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Abstract—Requirements engineering encompasses many 

difficult, overarching problems inherent to its subareas of 

process, elicitation, specification, analysis, and validation.  

Requirements engineering researchers seek innovative, effective 

means of addressing these problems.  One powerful tool that can 

be added to the researcher toolkit is that of machine learning.  

Some researchers have been experimenting with their own 

implementations of machine learning algorithms or with those 

available as part of the Weka machine learning software suite.  

There are some shortcomings to using “one off” solutions.  It is 

the position of the authors that many problems exist in 

requirements engineering that can be supported by Weka’s 

machine learning algorithms, specifically by classification trees.  

Further, the authors posit that adoption will be boosted if 

machine learning is easy to use and is integrated into 

requirements research tools, such as TraceLab.  Toward that 

end, an initial concept validation of a component in TraceLab is 

presented that applies the Weka classification trees.  The 

component is demonstrated on two different requirements 

engineering problems.  Finally, insights gained on using the 

TraceLab Weka component on these two problems are offered. 

 

Index Terms—Artificial intelligence, machine learning, 

requirements engineering, classification, decision trees, 

TraceLab, Weka. 

I. INTRODUCTION 

Challenges loom large as we endeavor to develop software, 

many of these related to requirements engineering (RE) and its 

subareas of process, elicitation, specification, analysis, and 

validation [1].  We encounter obstacles as we elicit 

requirements, attempting to ensure that all stakeholders are 

represented.  We encounter a gap as we move from the 

problem space (requirements) to the solution space (design); 

we struggle to specify requirements that are complete and 

consistent.  As researchers, we strive to understand these and 

other issues and to develop beneficial approaches.   

At the heart of many of these requirements challenges lies a 

sub problem of pattern recognition - the problem of 

classification:  finding “a mapping from unlabeled instances to 

(discrete) classes. [2]”   Ensuring that all stakeholder groups 

have been represented in elicitation can be accomplished by 

classifying each elicited requirement by its stakeholder type 

and ensuring coverage.  Verifying requirement allocation to 

design, as part of bridging the gap, may require that 

requirements be classified as satisfied or not satisfied by their 

allocated design elements.  Analyzing requirements to ensure 

completeness and consistency may necessitate putting 

requirements into various categories typically found in 

requirement specifications to support a high level check that at 

least one requirement exists in each category. For instance, a 

medical device must have a set of safety and performance 

requirement specifications to guarantee it is safe to use. 

Similarly, health care management systems require the 

specifying of requirements which guarantee privacy and 

availability of patient data.  Requirement elicitation for an air 

traffic control system must include requirements expressing the 

necessity of the fast response time of the system.  These 

important activities have a common denominator:  

classification. 

In this paper, we posit that a class of problems exists in 

requirements engineering that lend themselves well to machine 

learning techniques, specifically to the collection of supervised 

learning methods termed classification trees, in Weka [3]. 

Examples include separating functional and quality-focused 

concerns to facilitate further assessment of the system or 

extracting only performance related quality concerns to specify 

the response time constraints in the system. Further, we posit 

that a barrier to adoption of such techniques may be the lack of 

easy to use tools that are aimed at requirements engineering 

researchers and are integrated into research tools (see Section 

II). We present a component for the TraceLab research 

framework [4] that makes the Weka classification tree 

algorithms accessible (Section III).  We present two 

applications of the component as initial concept validation:  

classification of requirements into ten different security 

categories and classification of requirements as temporal/non-

temporal (Section IV).  Finally, we share insights gained 

through this investigation and conclude (Section V).  

II. BACKGROUND AND POSITION 

Artificial intelligence (AI) encompasses a number of areas 

of study, including cognitive science, machine learning, 



representation and reasoning, to name a few.  Machine learning 

is the focus of this paper, defined as “field of scientific study 

that concentrates on induction algorithms and on other 

algorithms that can be said to ``learn. [2]”   Machine learning 

algorithms can be further broken down into supervised, 

unsupervised, semi-supervised, and reinforcement learning.  

Supervised learning is of interest here.   

In supervised learning, a training set, which has labelled 

instances, is used to determine the class or category of 

unlabeled instances.  The training set contains information on 

the features or attributes of the instances.  These features can be 

quantifiably represented, as integer, real, ordinal, categorical 

data, for example.  Of the many supervised learning methods, 

decision trees (classification trees in Weka) combine 

interpretability, efficiency, and accuracy [5] and are of interest.      

A decision tree can be seen as a collection of binary tests 

organized in a tree structure.  The non-terminal nodes of a tree 

are labeled with tests, comparing the value of an input feature 

or attribute to a threshold.  The terminal tree nodes are labeled 

with a class. A classification for a new instance (whose 

attribute values are known) is determined by propagating it into 

the tree from the top node per the test answers [5]. “When a 

terminal node is reached, its corresponding class label is 

attributed to the instance. [5]” 

A number of tools and techniques have been introduced to 

assist with machine learning and classification:  Orange, R, 

JBoost, RandomForests [5].  Perhaps the best known is Weka. 

Weka [3] is open source software which contains a 

collection of data mining procedures including preprocessing, 

classification, clustering, feature selection, and visualization. 

Weka is widely used by researchers because it is free, it runs on 

most platforms, and it supports several data mining tasks. 

Weka's main user interface is the Explorer, but the same 

functionality can be also accessed through the component-

based Knowledge Flow interface and from the command line. 

Weka supports classification by providing a number of 

algorithms, mainly decision trees.  The most well-known 

algorithms include: J48, which is the java implementation of 

the popular decision tree algorithm C4.5; Random Forest, 

which is an ensemble learning method performing the 

classification task by constructing a multitude of trees and 

considers the mode of all trees output as the final label; 

SimpleCART(Classification And Regression Trees), which is a 

combination of classification trees where the outcome of the 

tree is  the class label and regression trees, where the outcome 

is a numerical value. 

As mentioned in Section I, there are a number of challenges 

in the subareas of requirements engineering that lend 

themselves well to classification techniques.  For example, 

often it is necessary to classify or categorize requirements or 

sub-requirements prior to undertaking an analysis or validation 

activity.  There has been prior success in applying artificial 

intelligence techniques to requirements engineering problems.  

Pohl et al. used the Novel Approaches to Theories Underlying 

Requirements Engineering (NATURE) framework to address 

five problems areas:  process guidance, process traceability, 

system knowledge acquisition, specification reuse, and 

requirement definition and critique [7].   Huang et al. 

successfully used an iterative approach for training and 

retraining a classifier for non-functional requirements [8].  

Sultanov and Hayes used reinforcement learning to perform 

requirements tracing [9].  Niu et al. used foraging theory, as a 

form of collective intelligence, to address the problem of 

assisted requirements tracing [10]. 

The above researchers, and others, have begun to apply AI 

techniques to these problems using tools such as Weka or “one 

off” tools developed specifically for the purpose.  There are 

several disadvantages to this.  First, stand-alone solutions do 

not lend themselves well to replication or reuse.  Dit et al. 

enumerate the advantages of using a research tool such as 

TraceLab to assist with reuse and replication [6].  Second, 

TraceLab provides complex constructs for organizing 

components, including decision and looping constructs, Weka 

does not.  Third, TraceLab permits the development of 

composite components.  Finally, Weka does not have a 

“market” or community where developers can contribute their 

components, experiments, or full packaged experiments (with 

components, types, datasets, results); TraceLab does [6]. These 

realizations lead to our position. 

Position:  That machine learning algorithms, specifically 

supervised learning decision trees, can be used to address 

problems in requirements engineering. 

Further: That wide spread adoption of machine learning 

algorithms necessitates the integration of the algorithms into 

research tools for requirements engineering researchers.  

Toward this end, we introduce a TraceLab component for 

applying Weka classification trees; it is discussed next.  

III. WEKA MEETS TRACELAB 

TraceLab is a tool that assists researchers in designing and 

executing traceability experiments. It was developed primarily 

at DePaul University and the College of William and Mary in 

conjunction with other Universities such as Kent State 

University and the University of Kentucky.  TraceLab is free 

for download at www.coest.org. The researchers who 

developed TraceLab also focus on collecting and organizing 

datasets. Nine datasets related to software requirements are 

available on the website. 

In TraceLab, an experiment is represented as a precedence 

graph of components, with support provided for basic control 

flow (as mentioned above). Each component implements a 

task, such as importing data, pre-processing, tracing 

documents, and measuring the quality of answer sets. 

Components exchange data through their inputs and outputs. In 

a typical traceability experiment, data is imported from external 

sources (csv files, xml files, etc.) through an “Importer” 

component and is stored in the TraceLab “workspace.” The 

data may be stored in pre-defined data types representing 

artifacts. When a component inputs the data, it is loaded from 

the workspace to that component. Similarly, outputting the data 

means that the component stores the data back to the 

workspace.  

TraceLab is highly reusable and expandable. Researchers 

can easily design or reuse existing experiments. The TraceLab 



 

 
Fig. 1. TraceLab: Comparing classifiers for one dataset.

 

component library supports common tasks in traceability, 

feature location, and even software testing experiments.  

TraceLab is being used for far more than traceability research. 

      Figure 1 shows the user interface of TraceLab. The 

component library is on the left side. The Experiment window 

and the Log window are on the right side. If researchers cannot 

find the materials they want, they can create their own 

components or even data types. The new materials can easily 

be added to the library and shared with other researchers. 

Researchers can construct a new experiment by selecting 

components from the library, connecting them based on the 

order in which components are executed, and setting up the 

inputs and outputs for each component. If researchers want to 

reuse an experiment with slight modifications, they only need 

to replace or reconfigure components of interest. For instance, 

given an experiment that measures the performance of a tracing 

algorithm, researchers can replace the tracing component with 

the algorithms they want to use.  

Researchers can also standardize the evaluation by creating 

benchmarks in TraceLab. A benchmark focuses on a specific 

task, uses fixed datasets, and has measures to evaluation the 

efficiency of the task. Researchers can use benchmarks to 

evaluate the efficiency of multiple algorithms for the same task. 

It is intuitive to design experiments with the TraceLab 

visual environment.  TraceLab also allows researchers to 

execute experiments via the command line: more efficient if 

researchers need to run a large number of experiments.  

The component that we developed is called 

WekaClassifiersTrees.  It is written in C# and consists of 

roughly 200 lines of code.  The component uses the Weka dll.  

The component can be configured:  to specify the .arff file for 

processing, to select the classification tree for the given dataset, 

and to specify the test/data split.  The component outputs the 

progress of the processing as well as the results in the Log 

window of TraceLab. The results that are output are the 

number of elements correctly classified out of the total number  

 

of elements as well as the correctness percentage. Researchers 

can perform machine learning tasks with this component even 

if they do not know Weka. The component hides all the details 

from them. All they need to do is create an experiment as is 

shown in Figure 1.  

IV. RE APPLICATIONS 

In addressing challenges in requirements engineering, the 

need to classify or categorize requirements or other artifacts 

may arise.  As mentioned in Sections I and II, classification has 

been shown to be an integral part of elicitation and 

prioritization, analysis, tracing, and validation.   

As initial validation of our position, we examine two 

requirements engineering problems.  First, we classify 

requirements into functional or non-functional categories: 

F=Functional, AC=Access Control, PA=Person Authentication, 

SED= Security Encryption Decryption, AUD=Audit Control, 

AL=Automatic Logoff, IC=Integrity Controls, UUI=Unique 

User Identification, TED= Transmission Encryption 

Decryption, EAP=Emergency Access Procedure and TS= 

Transmission Security.  We demonstrate the TraceLab 

component by using the Certification Commission for 

Healthcare Information Technology (CCHIT) dataset [11]. 

CCHIT is a system for managing electronic healthcare records 

and consists of 1064 requirements.  

In order to undertake this study, we built an arff file 

(WEKA file format) from the CCHIT dataset, then a set of 

preprocessing steps are applied to the requirement 

specifications to convert them into the proper format for 

classification. First, all common words (stop words) such as 

“and” or “the” are removed from the requirement specifications 

and all remaining words are stemmed to their root form. Later, 

each requirement specification will be converted to a vector of 

words, vi = {fi,1, fi,2,..., fi,w} where fi,j is a term weight 

representing the number of word j occurrence in requirement i. 

Finally, we designed a very simple experiment in TraceLab 



including our developed component, WEKAClassifiersTrees.  

We applied two different classifiers, REPTree and J48 (we 

applied all the available classification trees, but show just these 

two) by selecting the classification trees and the ratio of interest 

to decompose the dataset into training and testing sets. As can 

be seen in Figure 1, we were able to accurately classify 93.92% 

of the lower accuracy).  Furthermore, using multiple instances 

of the developed component facilitated the comparison of 

results of applying different classifiers to the same dataset. A 

subset of the CCHIT dataset is shown in Figure 2. 

Second, we classify requirements as temporal or non-

temporal to support consistency checking.  The 511 dataset has 

been used for this demonstration.  This dataset consists of the 

system requirements for the Bay Area 511 Regional Real-Time 

Transit Information System (available open source) [12]. We 

show a small subset of the 511dataset as an arff file in Figure 3. 

 

 
Fig. 2. CCHIT dataset arff sample. 

 

We applied the same process described for the CCHIT 

dataset to the 511 dataset. We correctly classified 93.12 % of 

the temporal requirements using the REPTree classification 

tree (J48 had lower accuracy).   
 

 
Fig 3. 511 dataset arff sample. 

V. WHAT NEXT? 

Based on the two presented RE problems, we found that the 

WekaClassifiersTrees TraceLab component made classification 

easy, efficient, and repeatable.  We used the same component 

for both problems.  We can imagine many other RE problems 

that might benefit from this component:  determining who 

wrote a specific requirement when a requirement is being 

changed or is erroneous; classifying requirements as error 

prone; classifying requirements as change prone; classifying 

requirements as ambiguous; etc. 

Therefore, we feel that we have provided initial validation 

of our position:  that machine learning algorithms can assist 

with RE problems, and that it is important to integrate these 

methods into research tools such as TraceLab. 

For future work, we plan to develop additional components 

to facilitate the use of TraceLab for a broad range of RE 

problems.  These helper components will include:  arff file 

builder, tree visualizer, convertor (such as string to 

wordvector), etc.   We plan to make our arff datasets part of the 

benchmarks for TraceLab available through the Center of 

Excellence for Software and System Traceability at 

www.coest.org. 
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4,'The system shall associate (store and 

link) key identifier information (e.g. 

system ID medical record number) with each 

patient record.',IC 

5,'The system shall be able to support the 

standards identified and recommended by the 

Health Information Technology Standards 

Panel (HITSP) on its HITSP-TP13 Ver 1.0.1 

document',F 

 

1,'Transit agency system generates 

predictions periodically',T 

2,'The 511 system updates prediction data 

that is received from each of the transit 

agency systems within 20 seconds after 

receiving the prediction data.',T 

 


