
Measuring Requirement Quality to Predict Testability

Jane Huffman Hayes Wenbin Li Tingting Yu Xue Han Mark Hays Clinton Woodson

Department of Computer Science

University of Kentucky USA

hayes@cs.uky.edu, wenbin.li@uky.edu, tyu@cs.uky.edu, xue.han@uky.edu, mark.hays@rose.hulman.edu,

clint.woodson@uky.edu

Abstract—Software bugs contribute to the cost of ownership

for consumers in a software-driven society and can potentially

lead to devastating failures. Software testing, including

functional testing and structural testing, remains a common

method for uncovering faults and assessing dependability of

software systems. To enhance testing effectiveness, the developed

artifacts (requirements, code) must be designed to be testable.

Prior work has developed many approaches to address the

testability of code when applied to structural testing, but to date

no work has considered approaches for assessing and predicting

testability of requirements to aid functional testing. In this work,

we address requirement testability from the perspective of

requirement understandability and quality using a machine

learning and statistical analysis approach. We first use

requirement measures to empirically investigate the relevant

relationship between each measure and requirement testability.

We then assess relevant requirement measures for predicting

requirement testability. We examined two datasets, each

consisting of requirement and code artifacts. We found that

several measures assist in delineating between the testable and

non-testable requirements, and found anecdotal evidence that a

learned model of testability can be used to guide evaluation of

requirements for other (non-trained) systems.

Index Terms—requirement testability, code testability,

machine learning, supervised classification learning, statistical

analysis, correlation analysis, subjective assessment, human

analyst

I. INTRODUCTION

A nascent aviation industry would never have dreamed of

civilians riding in commercial planes just a short time after the

first successful manned flight, yet the software industry seems

to have no difficulty releasing software of questionable quality

levels. The comparison may seem extreme – crashed airplanes

cost lives. But in 2015, failed computer programs can also

cost lives, cost large amounts of money, risk the privacy or

identity of consumers, and/or cause severe damage to the

environment. Thus, the quality and reliability of systems must

be assured before the system is deployed to the field. Testing

(including functional and structural testing) is still the most

commonly used approach to assess the quality of software

systems.

Software testability has been an important issue for

software testing and verification [1]. Software is built upon

product requirements, and requirements information has been

used in functional testing to ensure that a program meets its

requirements. Therefore, it is important to develop testable

requirements to improve the effectiveness of functional testing.

However, most work to date has primarily focused on code-

level testability, including both static [2] and dynamic

measures [1]. While the importance of using requirements to

aid functional testing has been recognized by the requirements

engineering community [3][4], little work has addressed the

problem of assessing and predicting testability of requirements.

 Binder [5] provided a number of definitions of

requirement testability from various sources “ A requirement is

considered to be testable if an objective and feasible test can be

designed to determine whether the requirement is met by the

software. [6]” Also, defined in IEEE standard 610.12,

requirement testability is “The degree to which a requirement

is stated in terms that permit establishment of test criteria and

performance of tests to determine whether those criteria have

been met [7].” If requirements are written to support testing,

the code that is developed to implement the requirements

should be easier to test. This should in turn lead to higher

quality software.

Analogous to the use of code metrics (e.g., assertions,

cyclomatic complexity) to predict code-level testability, we

posit that existing requirements quality measures such as

understandability/readability can be useful in predicting

requirement testability. Enlightened developers ensure that

requirements, generally written in natural language text, are

consistent and complete and readable; often using automated

tools. Automated tools can also be used to easily and quickly

capture requirement quality measures.

In this paper, we present an approach for assisting software

engineers to assess the testability of requirements using a

learned model combining a number of static quality measures

found to have some level of correlation with testability.

Specifically, we investigate the relationship between each

static measure (X) and testability, where testability is manually

determined based on X’s definition. We then identify measures

that affect requirement testability, and use logistic regression

analysis to evaluate the capability of these measures to predict

requirement testability. We use the measures to learn a model

of testability, assessing the accuracy of the model on the two

datasets (used to train and test) as well as anecdotally on a

third non-trained dataset. Our hope is that we can ultimately

help requirements and software engineers to determine if the

requirements have been specified in a testable way before

proceeding to later phases of the development lifecycle. In our

empirical study we use two real world subjects.

The paper is organized as follows. Section II discusses

requirement testability. Section III presents the study design,

correlation analysis, logistic regression, supervised learning,

and threats to validity. Section IV discusses results and

analysis. Related work is presented in Section V. Section VI

discusses conclusions and future work.

II. TESTABILITY

This section presents definitions and measures of

requirement testability.

A. Definitions of Requirement Testability

While a number of definitions of requirement testability

have been provided by various sources, they are all concerned

with the degree to which tests can be created, executed, and

verified against expected output. We therefore posit that a

requirement is testable if a complete testing scenario used in

functional testing can be found. A testing scenario includes: 1)

test input, 2) test execution, and 3) expected output. A test

input is a condition used to direct how a system under test

behaves. A test execution is a sequence of steps to execute a

test input. An expected output is the correct system behavior

under a test input.

Consider an example requirement “If a user clicks the

“send” button, an email must be sent within 5 seconds.” This

requirement is testable because all three aforementioned

conditions are met. Specifically, “send” is an input, a test

execution involves sending an email, and the expected output

is “email sent within 5 seconds.” Since measuring requirement

testability is a subjective and difficult task, this process often

involves a human in the loop.

B. Measurement of Requirement Testability Factors

 We hypothesize that several factors can potentially

influence requirement testability. These factors in particular

appear to be: 1) the degree to which a requirement is readable,

2) the number of predicates in a requirement, and 3) the

number of total/complex words used in a requirement

(described in Section III). By leveraging these factors, we

should be better able to create effective models to predict

requirement testability.

We collected several measures to assess readability of the

requirements:

 Average Grade Level (agl)

 Flesch Kincaid Reading Ease (fkre)

 Flesch Kincaid Grade Level (fkgl)

 Gunning Fog Score (gfs)

 SMOG Index (smog)

 Coleman Liau Index (cli)

 Automated Readability Index (ari)

Low readability of a requirement implies that it may not be

testable. A subset of these measures, and the tool we used for

collection, are further explained in Section III. B.

 The next measure we used in this study is number of

predicates. Predicates specify what subjects are or what they

do. For example, given a requirement “the user can edit the

Style Preferences through the Style Preference GUI

interface,” the verb “edit” is a predicate that describes what

the user can do. If a requirement does not contain any

predicates (or few), then it may not be testable.

III. STUDY

This section presents the study design, techniques, and

threats to validity.

To assess our approach we consider two research

questions.

RQ1 - Do quality measures that characterize the

understandability and quality of requirements also

characterize testable requirements?

 RQ2 – Can a model of requirement testability be learned and

applied to other requirements?

The first research question explores the relationship

between quality measures and testability and determines the

predictive ability of each quality measure. The second research

question lets us investigate whether existing requirement

quality measures can be modeled and assist in categorizing

requirement testability.

A. Objective of Analysis

As objects of analysis we chose two real world data sets -

Browser and iTrust [8]. The two datasets have been widely

used in other requirements research. We make use of their

requirements, code, and trace links between their requirements

and code. Browser
1
 is a web browser written in Java by the

École Polytechnique de Montréal. It consists of 24

requirements and 52 code modules. iTrust is a medical

application that maintains patient medical history and records

and permits communication with Doctors. It consists of 59 use

cases and 11 code modules. It is written in Java.

To address our research questions, we required labels for

the requirements as testable or not. We asked three of the co-

authors (in isolation) to assign scores from 1 to 5 to each

requirement, where 5 is easy to test and 1 is hard to test. The

remaining co-authors examined the labels and assessed inter-

rater agreement. For both datasets, the agreement was very

low.

The remaining co-authors thus looked at a number of

voting strategies. Using majority rule, it was found that

approximately 66% of the labels could be assigned. For

requirements with no majority rule, the labels of the most

experienced co-author were selected (has worked in

requirements area and specifically with natural language

processing and consistency checking of requirements for eight

years). A binary label was also assigned; labels of 1, 2, 3 were

given a 0 for testability and 4, 5 labels were tagged as 1. The

original labels (1 – 5) were then re-examined and it was found

that roughly 10% of the labels were changed (0 to 1 or vice

versa) due to use of the experienced co-author labels.

In addition, the remaining co-authors examined the

agreement on the “best” and “worst” requirements (those

labeled 5 and 1, see Fig. 1 in Appendix for examples). It was

1
 We studied 10 of the 24, for which trace links to code were provided by the

authors

found that the three co-authors had strong agreement on these

labels, thus some analysis used these entries. Models were

built and analysis was undertaken (using the spreadsheets and

arff files), as described below.

Table 1 summarizes the distribution of testable (labeled as

1) and non-testable requirements (labeled as 0). As the table

shows, for iTrust and Browser, over 70% of the requirements

were categorized as testable. Tables 2 and 3 (in appendix)

provide descriptive statistics for a subset of the measures for

iTrust and Browser.

TABLE 1. DISTRIBUTION OF TESTABLE REQUIREMENTS

Systems Testable Reqts %

iTrust 18 75

Browser 8 72.73

B. Quality Measures

 To answer our research questions, we also required

requirement quality measures [9]. Flesch-Kincaid reading ease

and grade level (fkre and fkgl) both examine the number of

words and syllables in a requirement. Flesch-Kincaid reading

ease estimates how easy it will be to understand the

requirement. Flesch-Kincaid grade level estimates the grade

level at which the text has been written (i.e., a result of 6

indicates that the text was written so that a typical 6
th

 grader

can understand it). Coleman-Liau index (cli) uses the number

of characters and words in a requirement to estimate the grade

level of the text. Gunning Fog score (gfs) is calculated by

looking at the ratio of words to complex words. A complex

word is any word with three or more syllables. SMOG index

(smi) uses a more accurate syllable count. Automated

readability index (ari) is similar to cli but uses a different ratio

between number of characters and words. All of the

aforementioned measures are used often in the education field.

Average grade level (agl) is calculated as the average of fkgl,

cli, smog, ari, and gfs. The number of predicates (pred), the

number of words in each requirement (now), and number of

complex words (nocw) were also measured.

We believe that some measures are redundant with others
and thus can be eliminated. These measures do not provide
insights into our research questions. To eliminate redundant
measures, we identified several groups of measures such that
any two measures in the same group are strongly correlated –
correlation analysis was performed as described in Section C.
We believe that each group can be represented by one or two
measures within the group.

Specifically, we identified three groups of measures. The
first group includes five measures: fkgl, gl, fkre, gfs, and ari.
We selected fkgl and fkre to represent these five measures. The
second group contains two measures: cli and smi, we selected
cli. The third group contains three measures: now, nocw, and
nos, and we used now and nocw to represent this group. The
measure pred is not correlated with any measures and thus was
selected. This process yielded us six measures: fkgl, fkre, cli,
now, nocw, and pred.

C. Data Analysis Techniques

We chose machine learning and statistical analysis

techniques to allow us to answer each of our research

questions.

1) Correlation Analysis. To address our research

question #1, we first apply correlation analysis to help

distinguish what aspects of a requirement played a role in its

testability. Correlation analysis estimates a sample correlation

coefficient, which ranges from -1 to 1 and quantifies the

direction and strength of the linear association between a

dependent variable (testability) and an independent variable

(quality measures). A correlation coefficient of 1 represents a

perfect positive linear relationship. When using correlation

analysis in our study, the values of dependent variables are

testability labels (i.e., 0, 1). In this study we saw very low

correlation and thus interpret correlation coefficients less than

-0.3 as a sign of weak negative linear relationship.

2) Logistic Regression Analysis. To further explore RQ1,

we apply logistic regression (LR) to examine the ability of

each quality measure to predict a binary response for

requirement testability. LR is a standard statistical model used

to measure the relationship between categorized dependent

variables and one or more independent variables. Univariate

LR involves one independent variable; multivariate LR

involves one or more independent variables. In our study, the

dependent variable is requirement testability with binary

labels. We used both univariate and multivariate LRs to find

the relationship between static measures and requirement

testability. The univariate analysis allows us to find individual

effect of each static measure on testability, whereas

multivariate analysis is used to evaluate the combined effects

of all static measures on testability.

To evaluate the performance of our predicated model, we

used ROC (receiver operating characteristic) curve, where

area of 1 represents a perfect model, and that of 0.5 or below

represents a random model.

3) Supervised Learning – Decision Tree. To answer our

second research question, we performed N-fold cross

validation (where N was 10 whenever possible) using the

Weka J48 classifier to analyze the data. J48 is an

implementation of the C4.5 decision tree algorithm [10]. A

decision tree can be used to decide the value of a dependent

variable (in our case, testable) based on a set of independent

variables. The root of a decision tree represents that the C4.5

algorithm begins with the original dataset. Each internal node

in a decision tree indicates an iteration in which C4.5 chooses

the unused attribute that most effectively splits the data. The

leaves show the values of the dependent variable.

We determine the accuracy of the classification based on

the following results given by Weka: confusion matrix,

detailed accuracy by class, correctly classified instances,

incorrectly classified instances, and Kappa statistic.

The confusion matrix, detailed accuracies, and the

correctly/incorrectly classified instances show the raw

numbers and the percentage of the instances that are

correctly/incorrectly classified. In our case we have 2*2

confusion matrixes because we have two classes: testable and

non-testable. For example, a confusion matrix

 a b

 5 15 | a = testable

 10 20 | b = non-testable

shows the raw numbers of the instances that are true positive

(5), false positive (10), false negative (15), and true negative

(20). The matrix means that five testable instances and 10

non-testable instances are classified as testable, while 15

testable instances and 20 non-testable instances are classified

as non-testable. In total, 25 (50%) instances are correctly

classified, and the other 25 (50%) instances are incorrectly

classified.

The detailed accuracies are calculated based on the

confusion matrix for each class. For the class testable, the

True Positive (TP) rate measures the proportion of testable

instances which were correctly classified as testable: 5/(5+15)

= 0.25. The False Positive (FP) rate measures the proportion

of non-testable instances which were incorrectly classified as

testable: 10/(10+20) = 0.33. The Precision measures how

many testable instances determined by the classifier are truly

testable: 5/(5+10) = 0.33. The Recall measures how many

testable instances are correctly identified. The Recall is

equivalent to the TP rate. The F Measure is the harmonic

mean of Precision and Recall: 2*(0.33*0.25)/(0.33+0.25) =

0.28. A ROC curve is constructed by using the TP rate and FP

rate.

The Kappa statistic [14] measures the agreement between

the classifications with the true classes. It takes the agreement

that may be due to chance into account.

D. Study Operation

We used Read-able.com [11] to collect measures for the

requirements, including agl, fkre, fkg, gfs, smog, cli, and ari.

We used a natural language processing technique Semantic

Role Labeling (SRL) [12] to detect the predicates in natural

language requirements. SRL identifies predicates together with

the semantic arguments that are related to these predicates, and

classifies the arguments into different roles. In the requirement

“the user can edit the Style Preferences through the Style

Preference GUI interface,” the role of “user” is subject, the

role of “Style Preferences” is object, and the role of “Style

Preference GUI interface” is the manner in which the “edit”

action is performed. In this study we used the SRL tool Senna

[13] to process natural language requirements and calculate the

number of the identified predicates. All measures were

collected into spreadsheets for analysis and were used to build

arff files for Weka [14]. Our correlation analysis and LR

analysis were performed by using Microsoft Excel and its

XLSTAT plugin. The supervised learning analysis was

performed on Weka.

E. Threats to Validity

The primary threat to external validity for this study

involves the representativeness of datasets (i.e., software

systems, requirements). Other datasets may be larger than

those studied and may exhibit different behaviors and

complexity that can affect requirement quality. However, the

datasets we utilized are popular and real; the systems we

studied are real-world applications with requirements

available. Also, we studied systems from two different

domains.

The primary threats to internal validity for this study are

possible mistakes in the study operations and possible faults in

the tools that we used to perform evaluation. We controlled

for these threats by first extensively validating our results for

a smaller set of requirements for which we could determine

correct results. We also chose to use popular and established

tools (e.g., Weka, Senna, XLSTAT) for gathering data and

performing analysis. A second major source of potential bias

involves manually determining requirement testability. To

reduce this threat, we had numerous researchers evaluate each

requirement, in isolation, and then applied various techniques

to increase confidence in the requirement testability labels.

Where construct validity is concerned, our measurements

of requirement quality focus on readability/understandability.

However, there are other metrics that could be considered,

such as completeness, size, volatility, and traceability. The

costs of applying the approach and the human costs of

requirements inspection are also of interest. We reduced such

threats by applying statistical analysis, ensuring that we

checked the assumptions of each test we applied. In addition,

we saw disagreement among our expert raters. Their

testability ratings are inherently subjective and might not be

reproducible. As mentioned, in cases of disagreement, we

deferred to our most experienced rater to mitigate this threat.

IV. RESULTS AND ANALYSIS

This section discusses the results of correlation analysis,

logistic regression, and supervised learning.

A. Correlation Analysis

For the iTrust dataset, the correlation coefficient between

the measure now and testability has the highest absolute value:

0.33. Because the correlation coefficient is -0.33, we believe

that there is a weak negative linear relationship between now

and testability. Other measures that have high absolute value

correlation coefficients include fkre (-0.18) and fkgl (0.15),

but their absolute values are not high enough to be a sign of

correlation.

For the Browser dataset, the correlation coefficient

between now and testability is only -0.11, which is not a

strong sign of correlation. However, the correlation coefficient

between nocw and testability is -0.38. This means that nocw

and testability may have a weak negative linear relationship.

The next largest absolute correlation coefficients are for fkre

(0.23) and fkgl (-0.22). However, as with the iTrust dataset,

the evidence of correlation between these two measures and

testability is not strong. The relationships between now/nocw

and testability are reasonable. Requirements with more words

and complex words are likely to be less readable, and

requirements with low readability may be hard to understand

and test.

B. Logistic Regression

In a regression model, each label bi is an estimated

coefficient corresponding to independent variables. The larger

the absolute value of bi, the stronger the effect of the static

measure on predicting high requirement testability. The p-

value (-2Log Likelihood) is used to assess the significance of

coefficients; we chose significance level 0.05. A measure is

highly predictive if its coefficient is significantly different

from zero (b>0.1) in terms of the p-value.

TABLE 4. UNIVARIATE LR ANALYSIS

Table 4 shows the results of univariate LR analysis for

each measure (reduced to eliminate collinearity) across the

two datasets. For four out of six measures, their coefficients

are significant (numbers indicated by bold font) for at least

one dataset. The effectiveness scores of their predicted models

were also high (AUC > 0.5). Only fkgl and now did not

demonstrate significance on either dataset. In fact, each of the

four measures performed well on only one dataset. Our results

imply that all five measures except for fkgl and now are

related to testability. The extent to which a quality measure

can be used to predict testability also varies across

applications.

TABLE 5. MULTIVARIATE LR ANALYSIS

We next present the results obtained using multivariate LR

analysis to illustrate how well requirement testability can be

predicted when the static measures are used in combination –

see Table 5. As the table shows, for both datasets, the

coefficient values are significant. Figure 2 and Figure 3

display the ROC curves for the combined measures for the

two datasets. On both datasets, the AUC values are higher

than those reported in univariate LR analysis. This indicates

that the predicted model with combined measures is more

effective than that with single measures. We next inspect the

degree to which each measure can influence the requirement

testability. Among the six measures, on each dataset, cli

reported the highest coefficient score (numbers indicated by

italic font). On the other hand, pred and fkgl reported the

lowest scores for iTrust and Browser, respectively. While

additional study is needed, if the results can generalize, cli is

the most influential measure to requirement testability.

Based on our findings, we believe the response to RQ1 is

“Yes, static measures that characterize the understandability

and quality of requirements also characterize testable

requirements,” but more study is needed.

C. Supervised Learning

We applied supervised learning to address RQ2. A model
will assist in categorizing newly written or modified
requirements as testable, easily validated by functional testing,
or not. Using measures we believe to be correlated with
requirement testability labels, we used Weka to perform
classification. Specifically, we used the J48 learner
(implementation of C4.5, discussed in Section III). The intent
is to apply the learned model to not yet evaluated requirements.
Basically, a practitioner would need to only collect static
measures for the requirements and then plug the static
measures into the model (or use Weka to do so) to determine if
the requirement appears to be testable. If not, information
from the model (such as the thresholds for the leaves of the
classification tree) can be used to help improve the text of the
requirement.

In planning the study, we anticipated an unbalanced data
challenge. We hypothesized that most requirements would be
non-testable. However, the Browser and iTrust requirements
were almost all testable. To address our minority class (non-
testable requirements), we undertook a number of steps:
boosting, bagging, and blending (called stacking in
Weka). The learned model still had very low accuracy for the
minority class (we could achieve high accuracy for the
majority class, but the model always labeled the non-testable
instances as testable).

Also, we found that we had too many measures in some
cases with respect to the number of data records we had,
especially for Browser. We thus decreased the measures by
only using one or two of the measures to represent a set of
measures that correlated with each other (detected using
correlation analysis described in Section III.B.). The learned
model was able to achieve 69% accuracy in predicting the
testability label. The pruned tree that resulted is shown below
(denoted Model 1):

pred-adj <= 7
| fkgl <= 13
| | nocw <= 1: testable (4.0)
| | nocw > 1
| | | fkre <= 76
| | | | nocw <= 4: testable (4.0)
| | | | nocw > 4
| | | | | fkre <= 55.1: testable (2.0)
| | | | | fkre > 55.1: not-testable (2.0)
| | | fkre > 76: not-testable (2.0)
| fkgl > 13: not-testable (3.0)
pred-adj > 7: testable (6.0)

It is interesting that cli was not in the model. When we

examined all requirements of iTrust and Browser (as agreed by
the researchers), this model resulted (denoted Model 2),

cli <= 12.4
| fkgl <= 11.3
| | fkre <= 52.6: 1 (27.0)
| | fkre > 52.6: 0 (35.0)
| fkgl > 11.3: 1 (58.0)
cli > 12.4: 0 (26.0)

Systems iTrust Browser

Measures bi p AUC bi p AUC

fkre 0.663 0.037 0.824 0.340 0.346 0.708

fkgl 0.438 0.094 0.806 0.568 0.163 0.792

cli 1.348 0.003 0.889 0.024 0.949 0.542

now 0.208 0.391 0.583 0.062 0.028 0.5

nocw 0.168 0.05 0.62 0.062 0.868 0.5

pred 0.029 0.911 0.509 0.369 0.035 0.667

 bkfre bkfgl bcli bnow bnocw bpred p AUC

iTrust 2.25 1.00 2.31 0.45 2.19 0.05 0.04 0.94

Broswer 1.95 0.06 1.98 0.53 0.22 0.56 0.05 0.88

with the following accuracy (described in Section III.C):

Correctly Classified Instances 143 97.9452 %
Incorrectly Classified Instances 3 2.0548 %
Kappa statistic 0.9575
Mean absolute error 0.0224
Root mean squared error 0.1411
Relative absolute error 4.5983 %
Root relative squared error 28.5944 %
Total Number of Instances 146

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Prec Recall F-Meas ROC Area Class
 0.951 0 1 0.951 0.975 0.994 0
 1 0.049 0.966 1 0.983 0.994 1

 Wt.Avg 0.979 0.029 0.98 0.979 0.979 0.994

It is notable that cli was a part of the learned model.

To determine if a model learned on iTrust and Browser

could be used to predict testable requirements for a different

project, we examined a student project called CardPlay-D.

This project is an Android application used for playing cards;

it consists of 43 requirements and 39 code modules.

CardPlay-D had 22 testable requirements and 21 non-testable

requirements, a much different distribution than Browser and

iTrust. Applying Model 1, we looked at each individual

measure in the model as well as the overall model (decision

tree). We found that all CardPlay-D requirements have pred

less than or equal to 7 (recall that >=7 means testable). All

requirements except one have fkgl less than or equal to 13

(where <= 13 means testable). Fourteen were incorrectly

predicted, but 26 were correctly predicted as testable (65%

correct). For fkre, 19 requirements were predicted correctly as

testable (less than or equal to 55.1) but five were not – or

73.6%. When the rules are used together (without nocw,

which we did not have for the student project), nine

requirements are predicted to be testable. Six were predicted

correctly (or 66.67% correct).

Looking at Model 2, for cli less than or equal to 12.4, there

are nine requirements predicted incorrectly and 17 correctly

(or 65%). For fkgl <=11.3, there are 13 requirements

predicted incorrectly and 26 predicted correctly or 66%. For

fkre <= 52.6, three are predicted incorrectly and seven

correctly (70%). When all three rules are applied (cli, fkgl,

fkre,) no requirements are selected.

Our preliminary results show that there is promise of being

able to answer RQ2 “Yes, we can learn a model of

requirement testability.” However, our results are not

conclusive and further analysis with more datasets is required.

V. RELATED WORK

We address requirement testability, code testability, and

earlier application of machine learning to requirements

engineering problems.

Boehm [16] discusses the reasons for software

requirements and design specifications to be verified and

validated. He defines the terms “verification” and

“validation,” as well as explains their context in the software

life-cycle. Also he evaluates the relative cost and

effectiveness of a software requirement. In talking about the

basis of a good requirement, he gives the four basic criteria of

a requirement: completeness, consistency, feasibility, and

testability.

Along the lines of requirement criteria, Davis et al. [15]

elaborate the important characteristics of a quality Software

Requirements Specification, including but not limited to:

unambiguous, complete, verifiable, precise, and traceable.

Measures are proposed for the attributes. It is noted that

measuring understandability is difficult and a subjective

measure is proposed based on readers' belief related to

understanding the requirement.

Binder [5] speaks about testability in object-oriented

development. He suggests that one “map the testability

terrain for object-oriented development to assist the reader in

finding relatively shorter and cheaper paths to high

reliability.” Binder discusses how testing can help reveal

faults in software, allowing for a more stable product to be

designed.

Voas [1] introduced the notion of software testability, a

quality describing how easy it is to test software. He described

information loss issues that lead to loss of testability and

introduced a new dynamic analysis metric, sensitivity analysis,

for determining code's testability. Testability assumes that the

tester has a fixed user profile, the probability distribution

defining the input domain. The implication of this dependency

is that the testability of a program varies with the inputs that

testers select. Our approach to measuring testability is

orthogonal to Voas’s sensitivity analysis because we look at

the requirement instead of the code.

Much work has focused on using artificial intelligence and

machine learning techniques to solve software engineering

problems. Here we only list some of them. Gondra proposed

an approach for using machine learning to select the software

metrics that indicate fault-proneness [17]. Gondra used data

on software metric values to train an artificial neural network,

and then analyzed this neural network to identify metrics most

likely to be useful. Gyimothy, Rudolf, and Istvan presented a

study which measures the characteristics of the source code of

open source projects [18]. In this study Gyimothy et al. used

machine learning techniques to analyze the data obtained from

a bug database and showed that such data is useful for fault-

proneness prediction. Perini, Angelo, and Paolo proposed an

approach for deciding software requirement priority using

machine learning [19]. This approach takes into account both

the requirements ordering generated using machine learning

techniques and the stakeholders’ preference. The combination

of both types of information facilitates the task of

requirements prioritization.

Hayes, Li, and Mohammad introduced a method to

facilitate the task of analyzing software requirements using

Weka [20]. The key idea of this method is integrating Weka

methods into requirement research tools such as TraceLab

[21] so that researchers can focus on software requirement

analysis. Huang, Raffaella, Zou, and Solc described an

approach to detect and classify non-functional requirements

automatically [22]. The approach iteratively trains a classifier

of non-functional requirements. Sultanov and Hayes

introduced a method that uses the machine learning technique

Reinforcement Learning (RL) to perform requirement tracing

[23]. The study shows that RL generates high quality

candidate links between requirement artifacts. Our approach is

similar to the above in that we used machine learning to

address a requirement engineering and software engineering

issue. In contrast, none of the aforementioned studies address

our focus: assessing and predicting testability of

requirements.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach for assessing testability of

requirements based on a collection of requirement quality

measures. We have conducted an empirical study using a set

of statistical and machine learning techniques. Our results

suggest that several measures show promise for assessing

testability. The measure now has moderate correlation to

testability for iTrust. The measure nocw has moderate

correlation to testability for Browser. For both datasets, fkre

and fkgl have lower correlation coefficients, but are much

higher than other measures: cli, fkre, and pred. Specifically,

we found that cli was the most predictive measure in the LR

analysis; other statistically significant measures in LR analysis

were nocw, pred, and fkre. We found that fkre and cli were

important measures in supervised learning. We also found

anecdotal evidence that a model trained on one or more

datasets can be used to evaluate requirements from a different,

non-trained dataset.

In the future, we intend to perform more extensive

empirical studies by considering more real world datasets. We

also intend to consider more requirement measures, such as

traceability and completeness. Finally, we intend to perform

user studies to evaluate how well our approach can help

developers improve the testability of requirements.

ACKNOWLEDGMENT

This work has been partially funded by NSF under grant

CCF-1511117.

REFERENCES

[1] J. M. Voas, “PIE: A Dynamic Failure-Based Technique,” IEEE Trans

Softw Eng, vol. 18, no. 8, pp. 717–727, Aug. 1992.

[2] N. Nagappan, L. Williams, J. Osborne, M. Vouk, and P. Abrahamsson,
“Providing test quality feedback using static source code and automatic

test suite metrics,” in 16th IEEE International Symposium on Software
Reliability Engineering, 2005. ISSRE 2005, 2005, p. 10 pp.–94.

[3] S. Hesari, R. Behjati, and T. Yue, “Towards a systematic requirement-

based test generation framework: Industrial challenges and needs,” in

Requirements Engineering Conference (RE), 2013 21st IEEE

International, 2013, pp. 261–266.
[4] 2014 IEEE 1st International Workshop on Requirements Engineering and

Testing (RET). Sweden, 2014.

[5] R. V. Binder, “Design for Testability in Object-oriented Systems,”
Commun ACM, vol. 37, no. 9, pp. 87–101, Sep. 1994.

[6] Department of Defense, DOD-STD-2167A, Military Standard: Defense

System Software Development. Washington, DC, USA, 1988.
[7] IEEE, IEEE Standard 610.12-90 IEEE Standard Glossary of Software

Engineering Terminology. IEEE, 1990.

[8] L. Williams, T. Xie, and A. Meneely, The iTrust Medical Records System.
2008.

[9] “Readability,” Wikipedia, the free encyclopedia. 05-Jun-2015.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[11]The Readability Test Tool. 2015.

[12] D. Gildea and D. Jurafsky, “Automatic Labeling of Semantic Roles,”
Comput. Linguist, vol. 28, no. 3, pp. 245–288, Sep. 2002.

[13] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P.

Kuksa, “Natural Language Processing (Almost) from Scratch,” J Mach
Learn Res, vol. 12, pp. 2493–2537, Nov. 2011.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The WEKA Data Mining Software: An Update,” SIGKDD
Explor Newsl, vol. 11, no. 1, pp. 10–18, Nov. 2009.

[15] Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A.;

Kincaid, G.; Ledeboer, G.; Reynolds, P.; Sitaram, P.; Ta, A.; Theofanos,
M., "Identifying and measuring quality in a software requirements

specification," Software Metrics Symposium, 1993. Proceedings, First
International, vol., no., pp.141,152, 21-22 May 1993

[16] Boehm, Barry, Guidelines for Verifying and Validating Software

Requirements and Design Specifications, vol. Euro IFIP 79. North
Holland, 1979.

[17] Gondra, Iker. "Applying machine learning to software fault-proneness

prediction." Journal of Systems and Software 81, no. 2 (2008): 186-195.
[18] Gyimothy, Tibor, Rudolf Ferenc, and Istvan Siket. "Empirical validation

of object-oriented metrics on open source software for fault

prediction." Software Engineering, IEEE Transactions on 31, no. 10
(2005): 897-910.

[19] Perini, Anna, Angelo Susi, and Paolo Avesani. "A machine learning

approach to software requirements prioritization." Software Engineering,

IEEE Transactions on 39, no. 4 (2013): 445-461.
[20] Hayes, Jane Huffman, Wenbin Li, and Mohammad Rahimi. "Weka

meets TraceLab: Toward convenient classification: Machine learning for

requirements engineering problems: A position paper." In Artificial
Intelligence for Requirements Engineering (AIRE), 2014 IEEE 1st

International Workshop on, pp. 9-12. IEEE, 2014.

[21] Cleland-Huang, Jane, Adam Czauderna, Alex Dekhtyar, Olly Gotel, Jane
Huffman Hayes, Ed Keenan, Greg Leach et al. "Grand challenges,

benchmarks, and TraceLab: developing infrastructure for the software

traceability research community." In Proceedings of the 6th international
workshop on traceability in emerging forms of software engineering, pp.

17-23. ACM, 2011.
[22] Cleland-Huang, Jane, Raffaella Settimi, Xuchang Zou, and Peter Solc.

"Automated classification of non-functional requirements." Requirements

Engineering 12, no. 2 (2007): 103-120.
[23] Sultanov, Hakim, and Jane Huffman Hayes. "Application of

reinforcement learning to requirements engineering: requirements

tracing." In Requirements Engineering Conference (RE), 2013 21st IEEE
International, pp. 52-61. IEEE, 2013.

Appendix

TABLE 2. BROWSER REQUIREMENTS STATISTICS

TABLE 3. ITRUST REQUIREMENTS STATISTICS

 fkre fkgl cli now nocw num preds

Mean 48.3 12.2
12.

1
73.8 9.6 7.9

Median 47.7 11.7
12.

0
67.0 8.0 6.5

Min 14.2 6.0 6.4 20.0 0 2.0

Max 83.6 24.4
16.

7
197.0 32.0 21.0

Variance
222.

3
14.4 4.9 2305.4 52.6 26.2

Figure 1. Example of “Best” and “Worst” Requirements and Measures

Figure 2. ROC curve for combined measures for iTurst dataset

Figure 3. ROC curve for combined measures for Browser dataset

 fkre fkgl cli now nocw num preds

Mean 64.9 9.0 10.4 44.0 3.5 7.0

Median 67.1 7.6 10.1 38.0 4.0 6.0

Min 33.7 4.2 7.8 15.0 0 1.0

Max 82.5 13.9 15.2 77.0 7.0 17.0

Variance 242.7 12.6 4.5 456.4 7.7 24.0

Browser “best” : R8: “The html display zone shall be located directly

under the toolbar/address field. It shall have the width of the browser

window and shall occupy the rest of the height of the browser
window (except for the small space needed to divide it from the

toolbar/address field and any space you want to allocate for the status

bar at the bottom).”

AGL FKRE FKGL GFS SMOG CLI ARI

13 55.1 13 16 10.1 10.9 14.9

Browser “worst” : R9: “The type and the number of controls you

decide to use for the html display zone is not fixed by the
requirements. Your solution must satisfy all requirements set in this

document, but otherwise is up to you.”

AGL FKRE FKGL GFS SMOG CLI ARI

10 62.9 9.2 13.9 10.1 10.1 8.8

