
Configuration Management Stories from the Distributed Software Development
Trenches

Lars Bendix
Department of Computer Science

Lund University
Lund, Sweden

bendix@cs.lth.se

Jan Magnusson
Sony Mobile Communications

Lund, Sweden
Jan.Magnusson@sonymobile.com

Christian Pendleton
Softhouse Consulting

Malmö, Sweden
christian.pendleton@softhouse.com

Abstract—Distributed projects are generally recognized as
being more complex and adding a number of new challenges to
project management. Configuration management (CM) can be
considered the infrastructure of all types of project being they
co-located or distributed and lack of CM or badly
implemented CM will hurt any type of project. In this paper,
we take a closer look at the role of CM in distributed projects –
where can standard CM techniques help, how can they be
implemented, and what special challenges does distribution
pose. We do that by looking at general and CM-specific
challenges from literature on global software development and
discuss those in the light of our experience as CM practitioners
on different distributed industrial projects. Some challenges in
distributed development can be solved or alleviated by CM
techniques, for other challenges CM has to be implemented
differently – and some challenges are challenges to CM too.

Keywords-configuration management; distributed
development; challenges; lessons learned; experience

I. INTRODUCTION
In contrast to co-located projects, distributed

development (DD) is recognized as making projects more
complex and adding new challenges [12]. Configuration
management (CM) can provide the infrastructure for any
type of project whether co-located or distributed and CM is
considered a fundamental capability that has to be in place
for an organization to progress to level 2 of the Capability
Maturity Model [8].

As CM practitioners we have worked on many different
projects over the years, both distributed and co-located. We
have noticed many similarities from our special CM point of
view but also some differences. We wanted to understand the
challenges of DD and know more about how that is different
from the well-known co-located CM setup. However, we
found very little literature that could give a general overview
of CM on DD projects [2], [9]. Most literature seems to
focus narrowly on one single problem and/or solution and
leave you with a very fragmented picture of in which ways
CM can contribute on a DD project.

Furthermore, what we read in literature did not always
correspond to our own experience and understanding of what
CM is and what CM does. Sometimes issues were brought
forward that we could not relate to as a CM responsibility.
Sometimes issues were promoted as distributed challenges

when they, in our opinion and experience, were “just” lack of
well understood CM. So we had to work really hard to figure
out if we had gotten something wrong or misunderstood the
message – or if we had something new to contribute to CM
on DD projects.

We want to share our experience and insights from this
work. To do that in a systematic and structured way, we
started from general and CM-related challenges in DD drawn
from other people’s literature reviews. We carefully
reviewed the general challenges to identify those that can be
considered to be CM-related, either because they belong to
the CM area of responsibility or because CM could provide a
solution to the challenge. To that we added the CM-related
challenges that others have identified. This list was then
discussed and compared to experience from our case studies
to arrive at a better understanding of what are CM-related
challenges and what are not – and which CM-related
challenges are already solved and which remain open.

We want to share our lessons learned primarily with
other CM colleagues, who might struggle with distributed
projects – but also with project managers and others, who
sometimes are unaware of what CM can offer to their
project. Finally, we also want to share with researchers, so
they can come up with solutions for situations where we
have failed.

In the following, we first give a short introduction to the
most basic concepts and principles of CM, then we review
literature for challenges in DD that are related to CM, we
give brief descriptions of our cases, before we discuss our
experience from the cases in relation to established
challenges and issues from literature and standard CM theory
and practice. Finally, we draw our conclusions.

II. CONFIGURATION MANAGEMENT
In this section, we give a short introduction to the most

important concepts and principles in CM. It will give a
slightly alternative picture of CM to the CM-knowledgeable
readers and will make it easier for the CM-uninitiated reader
to follow our subsequent discussions and reasoning.

A. Traditional Configuration Management
Traditionally CM is considered to consist of four

activities: identification, control, status accounting and audit
[7].

2012 IEEE Seventh International Conference on Global Software Engineering

978-0-7695-4787-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICGSE.2012.32

51

The purpose of Configuration Identification is to make
sure that all important parts of a project are identified and put
under configuration control. These Configuration Items are
described and defined and it is decided how Configuration
Items should be named and structured to allow easy retrieval
and recognition and identification. Defined groups of
Configuration Items can make up configurations (like a
requirements specification) and Configuration Items can be
related to other Configuration Items to give traceability (like
tracing a requirement to its tests and implementation).

In Configuration Control focus is on managing changes
to configurations. Once a given configuration is stable a
baseline is defined for that configuration. The only way to
make changes to a baseline is to create a Change Request
(problem report, deviations, waivers are synonyms) and take
it through the change management process. The central part
of that is the Change Control Board that makes decisions
about whether to accept or reject a Change Request based on
information provided and that subsequently follows the
status of the Change Request through to its closure.

Configuration Status Accounting is the activity that can
provide all sorts of information to all sorts of people.
Traditionally it is looked at as producing printed paper
reports of information about the status of the change
management process for the project manager with regular
intervals. However, more generally the status accounting
activity can make available also more dynamic information
(like “who is changing this file”) through other types of
media (like a wiki) and for other types of “customer” (like
testers or developers).

Finally, Configuration Audit has the purpose of making
sure that we are ready to deliver what has been promised and
is done in a more formalized way prior to release. The
Functional Configuration Audit is a sanity check for whether
the prescribed change management process has been
followed – have all accepted Change Requests gone through
all steps of the process to end up in the “closed” state. The
Physical Configuration Audit checks whether all physical
parts (like memory card, user manual or help files) of the
product are there and correspond to their description.

B. Team-oriented Configuration Management
Internally in smaller teams people had struggled with the

day-to-day coordination of their parallel work and gradually
“invented” CM processes and tools to help them out.

Wayne Babich [1] very eloquently identified three
fundamental problems that he had seen happen in the
coordination of individual people’s work in a team: shared
data, simultaneous update and double maintenance.
Problems that we can never hope to eliminate, but that we
can manage by the use of good processes or tools. The
shared data problem is the situation where a problem is
caused by the changes of other people – changes that we are
not aware of. The concept of a workspace in version control
tools will isolate us from other people’s changes. However,
when we synchronize our workspace with the repository we
invite in the shared data problem. The simultaneous update
problem is when someone accidently overwrites and
removes someone else’s change. Version control tools will

not allow us to commit a change to the repository if someone
else has already committed a change and thus avoids the
danger of overwriting. However, when we resolve merge
conflicts there is the possibility that we accidently remove
(parts of) other people’s changes. The double maintenance
problem happens when we copy something – and make
changes to one of the copies. In order to keep the two copies
identical we have to make the exact same change in the other
copy too. A merge tool will help us do that automatically – if
we know that the copy exists. However, most merge tools
only work for lines of text.

Peter Feiler [3] distilled the work models of version
control tools. For the synchronization part early tools
provided locking mechanisms to stop parallel work on the
same components, but gradually moved towards a more
relaxed model that allowed parallel work since there was tool
support to merge parallel changes. The transaction model
changed from a very simplistic model where people were
focused on single files committed one at a time towards the
concept of logical changes where a set of changes was
committed in one atomic operation. To create configurations
(e. g. when populating a workspace) there are two models.
The composition model creates a new configuration from a
system model that gave the general architecture on which a
selection rule is applied to pick one version for each node in
the system model. The change set model creates a
configuration from a baseline on which is applied a set of
changes. Some tools support only very limited parts of one
configuration model, other tools fully support both models.

III. LITERATURE REVIEW
We did not want to create a list of CM-related challenges

in DD based exclusively on our own experience and cases,
so we needed to review literature for what others might have
found. Much has been written about general challenges in
DD and many have written about different aspects of CM in
DD. Fortunately there are also some existing literature
reviews, so we did not have to go through oceans of papers.
We have based our review of general challenges on [12] and
[6]. There are many others like [5], [10] and [4], but we did
not find that they added anything substantial to the primary
literature reviews we use, which confirmed our impression
that we were on solid ground. For the CM-related challenges
there is very little. We have only been able to find [2] and [9]
that form the literature basis for our subsequent discussions.

da Silva et al. [12] collect and systematize reported
knowledge in terms of what are the difficulties in DD
projects. Though the review is based on a much larger pool
of literature, they extract information from a final selection
of 54 papers. They come up with a list of 30 general
challenges of which the first five accounts for almost half of
the found mentionings. We find cultural differences to be
outside the scope of CM, whereas coordination is strongly
related and effective communication, time zone differences
and trust are weakly related. It seems like they focus more on
trust on people, whereas we have more focus on trust on
code (or artefacts in general). From the remaining 25
challenges, some (like need of office space) bear no relation
to CM, while others (physical distance, task allocation) are

52

weakly related and quite a few (different knowledge levels or
knowledge transfer, tracking and control, cooperation,
knowledge management, scope and change management,
differences in technologies used, synchronization work
between distributed sites) are strongly related to CM – either
because they pose problems for CM or because CM can help
manage the challenge. They also find 31 best practices that
are used to manage the challenges. One of these is to deploy
and use a configuration management system and since they
talk about it in general terms we take it to include all aspects
of CM as laid out in section 2. Therefore it surprises us that
when they map best practices and challenges, CM is only
mapped to the “effective communication” and the “trust”
challenges. We believe that CM can help deal with many
other challenges too. When they map challenges and tools,
CM (which is then a change management system) is mapped
to the “cooperation” challenge and the “scope and change
management” challenge. Again, CM can help with these
challenges, but we also believe that it can do more. However,
we are rather puzzled that they map the CM tool to the
“multiple communication modes” best practice.

Jiménez et al. [6] synthesize the findings of their
literature review (based on 78 primary studies) of challenges
in DD into 10 different areas. Since their areas are more
general and wide in nature than the challenges of [12], we
find that most areas are in some way related to CM. We
consider the following areas as strongly related to CM:
Software configuration management (though they seem to
take that as source code control and awareness), Knowledge
management, Coordination and Collaboration. The areas we
consider as more weakly related to CM are: Communication,
Group awareness, Project and process management, and
Risk management. Whereas we do not see any particular
relations between CM and Process support or CM and
Quality and measurement.

Pilatti et al. [9] analyzed CM in a DD environment to
identify the main challenges. They studied four distributed
projects and found 8 different issues that they relate to CM.
We agree that all of their issues are matters of CM. However,
most of them (like “always plan baselines and document
them in the project’s SCM plan as soon as possible”) are
important CM issues also for co-located projects and as such
the “real” problem can be considered lack of using known
CM concepts and principles. There are two issues (the work
breakdown in distributed projects should minimize
dependencies between geographically distributed groups,
distributed development projects should work with only one
instance of SCM environment) that, even though they are
also known from co-located projects, may be more critical
on a DD project.

Fauzi et al. [2] experienced a lack of attention to
technical areas of DD research and carried out a systematic
mapping of literature to identify CM issues in DD based on a
final selection of 24 primary papers. They distinguish 13
CM-related problems faced by developers in DD:

• (P1): Dispersed software teams do not get
information on what other teams are doing

• (P2): Difficult to know the traceability of each
module

• (P3): The definition of modifications or problems to
be handled is unclear

• (P4): Dependency
• (P5): Delay and increased time required to complete

change requests
• (P6): Working in different SCM environments
• (P7): Change requests are handled at various levels

in the project
• (P8): Lack of a planned baseline
• (P9): Lack of coding standards
• (P10): Code ownership
• (P11): Unclear flow of development
• (P12): Tool selection
• (P13): Artefacts with different versions and content

at each site
Just as for the issues in [9], we would be hard pressed as

CM people to feel particular responsibility for some of these
issues (like “code ownership”). Likewise we consider many
of the issues (like “lack of a planned baseline”) as plain
negligence of well-known CM concepts and principles.
Others (“working in different CM environments”), however,
are things that CM will have to deal with on a DD project.
This is further discussed in section V.

IV. CASE DESCRIPTIONS
In this section, we give short descriptions of the cases we

use in the discussion of our experience in the following
section. Not all cases are explicitly referenced in the
discussions, but they all have contributed to the experience
we draw on.

Case I: Company A is a large development company
(>150 developers at this unit), where distributed
development is quite common. They hired consultants from
company B, which is distributed on two sites within one
country with the consultants working from their “home”
office. Four development teams at company B are working
remotely (three at one site and one team in a separate, all in
all about 30 developers). The deliverables from company B
consists of source code files. To solve the distribution
situation, company A offers a remote desktop connection
solution, making the consultants connect from their local
offices to terminal servers inside company A. The remote
desktop solution gives access to the whole development
environment at the company including tools for version
control, code review, system integration, test etc.

Case IV: A division of an international consumer
electronics developer spanning several sites across different
continents. The major offices are located in Tokyo, Beijing,
Lund (Sweden) and San Francisco. The software
development organization in this division numbers 1000+
people. Teams are organized around products, components
or features as the situation dictates. Product and component
responsibility will be located at one site, but development
activities can be assigned to teams in other sites. Software
development is regularly outsourced and off-the-shelf
components can also be included in finished products. The
development environment inside the company is very
homogeneous with centralized build resources and tool

53

management. For outsourced teams, an SDK is provided in
most cases, but if so required, a remote desktop solution is
also offered.

Case VI (anti-case): This case is the complete opposite
of the other cases as it describes an extremely co-located
setup where everyone on the project team is in the same
room at the same time. The purpose of this case is to uncover
CM solutions that are implemented differently on a DD
project and CM solutions that are simply “implemented by
communication” on a co-located project. A group of 8-10
students has to produce an application to manage motorcycle
competitions. They work closely together with a customer,
develop following eXtreme Programming and are being
coached by two older students. The team has its own room
where all project activities take place and everyone works at
the same time. Each iteration starts with a two-hour planning
game and ends with an eight-hour programming session. In
between up to four hours of individual work per student can
be spent on spikes (e. g. looking through the code for bad
smells/missing unit tests, looking into how to use Ant for the
release, baking cake – or whatever they feel is needed in
preparation for the programming session). The project runs
for 6 iterations and the final (and fourth!) release is complete
with applications, user manuals, source code, and technical
documentation.

V. DISCUSSION
In the following, we discuss a small selection of topics

drawn from our experience with the cases described in the
previous section. Discussions will also relate to CM concepts
and principles and/or previous findings from literature.

Code ownership in a distributed organisation (from
case IV): Large systems have the drawback that each
developer cannot be fully cross functional in the sense that
he/she is familiar with all parts of the code. Many
organisations solve this by appointing ownership of code
modules. Working feature oriented with such a system will
sooner or later create a situation where the developers will
have to change code that is “owned” by someone else since
some features is naturally spanning over many modules. The
owner of the changed code naturally will want to know when
someone else is committing changes to his/her module and in
many cases also review the changes before they are merged
to the common code base. This functionality can be offered
by good version control, supporting feature branches, in
combination with a process and a tool for code reviews.

Dispersed software teams do not get information on
what other teams are doing (from case IV and P1 [2]): In
a distributed team setup, information about ongoing activities
will not naturally be passed from developer to developer
across sites. If the only interactions with remote developers
happen through the code repository when artefacts are
retrieved or stored or the repository is queried, developers
will be quite reliant on real time communication in order to
avoid or resolve conflicts. The strategies suggested by [11],
namely, well defined tasks and exclusive areas of
responsibility, is only valid if the architecture of the software
worked on is such, that there are well-defined components
with a clear and shared understanding in the organization of

their scope and functionality and when adding two pieces of
seemingly unrelated functionality, the probability for them to
be dependent is low. And even if those two architectural
requirements are fulfilled, the result is not mainly improved
awareness of remote developers activities, but instead a way
to reduce the risk that the communication deficit resulting
from a large and/or distributed development organization
affects ongoing development. Another commonly used
strategy to tackle the risk of unnoticed dependencies
interfering with ongoing work, is simply to limit the amount
of work-in-progress, where continuous integration would be
an example. Strategies aimed at improving awareness should
encourage sharing rather than isolation. Introducing a review
process, whereby all changes must pass this process before
being introduced into the main development code line, has
greatly improved the ability for developers in the
organization in Case IV to share ongoing work with peers as
well as given them clear benefits by doing so.

Control over a distributed environment (from case I
and P6 [2]): Working distributed, there is always a risk that
the development environment starts to diverge between the
sites. This may affect efficiency in the development work in
different ways but it can also impact traceability through the
systems and even how software is built, making it hard to
reproduce binaries at a different site. CM control over the
development tools is essential in these cases.

Access control in a distributed environment (from
case I and IV): Since operative CM is involved in the
development environment and the version control tool
handles access to the source code, CM often gets involved in
the access control setup. When working distributed, there is a
risk that different sites handles access control differently.
Every development network should have a strategy for
access control and tools or infrastructure that supports this
strategy. In cases I and IV, remote desktop solutions
automatically gave a consistent environment with the proper
access rights applied without requiring any extra work or
solutions. In case IV, access control is also governed by tools
offering support for assigning code access permissions.

Commit shouting (from case VI): The fact that
everyone is potentially working on the whole system in
parallel means that the team has created the double (actually
multiple) maintenance problem from [1]. To handle that they
try to integrate as often as possible to keep the “integration
effort” as small as possible. In the beginning they update
continuously, but soon they discover that there is nothing
new in the repository to integrate and these “idle” updates
become noise in their work. Most teams then adopt the
practice to shout out “commit” whenever someone commits
something to the repository – after which all the others know
that now there is something new and that they should update
and synchronize as soon as possible/convenient. The
technical CM solution to this coordination problem does not
care whether the team is co-located or distributed – however,
the implementation of the shouting has to be different.

Dependency and Delay (P4, P5 [2] and case IV): Given
a certain architecture and development process, there is a
resulting probability that two random ongoing changes will
depend on each other in one way or another. As software

54

grows in size and complexity, so normally does the number
of developers involved and the number of changes made to
the software in a certain time period. Often, the architecture
and processes will adapt in order to reduce the probability
that two changes will affect each other, but this probability
will never be zero. This means that whatever process and
architecture there is, sometimes such dependencies will need
to be dealt with. In a large and complex organization this
work faces many challenges. There must exist a way to
discover ongoing changes and that they are dependent. If
developer lacks the knowledge or experience in a certain are
where changes are required, it must be possible to find
relevant experts. You must be able to communicate with
developers of dependent changes or experts and it must be
possible to get authorization and acceptance for the changes
needed from both managers and engineers as appropriate.
When the changes are completed, it must also be possible to
introduce them into the system in such a way that it does not
break. CM processes and tools can designed to help out in all
of those areas, but time zone differences in the magnitude of
a working day, will result in synchronous communication of
any kind becoming a major problem. Often this leads to that
inefficient modes of communication are used and causes
higher than normal error rates, as well as request-response
times scaling days instead of minutes or hours. In case IV,
the means to reduce time zone induced lead times have so far
been very costly and involve duplication of resources in
order to have expertise and authority available at all times
when development work is ongoing.

Distributed version control tools are better suited
(case VI): In this case there was the belief from two of the
teams that a shift from a centralized to a distributed version
control tool would ease the coordination task. It turned out
that they ended up needing a more centralized and controlled
integration process than the other teams – most probably
because their belief had lured them into integrating less
often. In fact, the only basic difference between the two
paradigms is that the workspace is a repository on its own –
with possibility for version control – in the distributed
paradigm. The integration and coordination of contributions
does not become any easier. However, in project setups with
network problems distributed tools could work better.

VI. CONCLUSIONS
Many issues found in DD stem from communication

problems. CM can help alleviate some of the issues by
providing a framework for communication through the
implementation of standards for identification, status
accounting and decision-making. Working in a small, co-
located team, a common nomenclature will normally evolve
through personal interactions. Status accounting can happen
by “shouting” and data required in order to make informed
decisions can be retrieved by simply arranging a meeting
with the whole team or talking directly to the right person.

As soon as the formation of these informal practises is
hindered, either by project size, complexity or distribution,
the ability to perform basic tasks crumble unless a more
structured approach is introduced. In many cases, this
structured approach is simply implementing current CM best

practices, without particular consideration to if the work is
distributed or not. The real issue seems to be to which extent
informal procedures are prevented to form and distribution is
only one such roadblock. One important aspect though, is
that the CM procedures introduced, must be organization
wide in order to serve as a communication framework.
Heterogeneous environments and procedures will complicate
the matter, but is left for later examination.

There are some additional issues that are limited to DD
projects. Poor infrastructure, with limited bandwidth,
network instability, high latency, etc, can prevent the
implementation of efficient formal CM practices or introduce
considerable delays and queues. Time zone differences is
another problem that by its very nature will also introduce
delays that hinder communication, regardless of how much
of CM best practices that are introduced.

ACKNOWLEDGEMENT
We would like to thank Marc Girod, Ericsson, Ireland,

Ulf Steen, ABB, Sweden and Torben Poulsen, Thy:data,
Denmark for comments, ideas and provision of cases.

REFERENCES
[1] W. A. Babich: “Software Configuration Management – Coordination

for Team Productivity”, Addison-Wesley Publishing Company, 1986.
[2] S. S. M. Fauzi, P. L. Bannerman, and M. Staples: “Software

Configuration Management: A Systematic Map”, in Proceedings of
the 17th Asia Pacific Software Engineering Conference, Sydney,
Australia, November 30 – December 3, 2010.

[3] P. H. Feiler: “Configuration Management Models in Commercial
Environments”, Technical Report, CMU/SEI-91-TR-7, Carnegie-
Mellon University, Pennsylvania, March 1991.

[4] S. ul Haq, M. Raza, A. Zia, M. Khan: “Issues in Global Software
Development: A Critical Review”, Journal of Software Engineering
and Applications, Number 4, 2011.

[5] J. D. Herbsleb: “Global Software Engineering: The Future of Socio-
technical Coordination”, in Proceedings of Future of Software
Engineering, Minneapolis, Minnesota, May 23-25, 2007.

[6] M. Jiménez, M. Piattini, and A. Vizcaíno: “Challenges and
Improvements in Distributed Software Development: A Systematic
Review”, Advances in Software Engineering, Volume 2009, 2009.

[7] A. Leon: “Software Configuration Management Handbook”, (second
edition), Artech House, 2005.

[8] M. C. Paulk, C. V. Weber, B. Curtis, M. B. Chrissis: “The Capability
Maturity Model: Guidelines for Improving the Software Process”,
Addison-Wesley Publishing Company, 1995.

[9] L. Pilatti, J. Audy, R. Prikladnicki: “Software Configuration
Management over a Global Software Development Environment:
Lessons Learned from a Case Study”, in Proceedings of the
International Workshop on Global software development for the
practitioner, Shanghai, China, May 23, 2006.

[10] C. Prause, R. Reiners, S. Dencheva: “Empirical Study of Tool
Support in Highly Distributed Research Projects”, in Proceedings of
the Fifth ICGSE, Princeton, New Jersey, August 23-26, 2010.

[11] R. Sangwan, N. Mullick, M. Bass, D.J. Paulish, and J. Kazmeier:
“Global Software Development Handbook”, Auerbach Publications
Taylor & Francis Group, 2006.

[12] F. Q. B. da Silva, C. Costa, A. C. C. França, and R. Prikladnicki:
“Challenges and Solutions in Distributed Software Development
Project Management: A Systematic Literature Review”, in
Proceedings of the 5th International Conference on Global Software
Engineering, Princeton, New Jersey, August 23-26, 2010.

55

