
Weka Meets TraceLab: Toward Convenient

Classification
Machine Learning for Requirements Engineering Problems: A Position Paper

Jane Huffman Hayes, Wenbin Li

Computer Science Department

University of Kentucky

Lexington, Kentucky, USA

{hayes,li}@cs.uky.edu

Mona Rahimi

School of Computing

DePaul University

Chicago, Illinois, USA

m.rahimi@acm.org

Abstract—Requirements engineering encompasses many

difficult, overarching problems inherent to its subareas of

process, elicitation, specification, analysis, and validation.

Requirements engineering researchers seek innovative, effective

means of addressing these problems. One powerful tool that can

be added to the researcher toolkit is that of machine learning.

Some researchers have been experimenting with their own

implementations of machine learning algorithms or with those

available as part of the Weka machine learning software suite.

There are some shortcomings to using “one off” solutions. It is

the position of the authors that many problems exist in

requirements engineering that can be supported by Weka’s

machine learning algorithms, specifically by classification trees.

Further, the authors posit that adoption will be boosted if

machine learning is easy to use and is integrated into

requirements research tools, such as TraceLab. Toward that

end, an initial concept validation of a component in TraceLab is

presented that applies the Weka classification trees. The

component is demonstrated on two different requirements

engineering problems. Finally, insights gained on using the

TraceLab Weka component on these two problems are offered.

Index Terms—Artificial intelligence, machine learning,

requirements engineering, classification, decision trees,

TraceLab, Weka.

I. INTRODUCTION

Challenges loom large as we endeavor to develop software,

many of these related to requirements engineering (RE) and its

subareas of process, elicitation, specification, analysis, and

validation [1]. We encounter obstacles as we elicit

requirements, attempting to ensure that all stakeholders are

represented. We encounter a gap as we move from the

problem space (requirements) to the solution space (design);

we struggle to specify requirements that are complete and

consistent. As researchers, we strive to understand these and

other issues and to develop beneficial approaches.

At the heart of many of these requirements challenges lies a

sub problem of pattern recognition - the problem of

classification: finding “a mapping from unlabeled instances to

(discrete) classes. [2]” Ensuring that all stakeholder groups

have been represented in elicitation can be accomplished by

classifying each elicited requirement by its stakeholder type

and ensuring coverage. Verifying requirement allocation to

design, as part of bridging the gap, may require that

requirements be classified as satisfied or not satisfied by their

allocated design elements. Analyzing requirements to ensure

completeness and consistency may necessitate putting

requirements into various categories typically found in

requirement specifications to support a high level check that at

least one requirement exists in each category. For instance, a

medical device must have a set of safety and performance

requirement specifications to guarantee it is safe to use.

Similarly, health care management systems require the

specifying of requirements which guarantee privacy and

availability of patient data. Requirement elicitation for an air

traffic control system must include requirements expressing the

necessity of the fast response time of the system. These

important activities have a common denominator:

classification.

In this paper, we posit that a class of problems exists in

requirements engineering that lend themselves well to machine

learning techniques, specifically to the collection of supervised

learning methods termed classification trees, in Weka [3].

Examples include separating functional and quality-focused

concerns to facilitate further assessment of the system or

extracting only performance related quality concerns to specify

the response time constraints in the system. Further, we posit

that a barrier to adoption of such techniques may be the lack of

easy to use tools that are aimed at requirements engineering

researchers and are integrated into research tools (see Section

II). We present a component for the TraceLab research

framework [4] that makes the Weka classification tree

algorithms accessible (Section III). We present two

applications of the component as initial concept validation:

classification of requirements into ten different security

categories and classification of requirements as temporal/non-

temporal (Section IV). Finally, we share insights gained

through this investigation and conclude (Section V).

II. BACKGROUND AND POSITION

Artificial intelligence (AI) encompasses a number of areas

of study, including cognitive science, machine learning,

representation and reasoning, to name a few. Machine learning

is the focus of this paper, defined as “field of scientific study

that concentrates on induction algorithms and on other

algorithms that can be said to ``learn. [2]” Machine learning

algorithms can be further broken down into supervised,

unsupervised, semi-supervised, and reinforcement learning.

Supervised learning is of interest here.

In supervised learning, a training set, which has labelled

instances, is used to determine the class or category of

unlabeled instances. The training set contains information on

the features or attributes of the instances. These features can be

quantifiably represented, as integer, real, ordinal, categorical

data, for example. Of the many supervised learning methods,

decision trees (classification trees in Weka) combine

interpretability, efficiency, and accuracy [5] and are of interest.

A decision tree can be seen as a collection of binary tests

organized in a tree structure. The non-terminal nodes of a tree

are labeled with tests, comparing the value of an input feature

or attribute to a threshold. The terminal tree nodes are labeled

with a class. A classification for a new instance (whose

attribute values are known) is determined by propagating it into

the tree from the top node per the test answers [5]. “When a

terminal node is reached, its corresponding class label is

attributed to the instance. [5]”

A number of tools and techniques have been introduced to

assist with machine learning and classification: Orange, R,

JBoost, RandomForests [5]. Perhaps the best known is Weka.

Weka [3] is open source software which contains a

collection of data mining procedures including preprocessing,

classification, clustering, feature selection, and visualization.

Weka is widely used by researchers because it is free, it runs on

most platforms, and it supports several data mining tasks.

Weka's main user interface is the Explorer, but the same

functionality can be also accessed through the component-

based Knowledge Flow interface and from the command line.

Weka supports classification by providing a number of

algorithms, mainly decision trees. The most well-known

algorithms include: J48, which is the java implementation of

the popular decision tree algorithm C4.5; Random Forest,

which is an ensemble learning method performing the

classification task by constructing a multitude of trees and

considers the mode of all trees output as the final label;

SimpleCART(Classification And Regression Trees), which is a

combination of classification trees where the outcome of the

tree is the class label and regression trees, where the outcome

is a numerical value.

As mentioned in Section I, there are a number of challenges

in the subareas of requirements engineering that lend

themselves well to classification techniques. For example,

often it is necessary to classify or categorize requirements or

sub-requirements prior to undertaking an analysis or validation

activity. There has been prior success in applying artificial

intelligence techniques to requirements engineering problems.

Pohl et al. used the Novel Approaches to Theories Underlying

Requirements Engineering (NATURE) framework to address

five problems areas: process guidance, process traceability,

system knowledge acquisition, specification reuse, and

requirement definition and critique [7]. Huang et al.

successfully used an iterative approach for training and

retraining a classifier for non-functional requirements [8].

Sultanov and Hayes used reinforcement learning to perform

requirements tracing [9]. Niu et al. used foraging theory, as a

form of collective intelligence, to address the problem of

assisted requirements tracing [10].

The above researchers, and others, have begun to apply AI

techniques to these problems using tools such as Weka or “one

off” tools developed specifically for the purpose. There are

several disadvantages to this. First, stand-alone solutions do

not lend themselves well to replication or reuse. Dit et al.

enumerate the advantages of using a research tool such as

TraceLab to assist with reuse and replication [6]. Second,

TraceLab provides complex constructs for organizing

components, including decision and looping constructs, Weka

does not. Third, TraceLab permits the development of

composite components. Finally, Weka does not have a

“market” or community where developers can contribute their

components, experiments, or full packaged experiments (with

components, types, datasets, results); TraceLab does [6]. These

realizations lead to our position.

Position: That machine learning algorithms, specifically

supervised learning decision trees, can be used to address

problems in requirements engineering.

Further: That wide spread adoption of machine learning

algorithms necessitates the integration of the algorithms into

research tools for requirements engineering researchers.

Toward this end, we introduce a TraceLab component for

applying Weka classification trees; it is discussed next.

III. WEKA MEETS TRACELAB

TraceLab is a tool that assists researchers in designing and

executing traceability experiments. It was developed primarily

at DePaul University and the College of William and Mary in

conjunction with other Universities such as Kent State

University and the University of Kentucky. TraceLab is free

for download at www.coest.org. The researchers who

developed TraceLab also focus on collecting and organizing

datasets. Nine datasets related to software requirements are

available on the website.

In TraceLab, an experiment is represented as a precedence

graph of components, with support provided for basic control

flow (as mentioned above). Each component implements a

task, such as importing data, pre-processing, tracing

documents, and measuring the quality of answer sets.

Components exchange data through their inputs and outputs. In

a typical traceability experiment, data is imported from external

sources (csv files, xml files, etc.) through an “Importer”

component and is stored in the TraceLab “workspace.” The

data may be stored in pre-defined data types representing

artifacts. When a component inputs the data, it is loaded from

the workspace to that component. Similarly, outputting the data

means that the component stores the data back to the

workspace.

TraceLab is highly reusable and expandable. Researchers

can easily design or reuse existing experiments. The TraceLab

Fig. 1. TraceLab: Comparing classifiers for one dataset.

component library supports common tasks in traceability,

feature location, and even software testing experiments.

TraceLab is being used for far more than traceability research.

 Figure 1 shows the user interface of TraceLab. The

component library is on the left side. The Experiment window

and the Log window are on the right side. If researchers cannot

find the materials they want, they can create their own

components or even data types. The new materials can easily

be added to the library and shared with other researchers.

Researchers can construct a new experiment by selecting

components from the library, connecting them based on the

order in which components are executed, and setting up the

inputs and outputs for each component. If researchers want to

reuse an experiment with slight modifications, they only need

to replace or reconfigure components of interest. For instance,

given an experiment that measures the performance of a tracing

algorithm, researchers can replace the tracing component with

the algorithms they want to use.

Researchers can also standardize the evaluation by creating

benchmarks in TraceLab. A benchmark focuses on a specific

task, uses fixed datasets, and has measures to evaluation the

efficiency of the task. Researchers can use benchmarks to

evaluate the efficiency of multiple algorithms for the same task.

It is intuitive to design experiments with the TraceLab

visual environment. TraceLab also allows researchers to

execute experiments via the command line: more efficient if

researchers need to run a large number of experiments.

The component that we developed is called

WekaClassifiersTrees. It is written in C# and consists of

roughly 200 lines of code. The component uses the Weka dll.

The component can be configured: to specify the .arff file for

processing, to select the classification tree for the given dataset,

and to specify the test/data split. The component outputs the

progress of the processing as well as the results in the Log

window of TraceLab. The results that are output are the

number of elements correctly classified out of the total number

of elements as well as the correctness percentage. Researchers

can perform machine learning tasks with this component even

if they do not know Weka. The component hides all the details

from them. All they need to do is create an experiment as is

shown in Figure 1.

IV. RE APPLICATIONS

In addressing challenges in requirements engineering, the

need to classify or categorize requirements or other artifacts

may arise. As mentioned in Sections I and II, classification has

been shown to be an integral part of elicitation and

prioritization, analysis, tracing, and validation.

As initial validation of our position, we examine two

requirements engineering problems. First, we classify

requirements into functional or non-functional categories:

F=Functional, AC=Access Control, PA=Person Authentication,

SED= Security Encryption Decryption, AUD=Audit Control,

AL=Automatic Logoff, IC=Integrity Controls, UUI=Unique

User Identification, TED= Transmission Encryption

Decryption, EAP=Emergency Access Procedure and TS=

Transmission Security. We demonstrate the TraceLab

component by using the Certification Commission for

Healthcare Information Technology (CCHIT) dataset [11].

CCHIT is a system for managing electronic healthcare records

and consists of 1064 requirements.

In order to undertake this study, we built an arff file

(WEKA file format) from the CCHIT dataset, then a set of

preprocessing steps are applied to the requirement

specifications to convert them into the proper format for

classification. First, all common words (stop words) such as

“and” or “the” are removed from the requirement specifications

and all remaining words are stemmed to their root form. Later,

each requirement specification will be converted to a vector of

words, vi = {fi,1, fi,2,..., fi,w} where fi,j is a term weight

representing the number of word j occurrence in requirement i.

Finally, we designed a very simple experiment in TraceLab

including our developed component, WEKAClassifiersTrees.

We applied two different classifiers, REPTree and J48 (we

applied all the available classification trees, but show just these

two) by selecting the classification trees and the ratio of interest

to decompose the dataset into training and testing sets. As can

be seen in Figure 1, we were able to accurately classify 93.92%

of the lower accuracy). Furthermore, using multiple instances

of the developed component facilitated the comparison of

results of applying different classifiers to the same dataset. A

subset of the CCHIT dataset is shown in Figure 2.

Second, we classify requirements as temporal or non-

temporal to support consistency checking. The 511 dataset has

been used for this demonstration. This dataset consists of the

system requirements for the Bay Area 511 Regional Real-Time

Transit Information System (available open source) [12]. We

show a small subset of the 511dataset as an arff file in Figure 3.

Fig. 2. CCHIT dataset arff sample.

We applied the same process described for the CCHIT

dataset to the 511 dataset. We correctly classified 93.12 % of

the temporal requirements using the REPTree classification

tree (J48 had lower accuracy).

Fig 3. 511 dataset arff sample.

V. WHAT NEXT?

Based on the two presented RE problems, we found that the

WekaClassifiersTrees TraceLab component made classification

easy, efficient, and repeatable. We used the same component

for both problems. We can imagine many other RE problems

that might benefit from this component: determining who

wrote a specific requirement when a requirement is being

changed or is erroneous; classifying requirements as error

prone; classifying requirements as change prone; classifying

requirements as ambiguous; etc.

Therefore, we feel that we have provided initial validation

of our position: that machine learning algorithms can assist

with RE problems, and that it is important to integrate these

methods into research tools such as TraceLab.

For future work, we plan to develop additional components

to facilitate the use of TraceLab for a broad range of RE

problems. These helper components will include: arff file

builder, tree visualizer, convertor (such as string to

wordvector), etc. We plan to make our arff datasets part of the

benchmarks for TraceLab available through the Center of

Excellence for Software and System Traceability at

www.coest.org.

ACKNOWLEDGMENT

The TraceLab development work was funded by the

National Science Foundation under grant ARRA-MRI-R2

500733SG067. We thank the Weka developers. We thank

Jane Huang for assistance with datasets.

REFERENCES

[1] "Guide to the software engineering body of knowledge: 2004

version," Library of Congress Online Catalog, 2005,

http://lccn.loc.gov/2005921729.

[2] Thomas G. Dietterich (Ed.). 1998. Special issue on applications

of machine learning and the knowledge discovery process.

Mach. Learn. 30, 2-3 (February 1998).

[3] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, Ian Witten (2009) The Weka Data Mining

Software: An Update; SIGKDD Explorations, Vol 11, Issue 1.

[4] Jane Cleland-Huang, Adam Czauderna, Alex Dekhtyar, Olly

Gotel, Jane Huffman Hayes, Ed Keenan, Greg Leach, Jonathan

Maletic, Denys Poshyvanyk, Youghee Shin, Andrea Zisman,

Giuliano Antoniol, Brian Berenbach, Alexander Egyed, and

Patrick Maeder. 2011. Grand challenges, benchmarks, and

TraceLab: developing infrastructure for the software traceability

research community. In Proceedings of the 6th International

Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE '11). ACM, New York, NY, USA, 17-23.

[5] Pierre Geurts, Alexandre Irrthum, Louis Wehenkel, Supervised

learning with decision tree-based methods in computational and

systems biology. Molecular BioSystems. 12/09, 5(12):1593-605.

[6] Bogdan Dit, Evan Moritz, Mario Linares-Vasquez, Denys

Poshyvanyk, "Supporting and Accelerating Reproducible

Research in Software Maintenance Using TraceLab Component

Library," 2013 IEEE International Conference on Software

Maintenance, pp. 330-339, 2013 IEEE International Conference

on Software Maintenance (ICSM), 2013.

[7] Klaus Pohl , Petia Assenova , Ralf Doemges, Paul Johannesson,

Neil Maiden, Véronique Plihon, Jean-Roch Schmitt, Giwrgos

Spanoudakis, 'Applying AI Techniques to Requirements

Engineering: The NATURE Prototype', NATURE Report 94-7.

[8] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter

Solc. 2007. Automated classification of non-functional

requirements. Requir. Eng. 12, 2 (May 2007), 103-120.

[9] Hakim Sultanov, Jane Huffman Hayes: Application of

reinforcement learning to requirements engineering:

requirements tracing. RE 2013: 52-61.

[10] Nan Niu, Anas Mahmoud, Zhangji Chen, and Gary Bradshaw.

2013. Departures from optimality: understanding human

analyst's information foraging in assisted requirements tracing.

In Proceedings of the 2013 International Conference on

Software Engineering (ICSE '13). IEEE Press, Piscataway, NJ,

USA, 572-581.

[11] CCHIT dataset, www.coest.org

[12] Real-Time Transit Information System Requirements,

http://www.mtc.ca.gov/planning/tcip/Real-

Time_TransitSystemRequirements_v3.0.pdf

4,'The system shall associate (store and

link) key identifier information (e.g.

system ID medical record number) with each

patient record.',IC

5,'The system shall be able to support the

standards identified and recommended by the

Health Information Technology Standards

Panel (HITSP) on its HITSP-TP13 Ver 1.0.1

document',F

1,'Transit agency system generates

predictions periodically',T

2,'The 511 system updates prediction data

that is received from each of the transit

agency systems within 20 seconds after

receiving the prediction data.',T

