Empir Software Eng (2010) 15:556-576
DOI 10.1007/s10664-010-9131-y

An empirical investigation into open source web
applications’ implementation vulnerabilities

Toan Huynh - James Miller

Published online: 22 May 2010
© Springer Science+Business Media, LLC 2010
Editor: Bojan Cukic

Abstract Current web applications have many inherent vulnerabilities; in fact, in 2008,
over 63% of all documented vulnerabilities are for web applications. While many
approaches have been proposed to address various web application vulnerability issues,
there has not been a study to investigate whether these vulnerabilities share any common
properties. In this paper, we use an approach similar to the Goal-Question-Metric approach
to empirically investigate four questions regarding open source web applications vulner-
abilities: What proportion of security vulnerabilities in web applications can be considered
as implementation vulnerabilities? Are these vulnerabilities the result of interactions
between web applications and external systems? What is the proportion of vulnerable lines
of code within a web application? Are implementation vulnerabilities caused by implicit or
explicit data flows? The results from the investigation show that implementation
vulnerabilities dominate. They are caused through interactions between web applications
and external systems. Furthermore, these vulnerabilities only contain explicit data flows,
and are limited to relatively small sections of the source code.

Keywords Empirical evaluation - Web applications - Security - Vulnerability - Injection -
Classification of vulnerabilities

1 Introduction

The Laws of Vulnerabilities 2.0 states that “80% of vulnerability exploits are now available
within single digit days after the vulnerability’s public release”. The 2008 Internet Security
Threat Report® from Symantec notes that web applications contain 63% of all documented

'http://www.qualys.com/research/md/vulnlaws/, last accessed August 16, 2009
Zhttp://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802, last accessed January 29, 2010
T. Huynh - J. Miller (B)

Department of Electrical and Computer Engineering, Electrical and Computer Engineering Research

Facility, University of Alberta, Edmonton, AB T6G 2V4, Canada
e-mail: jm@ece.ualberta.ca

T. Huynh
e-mail: huynh@ece.ualberta.ca

@ Springer

http://www.qualys.com/research/rnd/vulnlaws/
http://www4.symantec.com/Vrt/wl?tu_id=gCGG123913789453640802

Empir Software Eng (2010) 15:556-576 557

vulnerabilities. Insecure applications can be extremely costly. For example, ChoicePoint,
after exposing 145,000 customer accounts, reported $11.4 million in charges directly
related to the incident (Rapid7 2005). Immediately after the incident was disclosed,
ChoicePoint’s total market capitalization dropped by $720 million. Meanwhile, CardSys-
tems is barred from accepting Visa and American Express cards after compromising 40
million accounts due to a SQL Injection vulnerability. Hence, security is a prominent non-
functional requirement for modern web applications.

Web applications have short release cycles and development time (Baskerville and Pries-
Heje 2004). Many new features, enhancements and bug fixes are continually added during
these cycles. Every change made to the system can introduce new security vulnerabilities.
Using an approach similar to the Goal Question Metric approach (Basili et al. 1994), our
goal is to help researchers improve the security posture of web applications by performing
an empirical analysis of discovered vulnerabilities in 20 web applications to uncover any
similarities in this sample.

Given the relative newness of this topic, limited factual or empirical information exists;
hence, we principally rely upon our previous experience with, and observations of, web
applications. This previous research has led us to construct some tentative questions with
regard to the vulnerabilities that exist within a wide cross-section of web applications; these
questions are used to achieve the stated goal:

1. What proportion of security vulnerabilities in web applications can be considered as
implementation vulnerabilities? The metric we use to answer this question is the
percentage of implementation vulnerabilities versus other types for the 20 applications
under examination.

2. Are these vulnerabilities the result of interactions between web applications and
external systems? The metric we use to answer this question is the percentage of
function calls to external systems that exist in the vulnerabilities.

3. What is the proportion of vulnerable LOC within a web application? That is, what is
the vulnerability density? The metric we use to answer this question is the number of
vulnerable LOC versus the systems’ total LOC.

4. Areimplementation vulnerabilities caused by implicit or explicit data flows? The metric we
use to answer this question is the number of vulnerable code blocks (which are defined in
Section 4.4) with implicit data flow and the number of variables assigned from an input.

Given the lack of solid causal theory utilized to derive the questions, we believe that
these questions should be viewed as an initial attempt in hypothesis formulation rather than
an exercise in hypothesis confirmation or refutation. The remaining sections of this paper
are organized as follows. Section 2 introduces the terminology used in this paper. Section 3
explains the survey and its procedure. Section 4 contains the metrics obtained for the four
questions. Section 5 provides an overview of current techniques for detecting and
eliminating web vulnerabilities. Finally, Section 6 presents our conclusions.

2 Terminology

We define several terms for the reader’s convenience:

* External Systems—These are systems that the web application depends upon for its
operation. For example, a shopping cart web application retrieves its product
information from a Database Management System (DBMS), the external system.

@ Springer

558 Empir Software Eng (2010) 15:556-576

Semail = get input();

. 1f (Semail != RFC2822) {

print “invalid email address”;

exit;

-}

. $sgql = “SELECT phone FROM users WHERE email =’"+Semail+”’'";
. Sphone = query($sqgl);

[T R S I N O

. print $phone;

e
S
-

Example program

* EIV—External Interaction Vulnerabilities. These vulnerabilities allow attackers to use
vulnerable web applications as a vessel to transmit malicious code to an external system
that can interact with the web application. The malicious code will modify the syntactic
content of the information sent to the external application. In other words, EIVs allow
attackers to target external systems that interact with the web application, rather than the
actual web application itself.

Popular EIVs include SQL injections and cross-site scripting vulnerabilities. Any
vulnerability is classified as an EIV if it has the following properties:

* A malicious input is required to initiate the attack.

* The malicious input is transmitted from the web application to an external system.

* The malicious input does not exploit the web application directly. For example, all
buffer overflow vulnerabilities are not be classified as an EIV because they attack the
application’s input buffer directly without interacting with an external system.

* SQL Injection Vulnerabilities (Scambray et al. 2006)—These vulnerabilities allow
attackers to inject and execute SQL statements through the web application. For example,
Fig. 1 displays the pseudocode for a web application that asks the user for an email
address stored in a database and displays the phone number associated with that email to
the browser.

Statement 1 retrieves the email address from the input. Statements 2—5 parses the input
for a valid email address based on the RFC 2822.% which defines the standard format of an
email address. Statement 6 builds a dynamic SQL statement based on the input retrieved.
Statement 7 then instructs the DBMS to execute the SQL statement. Statement 8 prints
the phone number retrieved from the email address entered. RFC 2822 allows many
characters to be part of an email address which allow names with single quotes such as
“O’Reilly” to be used in an email. Hence the user using a specially crafted address, which
meets the specification, such as:

him"' OR 1=1 --"Gexample.com

3 http://www.ietf.org/rfc/rfc2822.txt, last accessed July 25, 2009

@ Springer

http://www.ietf.org/rfc/rfc2822.txt

Empir Software Eng (2010) 15:556-576 559

can embed a SQL statement. Using this email address, the expanded SQL statement
becomes:

SELECT phone FROM users WHERE email ="hi”’ OR 1=1 --“(@example.com’

Hence, the SQL statement is successfully injected.

* Cross-site Scripting (XSS) Vulnerabilities (Scambray et al. 2006 —These vulner-
abilities allow an attacker to inject JavaScript/HTML code that other visitors to the
website will execute. For example, an attacker can create a link to a vulnerable web
application, such as

http://www.site.com/?<script src=http://hacker.com/getcookie js></script>

When users click on this link, they are taken to the actual www.site.com website (not a
website that the attacker controls), which then allows the attacker to retrieve the users’
cookie data for that website.

* Code Injection Vulnerabilities (Scambray et al. 2006)—These vulnerabilities allow an
attacker to inject and execute programming statements in the same language as the web
application. This vulnerability is extremely dangerous as it allows the attacker to
become a programmer for the vulnerable application. For example, an attacker named
John, can exploit a vulnerable application to write and execute statements such as

eval (“setUserLevel (‘John’,"Admin’)”);

which allows the attacker to become an administrator for that application.

* Command Execution (Injection) Vulnerabilities (Scambray et al. 2006)—
These vulnerabilities allow an attacker to run various system commands
(“cd”, “1s”, “dir”, “cat”, etc.) through the vulnerable system. An attacker, for
example, exploiting this vulnerability can perform DoS (Denial of Service) attacks on the
system by removing files essential to the application. Other system commands can be
used to retrieve information or even alter the application’s configuration settings.

* Privilege Escalation Vulnerabilities (Scambray et al. 2006)—These vulnerabilities
allow an attacker to bypass the authentication system or escalate their privileges without
using an injection attack. A typical vulnerable application would allow an attacker to
access restricted sections without being identified as a valid user. For example, a web
application can use a flag to identify administrators from normal users. This flag is
stored in a hidden form field. The attacker, with knowledge of this flag, can manipulate
it and escalate their account to gain additional (administrative) functions.

* Information Disclosure (Leakage) Vulnerabilities (Scambray et al. 2006)—These
vulnerabilities allow an attacker, without using an injection attack, to access information
not available to a normal user. Information disclosure differs from authentication bypass
because authentication bypass allows an attacker to perform tasks and retrieve
information not available to them; whereas, information disclosure only allows the
attacker to retrieve restricted information. For example, instead of displaying a generic
error message when encountering an error, the web application can display the entire call
stack which contains detailed information on the internal structure of the web application.

3 Survey

For this survey, we examined 20 different applications implemented using six popular
languages (PHP, ASP-VBscript, ASP.NET — C#, Java-JSP, Perl, and Python). The survey is

@ Springer

http://www.site.com/
http://hacker.com/getcookie.js
http://www.site.com

560 Empir Software Eng (2010) 15:556-576

Table 1 Number of vulnerabilities

in the OSVDB Total vulnerabilities 19,173
Products 5,175
Total web related vulnerabilities 7,290
Total web applications 2,695

explicitly limited to web applications; and hence several common languages (such as C)
and vulnerability types (such as buffer overflows) are relatively uncommon within this
domain (OWASP 2007).

3.1 Vulnerability Databases

We used two popular vulnerability databases (VDB), the Open Source Vulnerability
Database® (OSVDB) and the Bugtraq mailing list® to identify the vulnerabilities for these
applications. These two databases provide information on known vulnerabilities for open
source and proprietary products. Unfortunately, the survey requires detailed analysis of the
source code, which is unavailable for proprietary systems; and hence the investigation is
limited to open source systems. Although we cannot perform the complete survey for
proprietary systems, we briefly examined the vulnerability types of 20 proprietary systems
to determine whether they are similar to the vulnerability types found in open source
systems. The results, discussed in Section 4.2.1, show that these proprietary systems have a
similar distribution of vulnerability types.

Although the two databases have different maintainers, they are far from independent; in
fact, Bugtraq can be viewed as a subset of OSVDB. OSVDB effectively collates
information from all of the other major open-source vulnerability databases including:
The National (U.S.) Vulnerability Database, US-CERT Vulnerability Notes’; Internet
Security Systems—X-Force Database®; CERIAS Vulnerability Database’, and the LWN
security vulnerabilities database.'® Hence, OSVDB can be considered as being a meta-
source of information on this topic; and therefore, it is utilized as the basis of the selection
procedure. Having said this, Bugtraq (due to its message board format) tends to include a
more extended description of vulnerabilities than OSVDB, and hence this information
source was always used, when it was available, to increase the understanding of the
vulnerabilities.

3.2 Survey Procedure

The survey, for purposes of sampling, extracted vulnerability information covering the
period between January 1, 2002 to May 31, 2007 from the OSVDB resulting in the records
shown in Table 1.

OSVDB requires that all vulnerabilities be inspected to increase accuracy; unfortunately,
Bugtraq has no such screening process. The survey worked with the vulnerabilities from
OSVDB; the reliability of Bugtraq’s vulnerability information was validated by comparing

“ http://www.osvdb.org/, last accessed July 22, 2009

3 http://www.securityfocus.com/archive/1, last accessed July 22, 2009

© http://nvd.nist.gov/statistics.cfim, last accessed July 31, 2009

7 http://www.kb.cert.org/vuls/, last accessed July 31, 2009

& http://xforce.iss.net/, last accessed July 31, 2009

® http://www.cerias.purdue.edu/about/history/coast/projects/vdb.html, last accessed July 31, 2009
19 http://lwn.net/Vulnerabilities/, last accessed July 31, 2009

@ Springer

http://nvd.nist.gov/statistics.cfm
http://www.kb.cert.org/vuls/
http://www.securityfocus.com/archive/1
http://www.osvdb.org/
http://xforce.iss.net/
http://www.cerias.purdue.edu/about/history/coast/projects/vdb.html
http://lwn.net/Vulnerabilities/

Empir Software Eng (2010) 15:556-576 561

it with the corresponding entry from OSVDB. In addition, both databases encourage a
product’s developers to refute any vulnerabilities that they believe are incorrect, providing a
further crosscheck of validity. None of the systems in our survey contained any disputed
vulnerability. Our analysis suggests that the quality of data in both systems is extremely high.

Our sampling procedure was to select randomly 20 open source web applications from the
OSVDB database. However, these 20 web applications were required to meet certain criteria:

* They must have more than one update released.

* They must be larger than three KLOC.

* They must have vulnerabilities that are exploitable.

* They can be commercial systems, but the source code has to be available.

Table 1 shows that the selected web applications represent only a small fraction of the
total number of web applications listed within the database. The results of the sampling
process are shown in Table 2. Once the products were selected, the following steps were
performed, on each product, to gather the necessary data for the analysis:

1. We downloaded the source code for all applications. This includes downloading older
source code that contained the vulnerabilities of interest. Our analysis requires us to
trace, in detail, paths through the source code.

2. We used a source code counting tool (Practiline Source Code Line Counter!'!) to count

the LOC for each application. Only files containing program statements were counted.

The reported LOC does not include empty lines and comments.

We retrieved vulnerabilities for the applications from the VDBs.

4. For each vulnerability, we traced the source code to the statements causing the actual
vulnerability. Nested function calls are traced and stopped at calls to standard library
functions.

W

Due to the different programming languages involved, different designs associated with
each application and over 330 KLOC to examine, the entire process required about 1 year
of effort. One week was required to study the OSVDB’s relational diagram and to import
OSVDB?’s data into a local database for faster access. One week was used to create a tool to
query the database. Twelve weeks were used to study the programming languages. One
week was used to install, configure, and deploy the web applications in a test environment.
Ten weeks were used to study the web applications and the associated source code; 4 weeks
were used to examine all the vulnerabilities associated with each application. Twenty-six
weeks were used to independently repeat the manual operations. This “verification” task
was believed to be important as any manual task of this “length” is clearly error-prone and
this approach is believed to have resolved any inconsistencies in the process.

3.3 Chosen Applications

Table 2 displays the examined applications and the number of vulnerabilities identified.
3.4 Tracing the Source Code

To determine the number of vulnerable LOC and how deep these statements are within the

call stack, we traced the source code for each known vulnerability. Program slicing was first
introduced by Weiser (1984) as a method of automatically decomposing applications. A

! http://sourcecount.com/, last accessed July 29, 2009

@ Springer

http://sourcecount.com/

562

Empir Software Eng (2010) 15:556-576

Table 2 Applications examined

Application Description Vulnerabilities ~ Language

A-CART A commercial fully-featured shopping cart 8 ASP (VB)
developed on the ASP platform using VBScript

AWStats A popular open source log file analyzer for 5 Perl
web/streaming/ftp/mail servers

Bonsai An open source web-based querying front-end 8 Perl
for CVS from the Mozilla Foundation

BugZilla® An open source bug tracking system from 25 Perl
the Mozilla Foundation

BugTracker NET A web-based bug tracker system that is currently 4 ASP.NET (C#)
used by thousands of development teams.

Calcium A commercial web calendar system by Brown 1 Perl
Bear Software.

Daffodil CRM A commercial open source customer relationship 1 Java (JSP)
management system by Daffodil Software Ltd.

DEV web A content management system for web portals. 5 PHP

management
system

FileLister A file system indexing tool 2 Java (JSP)

JSPWiki An open source JSP-based WikiWiki engine 1 Java (JSP)

Mantis® An open source tracking system 12 PHP

Neomail A web-based email system; thousands of servers 1 Perl
utilize the system.

PDF Directory An open source software that generates a printable 12 PHP
directory listing for any organization.

phpBB*® An open source popular message board system 23 PHP
written in PHP that’s being used on millions
of websites.

ProjectApp A commercial web-based project and task 5 ASP (VB)
management system used for team
communication by latek Corporation.

osCommerce An open source e-commerce system, by 15 PHP
osCommerce, currently being installed and
utilized by 10,942 online stores.

Roundup A full featured bug tracking system. 4 Python

sBlog An open source blog system. 2 PHP

SkunkWeb A robust, open source web application server. 2 Python

ViewVC A browser interface for CVS and Subversion 2 Python
control repository.

Total 138

? Due to the numerous vulnerabilities reports available for BugZilla, we limited the versions of the vulnerable
systems to 2.16.0 or higher

® Due to the numerous vulnerabilities reports available for Mantis, we limited the versions of the vulnerable
systems to 1.0.0al or higher

°Due to the numerous vulnerabilities reports available for phpBB, we limited the versions of the vulnerable
systems to 2.0.7 or higher

@ Springer

Empir Software Eng (2010) 15:556-576 563

slice of a program is a reduced, executable segment of the original program. A slice can be
produced dynamically or statically. Static slicing techniques do not require input values
whereas dynamic slicing techniques rely on some specific input to produce a slice (Tip
1995). Due to the lack of slicing tools for the languages examined, in this survey, we used a
technique similar to dynamic slicing (Agrawal and Horgan 1990; Tip 1995) to produce
contamination graphs (CGs) of the systems examined. The CG is not a SDG (system
dependency graph), but rather a def-use graph that follows the malicious input from the
entry point to the exit point of the system. While the technique used is similar to slicing, it
does not produce complete slices of the system (hence, cannot be considered a slicing
technique) and the graphs produced by the algorithm do not take into account object-
oriented programming features such as inheritance and polymorphism; however, they
contain sufficient information for this survey. More formally, a CG is a directed graph
G=<N,E.Es>, where N is a set of vertices corresponding to statements and control
predicates, and E. and E4 are the set of edges corresponding to the def-use data
dependencies. The slicing criterion is C=(v, i, X*), where v is a variable in the system, i is
an input value for v and X is a set of statements in the program. For this survey, v and i
consist of variables and values that exploit the known vulnerabilities, while X* (¢ X)
consists of program statements where it is possible to export the vulnerability to an external
system; and X is the entire set of statements in the program. The following algorithm is
used to produce a CG for each v and i of interest (Fig. 2)

An example of a CG wusing C = (keyword,
“<script>alert (‘hello’)</script>”,{query, echo, print}) for an applica-
tion examined, sBlog, is shown in Fig. 3. The source code for this example is
approximately 7,800 lines of PHP. Dotted directed edges on this graph represent DEF
dependences (definition of a contaminated variable), while the solid edges represent USE

DEF(w) is a definition of the variable w

USE (w) 1is a use of the variable w

Let V be a set of v

Let F be a set of statements; F < X; f; be the statement at location j.
Let curloc be the program’s current statement's location

Initialize V := {}; F := {}; prevloc := 0; prevDEFloc := 0;

Locate the first DEF(v) where v := malicious input

G := G + <curloc, {},{}>

W J o U W N

= ©
o .

prevloc := curloc

prevDEFloc := curloc

.
[

V i=v UV

[
N

Execute program until 3 veV such that USE(v)
If DEF(w) := USE(v) then

.
w

a. G:= G + <curloc, prevloc—curloc, prevDEFloc—curloc>
b. V:i=wuVv

c. prevDEFloc := curloc

a. G := G + <curloc, prevloc—curloc,{}>
14. prevloc := curloc
15. If fiurioe € X* then F := fiirioe U F

16. Go to 12 unless F - X* = {} v curloc = EOF v program encounters an
error due to a successful exploit.

Fig. 2 The algorithm used to generate the CG

@ Springer

564 Empir Software Eng (2010) 15:556-576

Enter
search.php (36)

4 v

Call Search.php (42,
sStripSlashes() search.php (37)—»|Search.php (40)—| query called)

—

Search.php (67,
echo called)

sStripSlashes()

~ | »| sStripSlashes.php (7) |—¥»{ sStripSlashes.php (10) —»| sStripSlashes.php (13) [—

Fig. 3 CG for sBlog

dependences (usage of a contaminated variable). Each node is labeled with the source
code’s filename and the line where the statement can be found (in parenthesis). If a node
represents a function call then it is labeled as “call ‘function name’”. System calls are also
placed within the parenthesis. The graph above shows that the malicious input entered the
system at line 36 of the search.php file. The solid edges show the transition between each
USE statement. Nine lines of code use the malicious input (number of nodes) with five
variables defined based on the malicious input (the number of doted edges).

4 Results

This section contains the results from our survey. These results answer the four questions
raised in the introduction and can be used to help our goal which is to improve the security
posture of web applications by uncovering similarities between vulnerabilities.

4.1 Question 1

Question: What proportion of security vulnerabilities in web applications can be considered
as implementation vulnerabilities?

Metric: The percentage of implementation vulnerabilities versus other types for the 20
applications under examination.

To answer Question 1, we characterized the known vulnerabilities into three categories
based on Swidersky and Snyder’s categorization (Swiderski and Snyder 2004):

* Architecture vulnerability: A vulnerability that is caused by a design flaw. For example,
if the session ID generated by an application is easily guessable because the
specification for a secure session management system does not have requirements on
how IDs will be generated, such as a specific cryptographically hash routine, then the
issue is considered architectural in nature.

@ Springer

Empir Software Eng (2010) 15:556-576 565

Table 3 Vulnerability category distribution

number of vulnerabilities ~ % of vulnerabilities found in sample standard error” (%)

Implementation 101 73.2 3.77
Architecture 30 21.7 351
Configuration 7 5.1 1.87

?In this context, the margin of error in the survey is approximately twice the standard error. Specifically,
assuming a 95% confidence level, it is 1.96*the standard error

* Implementation vulnerability: A vulnerability that is the result of an insecure coding
practice. Using the same example as above, if the session ID is easily guessable because
the cryptographically secure hash routine used to generate session IDs is written
incorrectly then the issue is considered implementation in nature.

* Configuration vulnerability: A vulnerability that is caused by an incorrect configuration
of the application; hence, if the vulnerability ceases to exist after an application is
reconfigured, the vulnerability is classified as a configuration vulnerability. For
example, the “register globals” issue with PHP is considered a configuration
vulnerability. This is a setting in the configuration file to instruct PHP to create global
variables from the EGPCS (Environment, GET, POST, Cookie, Server) variables. When
enabled, attackers can use the feature to define many global variables.

Table 3 shows the vulnerabilities and their distribution within the three categories
defined. The standard error in the table is used to show the uncertainty of the value for each
category. The equation for the standard error is:

r(1—p) (1)

standard error =

Where p is the probability of the sample belonging in a certain category and » is the
sample size. This assumes that: # is small relative to the population size, the samples are
selected from a simple random sampling process, and the sampling distribution of p is the
binomial distribution.'? Each category is treated independently from each other. For
example, the first row of the table examines the implementation vulnerability. Hence, p is
the probability of a vulnerability being an implementation vulnerability, and 1-p is the
probability of it not being an implementation vulnerability.

This table answers Question 1 by showing that implementation vulnerabilities dominate;
hence, addressing vulnerabilities within this category would allow a significant reduction in
the number of vulnerabilities.

4.2 Question 2

Question: Are these vulnerabilities the result of interactions between web applications and
external systems?

Metric: The percentage of function calls to external systems that exist in the
vulnerabilities.

12 Clearly, this is a simplification of the situation. However, the study has insufficient data to allow the
evaluation of more complex models.

@ Springer

566 Empir Software Eng (2010) 15:556-576

Usually, these implementation vulnerabilities can be traced through a dynamic string,
constructed from an input, being used in a function or method that allows the string to be
passed to another system. We begin the answer to Question 2 by examining the types of
vulnerabilities within the implementation category. This examination reveals six different
types of vulnerabilities are commonly discovered within web applications: SQL Injection,
SQL Injection, XSS, Code Injection, Command Execution, Privilege Escalation, and
Information Disclosure.

Table 4 displays the vulnerability types discovered during the survey. Close examination
reveals that the majority of these types occur due to an interaction with an external system.
These types of implementation vulnerabilities, bolded in Table 4, account for 95 of the 101
implementation vulnerabilities. While information disclosure may also be caused due to an
interaction between the web application and the file system, this interaction is not obvious
from Table 4, and the actual statements causing the vulnerability have to be examined to
determine the exact cause.

4.2.1 Vulnerability Types for Proprietary Systems

Since the vulnerability databases used also include proprietary systems, 20 of these systems
were selected and examined to provide some level of comparison with the results found in
the survey. Like their open source counterparts, these 20 applications were also randomly
selected from the OSVDB. Table 5 shows the 20 applications examined.

These 20 applications are commercial applications that either do not have their source
code available or they require a developer’s license to be purchased before the source code
can be obtained. This table shows that ASP and ASP.NET is used for sixteen of the 20 web
applications. Two out of 20 applications are powered by ColdFusion, which is the only
scripting language that supports source code encryption without additional plug-ins or
extensions. The remaining applications are created using Java technology.

Table 6 displays the vulnerabilities encountered for these 20 applications versus the
vulnerabilities encountered for the 20 open source systems. This table shows that the top
two vulnerabilities encountered on both types of system are XSS and SQL Injection,
respectively. Code injection is less frequently encountered in proprietary systems, which
can be attributed to the fact that PHP remote file inclusion does not occur in these systems
because these 20 systems do not use PHP. “Other” contains vulnerabilities that cannot be
classified due to limited information provided for these vulnerabilities.

This table reveals that:

* The two types of systems agree that XSS and SQL injection (in that order) are the most
numerous types of vulnerabilities experienced by web applications. Furthermore, the

Table 4 Implementation vulnerability types

number of vulnerabilities % vulnerabilities standard error (%)
XSS 56 55.4 4.23
SQL Injection 30 29.7 3.89
Code Injection 6 5.9 2.01
Command Execution 3 3.0 1.86
Information Disclosure 5 5.0 1.45
Privilege Escalation 1 1.0 0.85

@ Springer

Empir Software Eng (2010) 15:556-576

567

Table 5 Proprietary systems

Application Description Vulnerabilities Language
Active Auction A web based auction software 7 ASP (VB)
House designed for online auctions
(ex. ubid.com, ebay.com).
AliveSites Forum A component (COM) object tool 4 ASP?
that allow collaboration among
members and users of a company
or organization though the internet
or intranet.
ampleShop A complete e-commerce system. 4 ColdFusion
AspDotNetStorefront ~ An ASP.NET shopping cart used 3 ASP.NET
by over 5,000 customers. (C# and VB.NET)
ASPRunner A web-based database management 7 ASP
tool that provides administration
for many popular databases.
Baseline CMS A web-based content management 2 ASP
system.
Bugzero A web-based bug tracking, defect 5 Java
tracking, issue tracking, and change
management system.
Cisco CallManager The web-based interface for the 3 ASP
Web Interface Cisco Unified CallManager system.
couponZONE A web-based system that provides 2 ColdFusion
online e-coupons.
DUPortal Pro An ASP-based Web Portal application. 11 ASP
E-School Management A web-based School Management 1 ASPNET
System Software designed to allow easy
communication between students,
teachers, parents & management.
iCMS A content management system. 2 ASP
Mall23 eCommerce An e-commerce solution for Web 3 ASP
Development and Hosting companies.
NetAuctionHelp An ASP-based online auctioning 1 ASP
system.
OneWorldStore An e-commerce system that can be 10 ASP
integrated to existing websites.
Revize CMS A content management system. 5 Java
SCOOP! Another web content management system 7 ASP
for users without HTML knowledge.
SmarterMail An advanced email and collaboration 5 ASP.NET
server.
uStore A dynamic storefront application 3 ASP
for e-commerce websites.
Web Quiz An easy application that for online 2 ASP

test creations and assessments.

ASP and ASP.NET applications can be created using many programming languages. Due to the proprietary
nature of the applications, the exact programming language used is unknown

@ Springer

568 Empir Software Eng (2010) 15:556-576

Table 6 Proprietary versus open source

Proprietary Open Source

% vulnerabilities ~ Standard Error (%) % vulnerabilities Standard Error (%)

XSS 48.8 4.26 55.4 4.23
SQL Injection 36.0 4.09 29.7 3.89
Code Injection 2.3 1.28 5.9 2.01
Command Execution 1.2 2.17 3.0 1.85
Information Disclosure 7.0 0.93 5.0 1.45
Privilege Escalation 1.2 0.93 1.0 0.85
Other 3.5 1.56 0 0

injection type vulnerabilities (SQL, XSS, code, command execution) combined to be
the most popular vulnerability for web applications. This suggests that researchers
interested in security problems associated with web applications should concentrate
their efforts on these types of vulnerabilities. Clearly, this suggestion assumes that all
vulnerabilities have a similar (negative) economic value.

* The two types of systems experience code injection problems at differing percentages.
However, care needs to be exercised when considering this conclusion given the
relatively low volume of these types of defects.

4.2.2 Mapping Vulnerabilities Down to Code Statements

Table 7 displays the statement types that cause the 95 external interaction vulnerabilities
(EIVs). Several functions sharing the same properties are grouped into one family. For example,
output statements such as print, echo, and write all send data to the browser, and
hence they are grouped in the “print” family. Statements querying the DBMS such
as executeQuery, mysgl query, db.execute are grouped in the “query”
family.

Table 7 Statement usage

Statement Type Number of Occurrences Occurrence Percent (%)
“copy” file 1 1
dir 1 1
eval 11 12
file 1 1
open 2 2
preg_replace 2 2
“print” family 47 49
“query” family 27 29
require 1 1
system 1 1
wrong operator 1 1
Total 95 100

@ Springer

Empir Software Eng (2010) 15:556-576 569

For every vulnerability, a CG was created using the technique discussed in Section 3.4.
Statements resulting in the vulnerabilities can be located from these graphs. Table 7
highlights the statements used to call standard library functions which are the majority of
the statements (99%). The statements listed in the table have the following behavior:

* “copy” file—a function that allows programmers to copy an existing file.

* dir—a function that lists all files within a directory.

* cval—a function that accepts a string parameter and executes that string as a
programming statement.

* file—a function that opens and reads a file based on a provided filename.

* open—a function that opens a file, pipe, or file descriptor.

* preg replace—a function that will evaluate a provided string as a program
statement if a special character is used (PHP only).

* “print” family—a group of functions that allows the application to send output to a
browser.

* “query” family—a group of functions accepts a string containing one or more valid
SQL statements and sends it to the underlying DBMS.

* require (PHP only)—a function that accepts a string parameter containing a filename
(which contains programming statements), reads the file, then evaluates all the
programming statements within that file. Similar functions include include and
include_once (PHP only).

* system—a function that accepts a string parameter containing a system’s command,
then creates a new process and executes the command.

* typographical error—this is a statement where the programmer used the wrong operator
for a conditional branch. For example, instead of using the < operator in an if
statement the programmer used the <= operator. This operator does not enable an
interaction and is the exception to our general rule.

Based on Table 7, the implementation vulnerabilities can be divided into two categories:

1. Interaction with external systems (EIV).
2. Wrong statement usage.

Table 7 shows that 99% of the implementation vulnerabilities are EIVs; this answers Q2.
This answer means developers should concentrate on the data flow between the web
application and other systems because this is where most of the vulnerabilities occur.

4.3 Question 3

Question: What is the proportion of vulnerable LOC within a web application? That is,
what is the vulnerability density?

Metric: The number of vulnerable LOC versus the systems’ total LOC.

Alhazmi et al. (2007) have explored the vulnerability density for Operating Systems and
discovered that the density is very low. In this paper, we explore the vulnerability density
for web applications. We believe implementation vulnerabilities are also limited to
relatively small portions of the entire web application. That is, the number of vulnerable
LOC is significantly smaller than the total LOC of a web application.

To answer Question 3, we traced each implementation vulnerability using the method
outlined in Section 3.4. We generated 101 graphs for the 20 applications. To determine the
complexity of the vulnerable code, we examined the number of nodes per graph and
contaminated variables per graph. Figures 4 and 5 show that the majority of the graphs have

@ Springer

570 Empir Software Eng (2010) 15:556-576

Frequency
o

0 : : : : : : ‘|_|‘|—|‘|_|‘|—|‘|_|‘|—|‘ O
1 2 83 4 5 6 7 8 9 10 11 12 13 14 15
Number of Nodes

Fig. 4 Histogram of nodes

less than five nodes and four contaminated variables. In fact, 70% of the CGs contain less
than five nodes and 93% of the CGs contain three or less contaminated variables. Hence,
the majority of the vulnerabilities can be viewed as “small and manageable”. In fact, even
the largest number of statements and contaminated variables associated with a vulnerability
(15 and 12 respectively) is quite small when compared to the overall size of the system.
Once the CGs are obtained, we counted the vulnerable LOC contained within each CG.
Table 8 further demonstrates that the number of vulnerable LOC for the known
vulnerabilities is significantly smaller than the overall LOC. The results from Figs. 3 to 4
and Table 8 provide the answer to Question 3 which is that vulnerability density is small.
Since Figs. 3 and 4 and Table 8 show that the number of vulnerable LOC is small compared
to the overall size of the system, it can be beneficial to introduce a solution to solve
implementation vulnerabilities by concentrating on the CGs with vulnerable LOC.

4.4 Question 4

Question: Are implementation vulnerabilities caused by implicit or explicit data flows?
Metric: The number of vulnerable code blocks with implicit data flow and the number of
variables assigned from an input.
Implicit data flows are information flows via the control structure of the
program (Denning and Denning 1997). For example, the statement
“if (y == true) then x:='a’; else x:='b’” shows that variable v

60

Frequency
w
o
Il
T

1 2 3 4 5 6 7 8 9 10 M 12
Number of contaminated variables

Fig. 5 Histogram of contaminated variables

@ Springer

Empir Software Eng (2010) 15:556-576 571

Table 8 Vulnerable LOC versus total LOC

Application Total LOC Vulnerabilities Vulnerable LOC
A-CART 4,067 8 8
AWStats 26,688 5 9
Bonsai 6,980 8 42
BugTracker.NET 18,101 4 4
BugZilla 9,306 4 39
Calcium 39,348 1 2
Daffodil CRM 25,221 1 4
DEV web management system 11,434 5 5
FileLister 9,139 2 12
JSPWiki 21,231 1 4
Mantis 25,295 12 50
Neomail 1,438 1 5
osCommerce 38,833 15 34
PDF Directory 9,451 12 38
phpBB 29,812 23 100
ProjectApp 11,444 5 11
Roundup 27,061 4 8
sBlog 7,844 2 12
SkunkWeb 6,554 2 4
ViewVC 7,549 2 2

implicitly defines the value of variable x. Hence, there is an implicit data flow from
variable V to variable x. To obtain implicit flow information, we manually examined
conditional branching statements for all the nodes from the CGs generated in Section 4.3.
We discovered 56 statements with conditional branching from the 101 CGs. We then
inspected the code blocks for each of these statements for any implicit data flows. A code
block is defined as a block of code that is part of the conditional branch. For example, the
following conditional statement would contain two code blocks with the first code block
containing an implicit data flow:

call func(x);

end

The above example shows that if a CG has statements like those in the first code block,
the CG would contain an implicit data flow. Table 9 shows the results of the code block
investigation. The 56 statements with conditional branching lead to 83 code blocks. We
discovered that 29 of these code blocks do have implicit data flow. However, none of these
code blocks with implicit data flows are part of the CGs obtained in Section 4.3.

@ Springer

572 Empir Software Eng (2010) 15:556-576

Table 9 shows that the CGs do not contain any implicit data flow statements. To
determine if the code blocks containing implicit data flows can lead to potential
vulnerabilities, we performed a further investigation of the 29 code blocks. Thirty-six
variable assignments were discovered in these code blocks. We found that the variable
assignments are either from constants or pre-existing variables. The two example code
blocks below shows two possible methods for the variables to be assigned. The first code
block shows that the variable is assigned from a constant. The second code block shows the
variable being assigned from an existing variable.

if (isset($_GET[‘admin’]) if (strlen($ _POST['‘msg’]) < 20)
$admin mode = 1; Serror = $too_short;
end Sprint (Serror) ;
end

Although it is clear that constants are generally safe from implementation vulnerabilities,
the pre-existing variables need to be examined to determine the original source of the data.
We performed a back-trace for each variable assigned from an existing variable. If the
variable can be traced to an input, then the potential for vulnerabilities exists. The results
can be seen in Table 10.

The results from Tables 9 and 10 provide an answer to Question 4. That is, implicit data
flows do not lead to any vulnerabilities in the systems examined. Hence, without further
evidence, efforts on eliminating implementation vulnerabilities can focus on explicit data
flows.

5 Background

Although studies on web application vulnerabilities properties currently do not exist, many
techniques and approaches to detect, or mitigate against, web vulnerabilities have been
proposed. In this section, these techniques are briefly presented and discussed.

SQLrand (Boyd and Keromytis 2004), AMNESIA (Halfond and Orso 2005), SQL-
Guard (Buehrer et al. 2005), SQLCheck (Su and Wassermann 2006), CSSE (Pietraszek and
Berghe 2005), WASP (Halfond et al. 2006, 2008), SQLProb (Liu et al. 2009) are all
approaches aimed at addressing SQL injection vulnerabilities. SQLRand inserts random
tokens into SQL statements and uses a proxy server to translate these tokens. An incorrect
query can be detected if the SQL query does not contain the correct tokens. AMNESIA,
SQLGuard and SQLCheck are all model-based approaches. AMNESIA uses static analysis
and runtime monitoring to detect for SQL injection vulnerabilities. Static analysis is used to
build models of the SQL statements, while the runtime engine detects whether the query

Table 9 Code blocks

Number of CGs containing conditional statements 56
Number of code blocks inspected 83
Number of code blocks with implicit data flows 29
Number of CGs containing code blocks with implicit data flows 0

@ Springer

Empir Software Eng (2010) 15:556-576 573

Table 10 Variable assignments

Number of variables being assigned from a constant 9
Number of variables being assigned from an existing variable 27
Number of existing variables initialized from a constant 27
Number of existing variables initialized from an input 0

strings matches the models. SQLGuard requires the developers to call special functions to
build a model of the SQL query to be used. SQLCheck uses a formal definition of a SQL
injection vulnerability; and identifies SQL injection attacks based on the formal definition.
CSSE and WASP are dynamic approaches designed to address SQL injection vulnerabilities
using taint analysis. These approaches attempt to mark negative tainting (CSSE) or positive
tainting (WASP) to identify malicious query statements, before they are passed onto the
DBMS. Both approaches involve modification to either the runtime engine or usage of a
specialized API. SQLProb uses a proxy to identify SQL injection attacks before they reach
the web application.

Other approaches to applications’ security have also been proposed which address all
types of web application vulnerabilities. Security Gateway proposed by Scott and Sharp
(2002) is an application firewall that filters out all malicious inputs before they reach the
web application. Nguyen-Tuong et al. (2005) proposed a dynamic approach to detect
attacks through taint analysis. Martin et al. (2005) proposes PQL (Program Query
Language) that enables programmers to specify a sequence of events between objects. Cova
et al. (2007) presents a static analysis approach capable of detecting both workflow attacks
and data-flow attacks. WebSSARI (Huang et al. 2004) combines static analysis with a
runtime component to check on the static model. Pixy (Jovanovic et al. 2006) is currently
the one of the more advanced static taint analysis tool available for PHP. Shankar et al.
(2001) proposed a static approach that can detect format-string vulnerabilities commonly
found in C-based applications. The method defines two extended data types, tainted and
untainted, which help reduce the amount of false positives generally associated with static
analysis methods. Zhang et al. (2002) and Johnson and Wagner (2004) further extend the
approach by using it to assess security issues with the Linux Security Modules framework
and user/kernel pointers successfully. These approaches are designed to detect vulner-
abilities in C-based applications, and hence, their effectiveness with scripting languages
used to develop web applications such as PHP, Ruby, and Python remain unknown.

Scanning tools also exist to help developers and system administrators identify
vulnerabilities also exist. QED (Martin and Lam 2008) and Ardilla (Kiezun et al. 2008)
attempt to generate SQL Injection and XSS attacks automatically. Secubat (Kals et al.
2006) and other commercial web scanners, such as Acunetix Web Vulnembility'3
Scanner, extend bypass testing by creating tools that provide automatic penetration
testing for web applications without using the web applications’ target clients. Lin and
Chen (2006) extend traditional black-box testing techniques with elements of static
analysis by including a tool to automatically inject guards at input points found through
the crawling component.

13 http://www.acunetix.conv/, last accessed Feb. 7, 2006

@ Springer

http://www.acunetix.com/

574 Empir Software Eng (2010) 15:556-576

6 Conclusions

In this paper, a research goal of determining whether web application vulnerabilities have
any common properties was raised. To reach this goal, four questions were examined.

1. What proportion of security vulnerabilities in web applications can be considered as
implementation vulnerabilities? Section 4.1 shows that the majority of the known
vulnerabilities are of this type. This means researchers should continue to concentrate
on implementation vulnerabilities as it will have the most impact on the security of web
applications.

2. Are these vulnerabilities the result of interactions between web applications and
external systems? The results from Section 4.2 show that dynamically created strings
passed to functions that allow interactions between the application and an external
system cause nearly all of the vulnerabilities in this survey. Hence, developers should
be careful when allowing data to flow between the web application and other systems.

3. What is the proportion of vulnerable LOC within a web application? That is, what is the
vulnerability density? We discovered that the percentage of vulnerable LOC for a web
application is extremely small; therefore it can be beneficial to introduce a solution to
solve implementation vulnerabilities by concentrating on the CGs with vulnerable LOC.

4. Are implementation vulnerabilities caused by implicit or explicit data flows? Tables 9
and 10, from Section 4.4, show that implementation vulnerabilities for web
applications are not caused by implicit data flows. This means efforts on eliminating
implementation vulnerabilities can focus on explicit data flows.

References

Agrawal H, Horgan JR (1990) Dynamic program slicing. Proceedings of the ACM SIGPLAN’90 Conference
on Programming Language Design and Implementation, New York, USA, pp 246-256

Alhazmi OH, Malaiya YK, Ray I (2007) Measuring, analyzing and predicting security vulnerabilities in
software systems. Comput Secur J 26(3):219-228

Basili V, Caldeira G, Rombach HD (1994) The goal question metric approach. Encyclopedia of Software
Engineering, Wiley

Baskerville R, Pries-Heje J (2004) Short cycle time systems development. Inf Syst J 14(3):237-264

Boyd SW, Keromytis AD (2004) SQLrand: preventing SQL injection attacks. In Proc. of the 2nd Applied
Cryptography and Network Security Conf. (ACNS ’04), Yellow Mountain, China pp 292-302

Buehrer GT, Weide BW, Sivilotti PAG (2005) Using parse tree validation to prevent SQL injection attacks. In
Proc. of the 5th Intl. Workshop on Software Engineering and Middleware (SEM ’05), Lisbon, Portugal,
pp 106-113

Cova M, Balzarotti D, Felmetsger V, Vigna G (2007) Swaddler: an approach for the anomaly-based detection
of State violations in web applications, Recent Advance in Intrusion Detection (RAID), pp 63-86

Denning DE, Denning PJ (1997) Certification of programs for secure information flow. Commun ACM
20:504-513, New York, USA, ACM

Halfond WG, Orso A (2005) AMNESIA: analysis and monitoring for NEutralizing SQL-injection attacks. In
Proceedings of 20th ACM International Conference on Automated Software Engineering (ASE), Long
Beach, CA, USA, pp 174-183

Halfond WG, Orso A, Manolios P (2006) Using positive tainting and syntax-aware evaluation to counter
SQL injection attacks. In Proceedings of the 14th ACM SIGSOFT international Symposium on
Foundations of Software Engineering, Portland, Oregon, USA, pp 175-185

Halfond WGJ, Orso A, Manolios P (2008) WASP: protecting web applications using positive tainting and
syntax-aware evaluation. IEEE Trans Softw Eng 34(1):65-81

Huang YW, Yu F, Hang C, Tsai CH, Lee DT, Kuo SY (2004) Securing web application code by static
analysis and runtime protection, in WWW ’04: Proceedings of the 13th International Conference on
World Wide Web. New York, NY, USA: ACM Press, pp 40-52

@ Springer

Empir Software Eng (2010) 15:556-576 575

Liu A, Yuan Y, Wijesekera D, Stavrou A (2009) SQLProb: a proxy-based architecture towards preventing
SQL injection attacks. Proceedings of the 2009 ACM symposium on Applied Computing, Honolulu,
Hawaii, pp 2054-2061

Johnson R, Wagner D (2004) Finding user/kernel pointer bugs with type inference. In Proceedings of the
2004 Usenix Security Conference, San Diego, CA, USA, pp 119-134

Jovanovic N, Kruegel C, Kirda E (2006) Pixy: a static analysis tool for detecting web application vulnerabilities.
In 2006 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA, pp 258-263

Kals S, Kirda E, Kruegel C, Jovanovic N (2006) SecuBat: a web vulnerability scanner. The 15th
International World Wide Web Conference (WWW 2006), Edinburgh, Scotland, pp 247-256

Kiezun A, Guo PJ, Jayaraman K, Ernst MD (2008) Automatic creation of SQL injection and cross-site
scripting attacks. Proceedings of the 2009 IEEE 31st International Conference on Software Engineering,
Vancouver, British Columbia, Canada, pp 199-209

Lin J-C, Chen J-M (2006) An automatic revised tool for anti-malicious injection. Sixth IEEE International
Conference on Computer and Information Technology (CIT’06), Seoul, South Korea, pp 164-170

Martin M, Lam M (2008) Automatic generation of XSS and SQL injection attacks with goal-directed model
checking. Proceedings of the 17th conference on Security symposium, San Jose, CA, pp 31-43

Martin M, Livshits B, Lam MS (2005) Finding application errors and security flaws using PQL: a program
query language. In OOPSLA ’05: Proc. of the 20th Annual ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications, San Diego, CA, USA, pp 365-383

Nguyen-Tuong A, Guarnieri S, Greene D, Shirley J, Evans D (2005) Automatically hardening web
applications using precise tainting. In Proceedings of the 20th IFIP International Information Security
Conference, Chiba, Japan, pp 372-382

OWASP (2007) Top 10 2007. http://www.owasp.org/index.php/Top 10 2007, last accessed June 29, 2009

Pietraszek T, Berghe CV (2005) Defending against injection attacks through context-sensitive string evaluation. In
Proceedings of Recent Advances in Intrusion Detection (RAID2005), Seattle, Washington, USA, pp 124-145

Rapid7 (2005) Vulnerability management trends. (2)1-9

Scambray J, Shema M, Sima C (2006) Hacking exposed: web applications second edition. McGraw-Hill, San
Francisco

Scott D, Sharp R (2002) Abstracting application-level web security. In Proc. of the 11th Intl. Conference on
the World Wide Web (WWW 2002), Honolulu, Hawaii, USA, pp 396407

Shankar U, Talwar K, Foster JS, Wagner D (2001) Detecting format string vulnerabilities with type
qualifiers. In 10th USENIX Security Symposium, Washington, D.C., pp 201-220

Su Z, Wassermann G (2006) The essence of command injection attacks in web applications. In The 33rd Annual
Symposium on Principles of Programming Languages, Charleston, South Carolina, USA, pp 372-382

Swiderski F, Snyder W (2004) Threat modeling. Microsoft Press, Redmond

Tip F (1995) A survey of program slicing techniques. J Program Lang 3(3):121-189

Weiser M (1984) Program slicing. IEEE Trans Softw Eng SE-10(4):352-357

Zhang X, Edwards A, Jaeger T (2002) Using CQual for static analysis of authorization hook placement. In
the Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA, pp 3348

Toan Huynh received a B.Sc. degree in Computer Engineering and Ph.D. degree in Software Engineering
from the University of Alberta, Canada. His research interests include: web systems, e-commerce, software
testing, vulnerabilities and defect management, and software approaches to the production of secure
systems.

@ Springer

http://www.owasp.org/index.php/Top_10_2007

576 Empir Software Eng (2010) 15:556-576

James Miller received the B.Sc. and Ph.D. degrees in Computer Science from the University of Strathclyde,
Scotland. Subsequently, he worked at the United Kingdom’s National Electronic Research Initiative on
Pattern Recognition as a Principal Scientist, before returning to the University of Strathclyde to accept a
lectureship, and subsequently a senior lectureship in Computer Science. Initially during this period his
research interests were in Computer Vision; since 1993, his research interests have been in Software and
Systems Engineering. In 2000, he joined the Department of Electrical and Computer Engineering at the
University of Alberta as a full professor and in 2003 became an adjunct professor at the Department of
Electrical and Computer Engineering at the University of Calgary. He has published over one hundred
refereed journal and conference papers on Software and Systems Engineering (see www.steam.ualberta.ca for
details on recent directions); and currently serves on the program committee for the IEEE International
Symposium on Empirical Software Engineering and Measurement; and sits on the editiorial board of the
Journal of Empirical Software Engineering.

@ Springer

http://www.steam.ualberta.ca

	An empirical investigation into open source web applications’ implementation vulnerabilities
	Abstract
	Introduction
	Terminology
	Survey
	Vulnerability Databases
	Survey Procedure
	Chosen Applications
	Tracing the Source Code

	Results
	Question 1
	Question 2
	Vulnerability Types for Proprietary Systems
	Mapping Vulnerabilities Down to Code Statements

	Question 3
	Question 4

	Background
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

