding the software development processes. By inspecting project repositories of
some data sets, we add two metrics i.e. LOCQ and NOD to our Bayesian model, in
order to measure the effect of lack of coding quality and the number of developers.

We introduce a new metric we call lack of coding quality (LOCQ) that measures
the quality of the source code. We run PMD source code analyzer plugin in Netbeans,
to generate the LOCQ values for each class of the open source Apache projects listed
in Table 2. PMD inspects the given source code and looks for potential problems
like possible bugs, dead code, suboptimal code, overcomplicated expressions, and
duplicate code. It counts the number of detected problems for each class and package
in the software system. We believe that this measurement gives an idea about the
quality of the source code and has a relationship with defectiveness. That is why, we
include the LOCQ metric in our experiments and try to understand how it is related
with the defect proneness and other well known static code metrics in the literature.

We ask if for a specific class or file, the number of developers is positively related
with the extent of defectiveness or not? Receiving inspiration from famous idiom
“too many cooks spoil the broth” we wonder if a higher number of developers for a
certain class or file, leads to a more defective or messed up source code? For some
of the data sets listed in Table 2 that have developer information in the source code
files, we generate the number of developers (NOD) metric, which shows the number
of distinct developers per each class in the software system. Then we learn a Bayesian



164 Empir Software Eng (2014) 19:154–181

Fig. 3 Proposed Bayesian
network to model the
relationships among metrics

network from each of these data sets and extract the relationship of the NOD metric
with defectiveness.

One problem to reach a clear conclusion on this issue is the conclusion instability
problem. We think that conclusion instability comes from an inherent property of
software engineering data sets; i.e. real world data is noisy. To remove noise from
the data sets and draw more accurate conclusions, we cross check our results on
10 subsets of each data set. While generating the subsets, we stratify the data with
different seeds and include 67 percent of the data each time. For the remaining
data sets like Ant, Lucene, and Synapse, there was no developer information in the
source code repositories, so we could not generate the NOD metric for them. Since
the developer information is not available for all data sets but just for a subset of
them, we present the experiments carried out with the NOD metric separately in
Section 5.6.

While we model the influential relationships among different product and process
metrics, we learn the Bayesian network from the data set. Figure 3 shows the general
form of our model. In this Bayesian network, we see the interactions among different
product, process or developer metrics. We may see that a metric is not affected by
any other metric whereas some metrics may be affected by one or more product
metrics (like Metric5). According to this Bayesian network Metric5, Metric6, and
Metric7 are the most important metrics since they affect defectiveness directly. On
the other hand, Metric1, Metric2, Metric3, and Metric4 are less important since they
are indirectly related with defectiveness.

As a summary, the Bayesian network we propose is a graph G of E edges and V
vertices where each Vi represents a metric and each E j represents the dependency
between two metrics or between a metric and defectiveness. If an edge E is present
from metric m2 towards metric m1, then this would mean metric m1 is effective on
metric m2. Similarly, if there is an edge from defectiveness to metric m1, then it would
mean that metric m1 is effective on defectiveness. This way, we determine the metrics
that affect defectiveness directly or indirectly.

4.2 Ordering Metrics for Bayesian Network Construction

In order to learn a Bayesian network with K2 algorithm, it is necessary to spec-
ify the order of the nodes. That is why, we decide to order the software met-
rics considering their effect on defectiveness, prior to the generation of Bayesian
networks.

We believe that as the size of a software system gets larger, the probability of
having fault prone classes increases, since more effort would be needed to ensure a
defect free software. We also believe that besides size, complexity of the software
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Table 1 The order of software
metrics used during Bayesian
network construction

Metric groups Order (left to right)

Group1 LOC CBO LOCQ
Group2 WMC RFC
Group3 LCOM–LCOM3 DIT NOC

is also very important because as the design gets more complex, it would be more
difficult for developers to ensure non-defectiveness. That is why, for the initial or-
dering of the metrics, we decide to give LOC and CBO as the first metrics since LOC
is the best indicator of software size and CBO shows how much complex a software
system is by counting the number of couples for a certain class where coupling means
using methods or instance variables of other classes. As one would easily accept,
as coupling increases, the complexity of the software system would also increase.
Furthermore, as everybody can accept, when the quality of the source code increase,
the probability of having a defective software decreases. So, we introduce the LOCQ
metric as the third metric in the first group after LOC and CBO.

Although, RFC may explain complexity to some extent, it may not be the case
if a class is using internal methods or instance variables only. That is why, RFC
together with WMC are entitled as the second group of metrics. On the other hand,
NOC indicates the number of children of a class and is not a good indicator for
both size and complexity, since the parent-child relationship does not contribute to
the complexity if there is no caller-callee relationship between them which is the
case for most of the time. Due to similar reasons DIT also does not explain size or
complexity alone. So, we decide to give DIT and NOC as the last metrics in the initial
ordering.

Following our reasoning, we generate three groups of metrics where LOC, CBO,
and LOCQ are in Group1, WMC and RFC are in Group2 and LCOM, DIT, and
NOC are in Group3. Group1 metrics are more important than Group2 metrics and
Group2 metrics are more important than Group3 metrics in terms of their effect on
defectiveness (See Table 1).

5 Experiments and Results

5.1 Experiment Setup

In our experiments, we use Bayesian networks to determine the influential or
associational relationships among the software metrics and defectiveness and identify
the most effective metrics by giving them scores considering their effect on defect
proneness. While choosing the data sets from Promise data repository, first we look
at the data sets that are large enough to perform cross validation. So, we eliminate
some of the data sets in the repository that are small in terms of size. Second, to ex-
tract additional metrics LOCQ and NOD, we need the source repositories of the data
sets. That is why, we prefer the data sets in Promise data repository whose source
code is available in the open source project repositories. For instance the Log4j
data set has defect data for versions 1.0, 1.1, and 1.2 in the Promise data repository,
but the sources corresponding to these exact versions are not present in the Apache
repository. We eliminate some data sets whose sources are not available or are
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Table 2 Brief details of data
sets used in the experiments

Data set Version No. of instances % defective instances

Ant 1.7 745 22.28
Tomcat 6.0 858 8.97
Jedit 4.3 492 2.24
Velocity 1.6 229 34.06
Synapse 1.2 256 33.59
Poi 3 442 63.57
Lucene 2.4 340 59.71
Xalan 2.5 741 48.19
Ivy 2.0 352 11.36

skewed which could affect the learning performance of the Bayes net classifier. Based
on these criteria we select public data sets Ant, Tomcat, Jedit, Velocity, Synapse, Poi,
Lucene, Xalan, and Ivy from Promise data repository (Boetticher et al. 2007) (See
Table 2 for the details of the datasets).

We use Weka (Hall et al. 2009) for Bayesian network structure learning where
we learn the network structure from the data sets and use SimpleEstimator while
constructing Bayesian networks for defect proneness. Furthermore, we select K2 as
the search algorithm and use predefined ordering of nodes of LOC, CBO, LOCQ,
WMC, RFC, LCOM, LCOM3, DIT, and NOC.

It is a common way to look at the error rates of classifiers while making compar-
isons. But, this is not true in real life, because first, the proportions of defective and
non defective classes are not equal. For instance, in defect prediction, most of the
time the proportion of defective modules is quite different from the proportion of
non defective ones. Furthermore, the cost of false positives (FP) and false negatives
(FN) are not the same i.e. FN is more costly than FP. ROC analysis is used in the
literature and considers TP rate (also called sensitivity) and FP rate (also called false
alarm rate) together (Emam et al. 2001). ROC curve is a two dimensional graphical
representation where TP is the y-axis and FP is the x-axis. It is always desirable
to have high sensitivity and small false alarm rate. So, as the area under the ROC
curve (AUC) gets larger, the classifier gets better. That is why, we use AUC while
comparing the performance of the Bayesian networks in our experiments.

5.2 Results

Table 3 shows the AUC values for each Bayesian network. The results show that
Ivy dataset has the highest AUC value whereas Xalan data set has the smallest

Table 3 The AUC values of
the Bayesian networks in our
experiments

Data sets AUC

Ant 0.820
Tomcat 0.766
Poi 0.845
Jedit 0.658
Velocity 0.678
Synapse 0.660
Lucene 0.633
Xalan 0.624
Ivy 0.846
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AUC value. A high AUC value implies that the data set used is able to define the
structure of the Bayesian network better. The AUC values found in our experiments
are relatively high and we believe that this makes our results more important and
reliable.

We obtain the Bayesian network shown in Fig. 4 for Ant data set. The metrics
LOC and LOCQ are the most effective whereas CBO, WMC, RFC, LCOM, and
LCOM3 are indirectly and less effective on defectiveness. However, DIT and NOC
are not effective at all on the bug attribute. When we look at the conditional proba-
bility table of LOC, we observe that there is a positive correlation between LOC and
defect proneness. For instance the non-defectiveness probability is 0.678 for small
LOC, whereas it is 0.096 for high LOC which means that as the LOC increase the
probability of defectiveness increases too. We observe a similar relationship between
LOCQ and defectiveness also where the defect proneness probability is high for high

Fig. 4 Bayesian network showing the relationships among software metrics in Ant version 1.7
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LOCQ values. Furthermore, we observe that when the LOC is high, the probability
of having a high CBO is also high which means that there is a positive correlation
between LOC and CBO too.

The Bayesian network for Tomcat data set shows that LOC and CBO are directly
effective on defect proneness, whereas WMC, LOCQ, RFC, LCOM, and LCOM3
are indirectly effective. But DIT and NOC metrics are not effective in determining
the defect prone classes (See Fig. 5). Furthermore, when both LOC and CBO are
high, defectiveness probability is higher (0.9) compared to the case when either one
of them is small. Similarly, when both are low, the non defectiveness probability is
higher (0.793) compared to cases when either one of them is high.

The Bayesian network obtained for Poi data set is shown in Fig. 6. First of all,
CBO, LOC, LOCQ, WMC, and LCOM are the most effective metrics since they
are directly connected with defectiveness. RFC, DIT, and LCOM3 are indirectly
effective on fault proneness. On the other hand, NOC is not effective at all. Similarly,
from the conditional probability table of CBO, we see that there is also a positive
correlation between CBO and defect proneness. Furthermore, we observe that when

Fig. 5 Bayesian network showing the relationships among software metrics in Tomcat version 6.0
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Fig. 6 Bayesian network showing the relationships among software metrics in Poi version 3.0

both LOC and CBO are high, the defect proneness probability is the highest (0.904).
This shows that the size and the complexity metrics together affects defectiveness
more compared to the effect of either size or complexity alone.

For the remaining 6 data sets, Bayesian networks generated are shown in Fig. 7.
For Synapse data set, DIT, NOC, and LCOM3 metrics are not effective on defect
proneness. On the other hand, LOC is the most effective metric and LOCQ, CBO,
WMC, RFC, and LCOM are indirectly effective on defect proneness. The probability
of having a defect free software is 0.839 for small LOC, whereas it is 0.161 for higher
LOC values. We also observe that there is a positive correlation between LOC and
LOCQ metrics. For instance, when the LOC is small, LOCQ is also small with a
probability of 0.942. Similarly, the probability of having both LOC and LOCQ high
is 0.877.

We observe a similar result for Lucene data set also where LCOM3, DIT, and
LOC are not effective on defect proneness whereas CBO and LOC are the most
effective metrics. For higher CBO values, the defect proneness probability is 0.743
whereas it is only 0.257 for smaller CBO. That means as the coupling between objects
increase, the probability of defectiveness increases also. On the other hand, LOCQ,
WMC, RFC, and LCOM are indirectly effective on defect proneness.

Similar to the previous findings, for Velocity data set, DIT, NOC, WMC, and
LCOM found to be independent of defect proneness where LOC is directly effective
on defectiveness. On the other hand, CBO, LOCQ, RFC, and LCOM3 are indirectly
and less effective compared to LOC. When we look at the conditional probability
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Fig. 7 Bayesian networks showing the relationships among software metrics and defect proneness
(bug) in different data sets

table for LOC, we observe that the defectiveness probability is 0.64 for higher LOC
whereas it is 0.36 for smaller LOC values.

For JEdit data set, metrics DIT and NOC are independent from defect proneness
whereas LOC, CBO, WMC, and LCOM3 are effective. On the other hand, LOCQ,
RFC, and LCOM are indirectly and less effective compared to LOC, CBO, WMC,
and LCOM3 metrics.

We observe that LOC and LCOM3 metrics are directly effective on defect
proneness whereas DIT, NOC, CBO, and LCOM are not effective for Xalan data set.
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Table 4 The scores of metrics obtained

Data sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1 1 1 1 1 1 1 0 0
Tomcat 1 1 1 1 1 1 1 0 0
Poi 1 1 1 1 1 1 1 1 0
Jedit 1 1 1 1 1 1 1 0 0
Velocity 1 1 1 0 1 0 1 0 0
Synapse 1 1 1 1 1 1 0 0 0
Lucene 1 1 1 1 1 1 0 0 0
Xalan 1 0 1 1 1 0 1 0 0
Ivy 1 1 1 1 1 1 0 0 0
Average 1 0.89 1 0.89 1 0.78 0.67 0.11 0

On the other hand, LOCQ, WMC, and RFC are indirectly effective on defectiveness.
Furthermore, for a lower LOC, the probability of having a lower LOCQ is 0.967
whereas the probability of a higher LOCQ is 0.033. Similarly, for a higher LOC, the
probability of having a higher LOCQ is 0.568, whereas the probability of a lower
LOCQ is 0.432.

For Ivy data set, LOC, CBO, and LOCQ are the most important metrics, whereas
DIT, NOC, and LCOM3 are not effective on fault proneness. Furthermore, WMC,
RFC, and LCOM are less effective on defectiveness compared to LOC, CBO, and
LOCQ. Similar to the previous findings, when both LOC and CBO are high, the
defectiveness probability is the highest (0.983).

To measure the effect of metrics quantitatively, we give scores to the metrics in
each experiment. If a metric is affecting defectiveness (directly or indirectly) we
assign it a score of 1, if it has no relationship with defectiveness it is assigned a zero
score. Table 4 shows the scores of metrics assigned in each experiment. According
to the average scores, LOC, CBO, LOCQ, WMC, and RFC are the most effective
metrics, whereas DIT and NOC are the least effective ones. Furthermore, DIT and
NOC are untrustworthy since their effectiveness is not consistent in all experiments.
For instance, DIT is effective in Poi whereas it has no importance in other data sets.
Similarly, NOC is independent from defect proneness in all experiments. Moreover,
we observe that LCOM and LCOM3 are more effective compared to DIT and NOC
and less effective compared to others.

5.3 Conclusion Instability Test

Some times the results found for a data set, might not be valid for its subsets due
to some uncommon local attributes (Menzies et al. 2011). So, we check if the results
shown in Table 4 are valid for the subsets of the data sets too. Therefore, we make
20 experiments with different 2/3rd subsets of each data set and calculate the average
score for each metric based on these 20 experiments. While generating the subsets,
we stratify the data and use a different seed to ensure each subset is different from
the previously generated ones. For each data set, the average scores we find at the
end of 20 experiments are listed in Table 5. When we look at the average scores
of the metrics on all data sets, we observe that although the results are slightly
different from the results presented in Table 4 in terms of ordering, there are very
strong similarities. For instance, still LOC, CBO, LOCQ, WMC, and RFC are the
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Table 5 The average scores of the metrics obtained for 20 different subsets of Ant, Tomcat, Poi,
Jedit, Velocity, Synapse, Lucene, Xalan, and Ivy

Data sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1.00 1.00 1.00 1.00 1.00 0.90 0.70 0.10 0.00
Tomcat 1.00 1.00 0.90 0.90 1.00 1.00 0.50 0.10 0.10
Poi 1.00 0.70 1.00 0.90 1.00 0.80 0.80 0.40 0.00
Jedit 0.60 0.50 0.30 0.60 0.50 0.40 0.00 0.00 0.00
Velocity 0.90 0.50 0.50 0.40 0.90 0.10 0.30 0.00 0.00
Synapse 0.70 0,80 0.60 0.60 0.70 0.60 0.00 0.00 0.00
Lucene 0.30 0.70 0.60 0.80 0.90 0.60 0.20 0.00 0.00
Xalan 1.00 0.10 0.95 0.55 0.95 0.65 0.50 0.05 0.10
Ivy 1.00 0.90 1.00 1.00 0.95 0.70 0.50 0.00 0.00
Average 0.83 0.69 0.76 0.75 0.88 0.64 0.39 0.07 0.02

most important metrics. Furthermore DIT and NOC are the least effective and
untrustworthy metrics. Similar to the results shown in Table 4, LCOM and LCOM3
are more effective compared to DIT and NOC and less effective compared to other
metrics.

5.4 Effectiveness of Metric Pairs

We look at the 180 Bayesian networks (generated for 20 subsets of 9 data sets), in
terms of which metric pairs are the most effective on defectiveness. For a specific
Bayesian network, if both of the metrics in the pair have a relationship with
defectiveness we assign a score of 1 to the metric pair. If either or neither of the
metrics is related with defect proneness we assign a zero score for the metric pair.
The sum of the scores of the metric pairs calculated for all subsets of the data sets
are shown in Table 5 (Only the most effective ten metric pairs are included in the
list). We observe that metric pairs LOC-RFC, RFC-LOCQ, RFC-WMC are the most
effective pairs and their scores are 145, 136, and 133 respectively (Table 6). We see
that the metric pairs that have the highest scores are composed of metrics that got the
highest score in the previous evaluation where each metric is considered alone (See
Table 4). For instance the metric pair LOC-RFC got the highest score and we see
that metrics LOC and RFC alone are among the metrics that got the highest scores
in Table 4.

Table 6 The scores of metric
pairs obtained for the 20
subsets of Ant, Tomcat, Poi,
Jedit, Velocity, Synapse,
Lucene, Xalan, and Ivy
data sets

Metric pairs Total score

LOC-RFC 145
RFC-LOCQ 136
RFC-WMC 133
LOC-LOCQ 131
LOC-WMC 121
RFC-CBO 120
LOCQ-WMC 119
WMC-CBO 109
LOC-CBO 108
LOCQ-CBO 106
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5.5 Feature Selection Tests

Using Bayesian network model, it is possible to make probabilistic causal or diag-
nostic inferences about the effectiveness of a metric on another metric or on the
defectiveness. At the end of learning a Bayesian network, we not only determine
the set of most important metrics but also find the relationship among them and the
probability of their effect on defect proneness. Therefore, with Bayesian networks
we are able to model the uncertainties better, compared to other machine learning
methods. Although they do not give the extent of influential relationships among
metrics and defectiveness, using Feature selection methods, we can determine the
most important metrics and make a cross check with the results of Bayesian network
model.

At the end of our experiments with Bayesian networks, we observe that con-
sidering all data sets we use in our experiments, LOC, CBO, LOCQ, WMC, and
RFC are the most effective metrics and DIT and NOC are the least effective ones
(See Tables 4 and 5). We run two feature selection algorithms CFS (CfsSubsetEval
attribute evaluator with BestFirst search method) and Relief (ReliefFAttributeEval
with Ranker search method) to see which metrics are selected as the most important
attributes and whether the results of the feature selection experiments are different
from the results shown in Table 4. For CFS tests, for each data set, each metric is
assigned a score of 1 if it is among the selected metrics and it is assigned 0 otherwise.
Table 7 shows the results of feature selection tests with CFS. When we look at
the average scores of the metrics, we observe that LOC, CBO, LOCQ, and RFC
are among the most important features and DIT and NOC are the least important
ones. So, although the ordering found at the end of feature selection is slightly
different from the ordering shown in Table 4, except WMC, we can say that there
is a coherence between the feature selection test and our experiments in terms of the
most and least effective attributes.

We repeat the feature selection test with Relief where Ranker is used as the search
method. Relief gives the rankings of the attributes for each data set. When we take
the average of the rankings for each metric on all data sets, we observe that except
for DIT metric, the results of the feature selection tests with Relief are coherent with
our results shown in Table 4. For instance, still LCOM, LCOM3, and NOC are less
effective compared to other metrics. Similar to the results shown in Table 4, metrics

Table 7 The results of feature selection tests with CfsSubsetEval and BestFirst search method where
a metric is assigned a score of 1 if it is selected and is assigned zero score otherwise

Data sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 1 1 1 0 1 1 0 0 0
Tomcat 1 1 1 0 1 0 0 0 0
Poi 0 1 1 0 1 1 1 0 0
Jedit 0 0 0 0 1 0 0 0 0
Velocity 1 1 0 0 1 0 1 0 0
Synapse 1 1 0 1 1 0 0 0 0
Lucene 0 1 1 0 1 1 0 0 1
Xalan 1 0 1 0 1 0 1 0 0
Ivy 1 1 1 0 1 0 1 0 0
Average 0.67 0.78 0.67 0.11 1 0.33 0.44 0 0.11
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Table 8 The results of feature selection tests with ReliefFAttributeEval and Ranker search method
where the rankings of the metrics are shown for each data set (If the average ranking of a metric is
smaller, then it means the metric is more important)

Data sets LOC CBO LOCQ WMC RFC LCOM LCOM3 DIT NOC

Ant 5 6 3 4 2 9 8 1 7
Tomcat 5 2 4 6 3 9 8 1 7
Poi 6 5 3 1 2 7 9 4 8
Jedit 5 3 6 4 2 7 8 1 9
Velocity 5 2 6 4 1 7 9 3 8
Synapse 2 3 6 5 1 7 8 4 9
Lucene 7 2 5 4 3 8 1 9 6
Xalan 1 3 5 2 4 7 6 9 8
Ivy 5 2 4 6 3 9 8 1 7
Average 4.56 3.11 4.67 4.00 2.33 7.78 7.22 3.67 7.67

RFC and CBO are the among most effective metrics. Although the average rankings
found for LOC, LOCQ, and WMC are not so good, they are still more important
compared to LCOM, LCOM3, and NOC (See Table 8).

5.6 Effectiveness of the Number of Developers (NOD)

Among the data sets listed in Table 2, we use Poi, Tomcat, and Xalan to extract the
number of developers since developer names could be retrieved from their source
code repositories. We count the number of distinct developers (NOD) for each class
of each data set. We use the NOD metric together with the metrics listed in Table 9
and learn a Bayesian network for each data set, to extract its relationship with other
metrics and the extent of defect proneness. Furthermore, we select K2 as the search
algorithm and use predefined ordering of nodes of LOC, NOD, CBO, LOCQ, WMC,
RFC, LCOM, LCOM3, DIT, and NOC. To see the relationship of NOD and the
level of defectiveness better, we define three states for defect proneness. All class
instances where bug is zero are accepted as defect free classes. The classes that have
1 or 2 bugs, are marked as less defective, and the classes that have more than 2 bugs

Table 9 List of software
metrics we used in our
modeling

Metric Metric full name

WMC Weighted method per class (Chidamber and
Kemerer 1991)

DIT Depth of inheritance tree (Chidamber and
Kemerer 1991)

NOC Number of children (Chidamber and Kemerer 1991)
CBO Coupling between objects (Chidamber and

Kemerer 1991)
RFC Response for class (Chidamber and Kemerer 1991)
LCOM Lack of cohesion of methods (Chidamber and

Kemerer 1991)
LCOM3 Lack of cohesion in methods

(Henderson-Sellers 1996)
LOC Lines of code
LOCQ Lack of coding quality
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are accepted as more defective. As a result, we simply define three defect proneness
states which are, defect free, less defective, and more defective. There is nothing
special for the threshold values we use to define the level of defectiveness, someone
else might use different thresholds or define more levels for defect proneness. The
Bayesian networks we obtain at the end of our experiments are shown in Fig. 8.

For all Bayesian networks learned, NOD is directly effective on defect proneness
and we observe a positive correlation between NOD and the level of defectiveness.
For instance for Poi data set, we see that as the number of developers increases,
the defectiveness increases too. If the number of developers are less than 3, the non
defectiveness probability is 0.997, but it is 0.003 if there are more than 3 developers
per class. For Tomcat data set, we observe that if the number of developers is more
than 1, the probability of a defect free class is 0.167. But the probabilities of having a
less or more defective class are 0.514 and 0.812 respectively. For Xalan, we observe
a similar relationship between NOD and the level of defectiveness, where if the
number of developers is less than 2 then the non defectiveness probability is 0.705. If
NOD is 2 or 3 then the non defectiveness probability is 0.276 and if NOD is greater
than 3 then it is only 0.019. Apparently, as the number of developers increases, the
non defectiveness probability decreases or the level of defectiveness increases.

To be sure that our results do not suffer from conclusion instability, and our
observations are valid for the subsets of the data sets too, we repeat our experiments

Fig. 8 Bayesian networks showing the relationship of the number of developers with the level of
defectiveness in Poi, Tomcat, and Xalan data sets
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Table 10 The average scores
of metrics obtained at the end
of runs on 10 subsets of Poi,
Tomcat, and Xalan data sets
(if a metric affects
defectiveness we assign it a
score of 1, if it has no
relationship with defectiveness
it is assigned a zero score)

Metrics Data sets Average

Poi Tomcat Xalan

NOD 0.7 1 0.7 0.80
LOC 1 1 1 1.00
CBO 1 1 0.9 0.97
LOCQ 1 1 0.9 0.97
WMC 1 0.9 0.9 0.93
RFC 1 1 1 1.00
LCOM 1 0.9 1 0.97
LCOM3 1 0.6 0.6 0.73
DIT 0.7 0 0 0.23
NOC 0 0 0 0.00

with the 10 subsets of each data set. Each data set is stratified and 67 percent of its
data is included in the subsets. Furthermore, for each stratification a different seed is
used. For the Bayesian network obtained in each experiment, a metric is assigned 1,
if it has a relationship with defectiveness and assigned zero otherwise. The average
scores of the metrics for Poi, Tomcat, and Xalan data sets are shown in Table 10. In 7
experiments for Poi, in all experiments for Tomcat, and in 7 experiments for Xalan,
NOD is directly effective on defectiveness and there is a positive correlation with the
developer count and defectiveness. Furthermore, supporting the results observed in
the previous experiments (Tables 4 and 5), LOC and RFC are the most effective
metrics whereas DIT and NOC are the least effective ones.

We compare the non defectiveness probabilities of two cases i.e. when the number
of developers is 1 (NOD = 1) and when it is greater than 1 (NOD > 1). Figure 9
shows the non defectiveness probabilities of these two cases, for 30 experiments
carried out on 10 stratified subsets of Poi, Tomcat, and Xalan (3 experiments for Poi
and 3 experiments for Xalan data sets where NOD is not related with defectiveness
are not included). To check for the statistical significance of the results, we apply a
t-test (in 95 % confidence interval) to the non defectiveness probabilities of the two

Fig. 9 The non defectiveness probabilities of two cases i.e. when the number of developers is 1
(NOD = 1) and when it is greater than 1 (NOD > 1)
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cases and show that the non defectiveness probability when NOD = 1 is better with
a p value of zero.

We conclude that as the number of developers increases for a specific class, the
class tends to be more defective and show that the common idiom “too many cookers
spoil the broth” is valid for Software Engineering. At the end of our experiments,
we observe that too many developers make a class more defect prone. This is due
to the fact that when too many developers work on the same piece of code, the
number of potential dependencies among their work items increases. We recommend
project managers to explore the cost benefit curve of NOD versus defectiveness level
where the value of adding more developers should be controlled with respect to
the introduced number of defects. We must emphasize that this conclusion is based
on the experiments on the data sets used and other researchers should make more
experiments on more data sets to justify our findings.

6 Threats to Validity

According to Perry et al. there are three types of validity threats that should be
considered in research studies. We briefly explain the methodology we follow to
alleviate these threats (Perry et al. 2000).

An internal validity threat might arise if a cause effect relationship could not
be established between the independent variables and the results. We address this
issue by cross checking our results on different subsets of the data sets. During our
experiments, not only we use 10 fold cross validation, but we also replicate all of the
experiments on 20 different subsets of all the data sets.

Construct validity threats might be observed when there are errors in the mea-
surements. To mitigate this threat, first we automatize the metric extraction process
and minimize the manual interventions, second we cross check the extracted metrics
and try to find if any abnormal values exist.

External validity threats might arise if the results observed for one data set are not
valid for other data sets. To mitigate external validity, we test our proposed method
on several data sets and replicate the experiments on their subsets. Although our
results are promising since metric effectiveness is investigated on more than one data
set, further research with more data sets and more search algorithms is needed to
justify our findings.

7 Conclusion

In this paper, we propose a novel method using Bayesian networks to explore the
relationships among software metrics and defect proneness. We use nine data sets
from Promise data repository and show that RFC, LOC, and LOCQ are more
effective on defect proneness. On the other hand, the effect of NOC and DIT on
defectiveness is limited and untrustworthy.

The main contributions of this research are:

– This paper uses Bayesian networks to model the relationships among metrics
and defect proneness on multiple data sets. For instance Gyimothy et al. (2005)
used Mozilla data set whereas Zhou et al. and Pai and Dugan used KC1 data
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set from Nasa repository (Zhou and Leung 2006; Pai and Dugan 2007). The
results obtained using one data set might be misleading since a metric might
perform well on one data set but poor on another one. As Menzies et al. suggest,
it is not adequate to assess defect learning methods using only one data set and
only one learner, since the merits of the proposed techniques shall be evaluated
via extensive experimentation (Menzies et al. 2007). Our work is a good contri-
bution to the literature, since we determine the probabilistic causal or influential
relationships among metrics and defect proneness, considering 9 data sets at the
same time.

– We introduce a new metric we call Lack of Coding Quality (LOCQ) that can be
used to predict defectiveness and is as effective as the famous object oriented
metrics like CBO and WMC.

– We extract the Number of Developers (NOD) metric for data sets whose source
code include developer information and show that there is a positive correlation
between the number of developers and the extent of defect proneness. So, we
suggest project managers to be careful while assigning more than one developer
to one class or file.

– It was found that in most experiments NOC and DIT are not effective on
defectiveness.

– Furthermore, since LOC achieves one of the best scores in the experiments, we
believe that it could be used for a quick defect prediction since it can be measured
more easily compared to other metrics.

– LCOM3 and LCOM are less effective on defect proneness compared to LOC,
CBO, RFC, LOCQ, and WMC.

As a future direction, we plan to refine our research to include other software
and process metrics in our model to reveal the relationships among them and to
determine the most useful ones in defect prediction. We believe that rather than
dealing with a large set of software metrics, focusing on the most effective ones will
improve the success rate in defect prediction studies.
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