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Abstract—Software bugs contribute to the cost of ownership 

for consumers in a software-driven society and can potentially 

lead to devastating failures.  Software testing, including 

functional testing and structural testing, remains a common 

method for uncovering faults and assessing dependability of 

software systems. To enhance testing effectiveness, the developed 

artifacts (requirements, code) must be designed to be testable. 

Prior work has developed many approaches to address the 

testability of code when applied to structural testing, but to date 

no work has considered approaches for assessing and predicting 

testability of requirements to aid functional testing. In this work, 

we address requirement testability from the perspective of 

requirement understandability and quality using a machine 

learning and statistical analysis approach. We first use 

requirement measures to empirically investigate the relevant 

relationship between each measure and requirement testability. 

We then assess relevant requirement measures for predicting 

requirement testability.  We examined two datasets, each 

consisting of requirement and code artifacts.  We found that 

several measures assist in delineating between the testable and 

non-testable requirements, and found anecdotal evidence that a 

learned model of testability can be used to guide evaluation of 

requirements for other (non-trained) systems. 

Index Terms—requirement testability, code testability, 

machine learning, supervised classification learning, statistical 

analysis, correlation analysis, subjective assessment, human 

analyst 

I. INTRODUCTION 

 

A nascent aviation industry would never have dreamed of 

civilians riding in commercial planes just a short time after the 

first successful manned flight, yet the software industry seems 

to have no difficulty releasing software of questionable quality 

levels.  The comparison may seem extreme – crashed airplanes 

cost lives.  But in 2015, failed computer programs can also 

cost lives, cost large amounts of money, risk the privacy or 

identity of consumers, and/or cause severe damage to the 

environment. Thus, the quality and reliability of systems must 

be assured before the system is deployed to the field. Testing 

(including functional and structural testing) is still the most 

commonly used approach to assess the quality of software 

systems.   

Software testability has  been an important issue for 

software testing and verification [1]. Software is built upon 

product requirements, and requirements information has been 

used in functional testing to ensure that a program meets its 

requirements. Therefore, it is important to develop testable 

requirements to improve the effectiveness of functional testing. 

However, most work to date has primarily focused on code-

level testability, including both static [2] and dynamic 

measures [1]. While the importance of using requirements to 

aid functional testing has been recognized by the requirements 

engineering community [3][4], little work has addressed the 

problem of assessing and predicting testability of requirements.  

  Binder [5] provided a number of definitions of 

requirement testability from various sources “ A requirement is 

considered to be testable if an objective and feasible test can be 

designed to determine whether the requirement is met by the 

software. [6]”  Also, defined in IEEE standard 610.12, 

requirement testability is “The degree to which a requirement 

is stated in terms that permit establishment of test criteria and 

performance of tests to determine whether those criteria have 

been met [7].”  If requirements are written to support testing, 

the code that is developed to implement the requirements 

should be easier to test.  This should in turn lead to higher 

quality software. 

Analogous to the use of code metrics (e.g., assertions, 

cyclomatic complexity) to predict code-level testability, we 

posit that existing requirements quality measures such as 

understandability/readability can be useful in predicting 

requirement testability. Enlightened developers ensure that 

requirements, generally written in natural language text, are 

consistent and complete and readable; often using automated 

tools.  Automated tools can also be used to easily and quickly 

capture requirement quality measures. 

In this paper, we present an approach for assisting software 

engineers to assess the testability of requirements using a 

learned model combining a number of static quality measures 

found to have some level of correlation with testability. 

Specifically, we investigate the relationship between each 

static measure (X) and testability, where testability is manually 

determined based on X’s definition. We then identify measures 

that affect requirement testability, and use logistic regression 

analysis to evaluate the capability of these measures to predict 

requirement testability. We use the measures to learn a model 

of testability, assessing the accuracy of the model on the two 

datasets (used to train and test) as well as anecdotally on a 

third non-trained dataset.  Our hope is that we can ultimately 

help requirements and software engineers to determine if the 

requirements have been specified in a testable way before 

proceeding to later phases of the development lifecycle.  In our 

empirical study we use two real world subjects.  

The paper is organized as follows.  Section II discusses 

requirement testability.  Section III presents the study design, 



correlation analysis, logistic regression, supervised learning, 

and threats to validity.  Section IV discusses results and 

analysis.  Related work is presented in Section V.  Section VI 

discusses conclusions and future work. 

II. TESTABILITY 

This section presents definitions and measures of 

requirement testability. 

A. Definitions of Requirement  Testability 

While a number of definitions of requirement testability 

have been provided by various sources, they are all concerned 

with the degree to which tests can be created, executed, and 

verified against expected output. We therefore posit that a 

requirement is testable if a complete testing scenario used in 

functional testing can be found. A testing scenario includes: 1) 

test input, 2) test execution, and 3) expected output. A test 

input is a condition used to direct how a system under test 

behaves. A test execution is a sequence of steps to execute a 

test input. An expected output is the correct system behavior 

under a test input.  

Consider an example requirement “If a user clicks the 

“send” button, an email must be sent within 5 seconds.” This 

requirement is testable because all three aforementioned 

conditions are met. Specifically, “send” is an input, a test 

execution involves sending an email, and the expected output 

is “email sent within 5 seconds.” Since measuring requirement 

testability is a subjective and difficult task, this process often 

involves a human in the loop.  

B. Measurement of Requirement Testability Factors 

      We hypothesize that several factors can potentially 

influence requirement testability. These factors in particular 

appear to be: 1) the degree to which a requirement is readable, 

2) the number of predicates in a requirement, and 3) the 

number of total/complex words used in a requirement 

(described in Section III). By leveraging these factors, we 

should be better able to create effective models to predict 

requirement testability.  

We collected several measures to assess readability of the 

requirements:  

 Average Grade Level (agl) 

 Flesch Kincaid Reading Ease (fkre) 

 Flesch Kincaid Grade Level (fkgl) 

 Gunning Fog Score (gfs) 

 SMOG Index (smog) 

 Coleman Liau Index (cli) 

 Automated Readability Index (ari) 

Low readability of a requirement implies that it may not be 

testable.  A subset of these measures, and the tool we used for 

collection, are further explained in Section III. B.  

      The next measure we used in this study is number of 

predicates. Predicates specify what subjects are or what they 

do. For example, given a requirement “the user can edit the 

Style Preferences through the Style Preference GUI 

interface,” the verb “edit” is a predicate that describes what 

the user can do. If a requirement does not contain any 

predicates (or few), then it may not be testable. 

III. STUDY 

This section presents the study design, techniques, and 

threats to validity. 

To assess our approach we consider two research 

questions. 

  

RQ1 - Do quality measures that characterize the 

understandability and quality of requirements also 

characterize testable requirements? 

   RQ2 – Can a model of requirement testability be learned and 

applied to other requirements? 

 

The first research question explores the relationship 

between quality measures and testability and determines the 

predictive ability of each quality measure. The second research 

question lets us investigate whether existing requirement 

quality measures can be modeled and assist in categorizing 

requirement testability.  

A. Objective of Analysis 

As objects of analysis we chose two real world data sets -

Browser and iTrust [8]. The two datasets have been widely 

used in other requirements research. We make use of their 

requirements, code, and trace links between their requirements 

and code. Browser
1
 is a web browser written in Java by the 

École Polytechnique de Montréal. It consists of 24 

requirements and 52 code modules. iTrust is  a medical 

application that maintains patient medical history and records 

and permits communication with Doctors. It consists of 59 use 

cases and 11 code modules.  It is written in Java.  

To address our research questions, we required labels for 

the requirements as testable or not. We asked three of the co-

authors (in isolation) to assign scores from 1 to 5 to each 

requirement, where 5 is easy to test and 1 is hard to test.  The 

remaining co-authors examined the labels and assessed inter-

rater agreement.  For both datasets, the agreement was very 

low.   

The remaining co-authors thus looked at a number of 

voting strategies.  Using majority rule, it was found that 

approximately 66% of the labels could be assigned.  For 

requirements with no majority rule, the labels of the most 

experienced co-author were selected (has worked in 

requirements area and specifically with natural language 

processing and consistency checking of requirements for eight 

years).  A binary label was also assigned; labels of 1, 2, 3 were 

given a 0 for testability and 4, 5 labels were tagged as 1.  The 

original labels (1 – 5) were then re-examined and it was found 

that roughly 10% of the labels were changed (0 to 1 or vice 

versa) due to use of the experienced co-author labels.   

In addition, the remaining co-authors examined the 

agreement on the “best” and “worst” requirements (those 

labeled 5 and 1, see Fig. 1 in Appendix for examples).  It was 

                                                           
1
 We studied 10 of the 24, for which trace links to code were provided by the 

authors 



found that the three co-authors had strong agreement on these 

labels, thus some analysis used these entries.  Models were 

built and analysis was undertaken (using the spreadsheets and 

arff files), as described below. 

Table 1 summarizes the distribution of testable (labeled as 

1) and non-testable requirements (labeled as 0). As the table 

shows, for iTrust and Browser, over 70% of the requirements 

were categorized as testable. Tables 2 and 3 (in appendix) 

provide descriptive statistics for a subset of the measures for 

iTrust and Browser. 

TABLE 1. DISTRIBUTION OF TESTABLE REQUIREMENTS 

Systems Testable Reqts % 

iTrust 18 75 

Browser 8 72.73 

 

B. Quality Measures 

 To answer our research questions, we also required 

requirement quality measures [9]. Flesch-Kincaid reading ease 

and grade level (fkre and fkgl) both examine the number of 

words and syllables in a requirement.  Flesch-Kincaid reading 

ease estimates how easy it will be to understand the 

requirement. Flesch-Kincaid grade level estimates the grade 

level at which the text has been written (i.e., a result of 6 

indicates that the text was written so that a typical 6
th

 grader 

can understand it).  Coleman-Liau index (cli) uses the number 

of characters and words in a requirement to estimate the grade 

level of the text.  Gunning Fog score (gfs) is calculated by 

looking at the ratio of words to complex words.  A complex 

word is any word with three or more syllables. SMOG index 

(smi) uses a more accurate syllable count. Automated 

readability index (ari) is similar to cli but uses a different ratio 

between number of characters and words. All of the 

aforementioned measures are used often in the education field. 

Average grade level (agl) is calculated as the average of fkgl, 

cli, smog, ari, and gfs. The number of predicates (pred), the 

number of words in each requirement (now), and number of 

complex words (nocw) were also measured.   

We believe that some measures are redundant with others 
and thus can be eliminated. These measures do not provide 
insights into our research questions. To eliminate redundant 
measures, we identified several groups of measures such that 
any two measures in the same group are strongly correlated – 
correlation analysis was performed as described in Section C. 
We believe that each group can be represented by one or two 
measures within the group. 

Specifically, we identified three groups of measures. The 
first group includes five measures: fkgl, gl, fkre, gfs, and ari. 
We selected fkgl and fkre to represent these five measures. The 
second group contains two measures: cli and smi, we selected 
cli. The third group contains three measures: now, nocw, and 
nos, and we used now and nocw to represent this group. The 
measure pred is not correlated with any measures and thus was 
selected. This process yielded us six measures: fkgl, fkre, cli, 
now, nocw, and pred.  

C. Data Analysis Techniques 

We chose machine learning and statistical analysis 

techniques to allow us to answer each of our research 

questions.  

1) Correlation Analysis. To address our research 

question #1, we first apply correlation analysis to help 

distinguish what aspects of a requirement played a role in its 

testability. Correlation analysis estimates a sample correlation 

coefficient, which ranges from -1 to 1 and quantifies the 

direction and strength of the linear association between a 

dependent variable (testability) and an independent variable 

(quality measures). A correlation coefficient of 1 represents a 

perfect positive linear relationship. When using correlation 

analysis in our study,  the values of dependent variables are 

testability labels (i.e., 0, 1). In this study we saw very low 

correlation and thus interpret correlation coefficients less than 

-0.3 as a sign of weak negative linear relationship. 

2) Logistic Regression Analysis. To further explore RQ1, 

we apply logistic regression (LR) to examine the ability of 

each quality measure to predict a binary response for  

requirement testability. LR is a standard statistical model used 

to measure the relationship between categorized dependent 

variables and one or more independent variables. Univariate 

LR involves one independent variable; multivariate LR 

involves one or more independent variables. In our study, the 

dependent variable is requirement testability with binary 

labels. We used both univariate and multivariate LRs to find 

the relationship between static measures and requirement 

testability. The univariate analysis allows us to find individual 

effect of each static measure on testability, whereas 

multivariate analysis is used to evaluate the combined effects 

of all static measures on testability.   

To evaluate the performance of our predicated model, we 

used ROC (receiver operating characteristic) curve, where 

area of 1 represents a perfect model, and that of 0.5 or below 

represents a random model. 

3) Supervised Learning – Decision Tree. To answer our 

second research question, we performed N-fold cross 

validation (where N was 10 whenever possible) using the 

Weka J48 classifier to analyze the data. J48 is an 

implementation of the C4.5 decision tree algorithm [10]. A 

decision tree can be used to decide the value of a dependent 

variable (in our case, testable) based on a set of independent 

variables. The root of a decision tree represents that the C4.5 

algorithm begins with the original dataset. Each internal node 

in a decision tree indicates an iteration in which C4.5 chooses 

the unused attribute that most effectively splits the data. The 

leaves show the values of the dependent variable. 

We determine the accuracy of the classification based on 

the following results given by Weka: confusion matrix, 

detailed accuracy by class, correctly classified instances, 

incorrectly classified instances, and Kappa statistic.  

The confusion matrix, detailed accuracies, and the 

correctly/incorrectly classified instances show the raw 

numbers and the percentage of the instances that are 

correctly/incorrectly classified. In our case we have 2*2 



confusion matrixes because we have two classes: testable and 

non-testable. For example, a confusion matrix  

 a b 

 5 15 |    a = testable 

 10 20 |    b = non-testable 

shows the raw numbers of the instances that are true positive 

(5), false positive (10),  false negative (15), and true negative 

(20). The matrix means that five testable instances and 10 

non-testable instances are classified as testable, while 15 

testable instances and 20 non-testable instances are classified 

as non-testable. In total, 25 (50%) instances are correctly 

classified, and the other 25 (50%) instances are incorrectly 

classified.  

The detailed accuracies are calculated based on the 

confusion matrix for each class. For the class testable, the 

True Positive (TP) rate measures the proportion of testable 

instances which were correctly classified as testable: 5/(5+15) 

= 0.25. The False Positive (FP) rate measures the proportion 

of non-testable instances which were incorrectly classified as 

testable: 10/(10+20) = 0.33. The Precision measures how 

many testable instances determined by the classifier are truly 

testable: 5/(5+10) = 0.33. The Recall measures how many 

testable instances are correctly identified. The Recall is 

equivalent to the TP rate. The F Measure is the harmonic 

mean of Precision and Recall: 2*(0.33*0.25)/(0.33+0.25) = 

0.28. A ROC curve is constructed by using the TP rate and FP 

rate.  

The Kappa statistic [14] measures the agreement between 

the classifications with the true classes. It takes the agreement 

that may be due to chance into account. 

D. Study Operation 

We used Read-able.com [11] to collect measures for the 

requirements, including agl, fkre, fkg, gfs, smog, cli, and ari.  

We used a natural language processing technique Semantic 

Role Labeling (SRL) [12] to detect the predicates in natural 

language requirements. SRL identifies predicates together with 

the semantic arguments that are related to these predicates, and 

classifies the arguments into different roles. In the requirement 

“the user can edit the Style Preferences through the Style 

Preference GUI interface,” the role of “user” is subject, the 

role of “Style Preferences” is object, and the role of “Style 

Preference GUI interface” is the manner in which the “edit” 

action is performed. In this study we used the SRL tool Senna 

[13] to process natural language requirements and calculate the 

number of the identified predicates. All measures were 

collected into spreadsheets for analysis and were used to build 

arff files for Weka [14].  Our correlation analysis and LR 

analysis were performed by using Microsoft Excel and its 

XLSTAT plugin.  The supervised learning analysis was 

performed on Weka.  

E. Threats to Validity 

The primary threat to external validity for this study 

involves the representativeness of datasets (i.e., software 

systems, requirements). Other datasets may be larger than 

those studied and may exhibit different behaviors and 

complexity that can affect requirement quality. However, the 

datasets we utilized are popular and real; the systems we 

studied are real-world applications with requirements 

available.  Also, we studied systems from two different 

domains. 

The primary threats to internal validity for this study are 

possible mistakes in the study operations and possible faults in 

the tools that we used to perform evaluation. We controlled 

for these threats by first extensively validating our results for 

a smaller set of requirements for which we could determine 

correct results. We also chose to use popular and established 

tools (e.g., Weka, Senna, XLSTAT) for gathering data and 

performing analysis. A second major source of potential bias 

involves manually determining requirement testability.  To 

reduce this threat, we had numerous researchers evaluate each 

requirement, in isolation, and then applied various techniques 

to increase confidence in the requirement testability labels.    

Where construct validity is concerned, our measurements 

of requirement quality focus on readability/understandability. 

However, there are other metrics that could be considered, 

such as completeness, size, volatility, and traceability. The 

costs of applying the approach and the human costs of 

requirements inspection are also of interest. We reduced such 

threats by applying statistical analysis, ensuring that we 

checked the assumptions of each test we applied. In addition, 

we saw disagreement among our expert raters. Their 

testability ratings are inherently subjective and might not be 

reproducible. As mentioned, in cases of disagreement, we 

deferred to our most experienced rater to mitigate this threat. 

IV. RESULTS AND ANALYSIS 

This section discusses the results of correlation analysis, 

logistic regression, and supervised learning. 

A. Correlation Analysis 

For the iTrust dataset, the correlation coefficient between 

the measure now and testability has the highest absolute value: 

0.33. Because the correlation coefficient is -0.33, we believe 

that there is a weak negative linear relationship between now 

and testability. Other measures that have high absolute value 

correlation coefficients include fkre (-0.18) and fkgl (0.15), 

but their absolute values are not high enough to be a sign of 

correlation.  

For the Browser dataset, the correlation coefficient 

between now and testability is only -0.11, which is not a 

strong sign of correlation. However, the correlation coefficient 

between nocw and testability is -0.38. This means that nocw 

and testability may have a weak negative linear relationship. 

The next largest absolute correlation coefficients are for fkre 

(0.23) and fkgl (-0.22). However, as with the iTrust dataset, 

the evidence of correlation between these two measures and 

testability is not strong. The relationships between now/nocw 

and testability are reasonable. Requirements with more words 

and complex words are likely to be less readable, and 

requirements with low readability may be hard to understand 

and test.  



B. Logistic Regression 

In a regression model, each label bi is an estimated 

coefficient corresponding to independent variables. The larger 

the absolute value of bi, the stronger the effect of the static 

measure on predicting high requirement testability. The p-

value (-2Log Likelihood) is used to assess the significance of 

coefficients; we chose significance level 0.05.  A measure is 

highly predictive if its coefficient is significantly different 

from zero (b>0.1) in terms of the p-value.  

 

TABLE 4. UNIVARIATE LR ANALYSIS 

 

Table 4 shows the results of univariate LR analysis for 

each measure (reduced to eliminate collinearity) across the 

two datasets. For four out of six measures, their coefficients 

are significant (numbers indicated by bold font) for at least 

one dataset. The effectiveness scores of their predicted models 

were also high (AUC > 0.5).  Only fkgl and now did not 

demonstrate significance on either dataset. In fact, each of the 

four measures performed well on only one dataset. Our results 

imply that all five measures except for fkgl and now are 

related to testability. The extent to which a quality measure 

can be used to predict testability also varies across 

applications.    

 

TABLE 5. MULTIVARIATE LR ANALYSIS 

 

We next present the results obtained using multivariate LR 

analysis to illustrate how well requirement testability can be 

predicted when the static measures are used in combination – 

see Table 5. As the table shows, for both datasets, the 

coefficient values are significant. Figure 2 and Figure 3 

display the ROC curves for the combined measures for the 

two datasets.  On both datasets, the AUC values are higher 

than those reported in univariate LR analysis. This indicates 

that the predicted model with combined measures is more 

effective than that with single measures.  We next inspect the 

degree to which each measure can influence the requirement 

testability. Among the six measures, on each dataset, cli 

reported the highest coefficient score (numbers indicated by 

italic font). On the other hand, pred and fkgl reported the 

lowest scores for iTrust and Browser, respectively. While 

additional study is needed, if the results can generalize, cli is 

the most influential measure to requirement testability.   

Based on our findings, we believe the response to RQ1 is 

“Yes, static measures that characterize the understandability 

and quality of requirements also characterize testable 

requirements,” but more study is needed. 

C. Supervised Learning 

We applied supervised learning to address RQ2.  A model 
will assist in categorizing newly written or modified 
requirements as testable, easily validated by functional testing, 
or not.  Using measures we believe to be correlated with 
requirement testability labels, we used Weka to perform 
classification.  Specifically, we used the J48 learner 
(implementation of C4.5, discussed in Section III).  The intent 
is to apply the learned model to not yet evaluated requirements.  
Basically, a practitioner would need to only collect static 
measures for the requirements and then plug the static 
measures into the model (or use Weka to do so) to determine if 
the requirement appears to be testable.  If not, information 
from the model (such as the thresholds for the leaves of the 
classification tree) can be used to help improve the text of the 
requirement. 

In planning the study, we anticipated an unbalanced data 
challenge.  We hypothesized that most requirements would be 
non-testable.  However, the Browser and iTrust requirements 
were almost all testable.  To address our minority class (non-
testable requirements), we undertook a number of steps:  
boosting, bagging, and blending (called stacking in 
Weka).  The learned model still had very low accuracy for the 
minority class (we could achieve high accuracy for the 
majority class, but the model always labeled the non-testable 
instances as testable).  

Also, we found that we had too many measures in some 
cases with respect to the number of data records we had, 
especially for Browser.  We thus decreased the measures by 
only using one or two of the measures to represent a set of 
measures that correlated with each other (detected using 
correlation analysis described in Section III.B.).  The learned 
model was able to achieve 69% accuracy in predicting the 
testability label. The pruned tree that resulted is shown below 
(denoted Model 1): 

pred-adj <= 7 
|   fkgl <= 13 
|   |   nocw <= 1: testable (4.0) 
|   |   nocw > 1 
|   |   |   fkre <= 76 
|   |   |   |   nocw <= 4: testable (4.0) 
|   |   |   |   nocw > 4 
|   |   |   |   |   fkre <= 55.1: testable (2.0) 
|   |   |   |   |   fkre > 55.1: not-testable (2.0) 
|   |   |   fkre > 76: not-testable (2.0) 
|   fkgl > 13: not-testable (3.0) 
pred-adj > 7: testable (6.0) 
 
It is interesting that cli was not in the model.  When we 

examined all requirements of iTrust and Browser (as agreed by 
the researchers), this model resulted (denoted Model 2), 

cli <= 12.4 
|   fkgl <= 11.3 
|   |   fkre <= 52.6: 1 (27.0) 
|   |   fkre > 52.6: 0 (35.0) 
|   fkgl > 11.3: 1 (58.0) 
cli > 12.4: 0 (26.0) 

Systems iTrust Browser 

Measures bi p AUC bi p AUC 

fkre 0.663 0.037 0.824 0.340 0.346 0.708 

fkgl 0.438 0.094 0.806 0.568 0.163 0.792 

cli 1.348 0.003 0.889 0.024 0.949 0.542 

now 0.208 0.391 0.583 0.062 0.028 0.5 

nocw 0.168 0.05 0.62 0.062 0.868 0.5 

pred 0.029 0.911 0.509 0.369 0.035 0.667 

 bkfre bkfgl bcli bnow bnocw bpred p AUC 

iTrust 2.25 1.00 2.31 0.45 2.19 0.05 0.04 0.94 

Broswer 1.95 0.06 1.98 0.53 0.22 0.56 0.05 0.88 



with the following accuracy (described in Section III.C): 
 
Correctly Classified Instances         143               97.9452 % 
Incorrectly Classified Instances         3                2.0548 % 
Kappa statistic                          0.9575 
Mean absolute error                      0.0224 
Root mean squared error                  0.1411 
Relative absolute error                  4.5983 % 
Root relative squared error             28.5944 % 
Total Number of Instances              146      

 
=== Detailed Accuracy By Class === 
 
          TP Rate   FP Rate   Prec   Recall  F-Meas   ROC Area  Class 
                 0.951     0          1         0.951     0.975      0.994        0 
                 1         0.049      0.966     1         0.983      0.994        1 

      Wt.Avg   0.979     0.029      0.98     0.979    0.979     0.994 

 
It is notable that cli was a part of the learned model. 

To determine if a model learned on iTrust and Browser 

could be used to predict testable requirements for a different 

project, we examined a student project called CardPlay-D.  

This project is an Android application used for playing cards; 

it consists of 43 requirements and 39 code modules.  

CardPlay-D had 22 testable requirements and 21 non-testable 

requirements, a much different distribution than Browser and 

iTrust.  Applying Model 1, we looked at each individual 

measure in the model as well as the overall model (decision 

tree).  We found that all CardPlay-D requirements have pred 

less than or equal to 7 (recall that >=7 means testable).  All 

requirements except one have fkgl less than or equal to 13 

(where <= 13 means testable).  Fourteen were incorrectly 

predicted, but 26 were correctly predicted as testable (65% 

correct).  For fkre, 19 requirements were predicted correctly as 

testable (less than or equal to 55.1) but five were not – or 

73.6%.  When the rules are used together (without nocw, 

which we did not have for the student project), nine 

requirements are predicted to be testable. Six were predicted 

correctly (or 66.67% correct). 

Looking at Model 2, for cli less than or equal to 12.4, there 

are nine requirements predicted incorrectly and 17 correctly 

(or 65%).  For fkgl <=11.3, there are 13 requirements 

predicted incorrectly and 26 predicted correctly or 66%.  For 

fkre <= 52.6, three are predicted incorrectly and seven 

correctly (70%). When all three rules are applied (cli, fkgl, 

fkre,) no requirements are selected. 

Our preliminary results show that there is promise of being 

able to answer RQ2 “Yes, we can learn a model of 

requirement testability.”  However, our results are not 

conclusive and further analysis with more datasets is required. 

V. RELATED WORK 

We address requirement testability, code testability, and 

earlier application of machine learning to requirements 

engineering problems. 

Boehm [16] discusses the reasons for software 

requirements and design specifications to be verified and 

validated.  He defines the terms “verification” and 

“validation,” as well as explains their context in the software 

life-cycle.  Also he evaluates the relative cost and 

effectiveness of a software requirement.  In talking about the 

basis of a good requirement, he gives the four basic criteria of 

a requirement: completeness, consistency, feasibility, and 

testability. 

Along the lines of requirement criteria, Davis et al. [15] 

elaborate the important characteristics of a quality Software 

Requirements Specification, including but not limited to: 

unambiguous, complete, verifiable, precise, and traceable. 

Measures are proposed for the attributes.  It is noted that 

measuring understandability is difficult and a subjective 

measure is proposed based on readers' belief related to 

understanding the requirement. 

Binder [5] speaks about testability in object-oriented 

development.  He suggests that one “map the testability 

terrain for object-oriented development to assist the reader in 

finding relatively shorter and cheaper paths to high 

reliability.” Binder discusses how testing can help reveal 

faults in software, allowing for a more stable product to be 

designed.   

Voas [1] introduced the notion of software testability, a 

quality describing how easy it is to test software. He described 

information loss issues that lead to loss of testability and 

introduced a new dynamic analysis metric, sensitivity analysis, 

for determining code's testability. Testability assumes that the 

tester has a fixed user profile, the probability distribution 

defining the input domain. The implication of this dependency 

is that the testability of a program varies with the inputs that 

testers select. Our approach to measuring testability is 

orthogonal to Voas’s sensitivity analysis because we look at 

the requirement instead of the code. 

Much work has focused on using artificial intelligence and 

machine learning techniques to solve software engineering 

problems. Here we only list some of them. Gondra proposed 

an approach for using machine learning to select the software 

metrics that indicate fault-proneness [17]. Gondra used data 

on software metric values to train an artificial neural network, 

and then analyzed this neural network to identify metrics most 

likely to be useful.  Gyimothy, Rudolf, and Istvan presented a 

study which measures the characteristics of the source code of 

open source projects [18]. In this study Gyimothy et al. used 

machine learning techniques to analyze the data obtained from 

a bug database and showed that such data is useful for fault-

proneness prediction. Perini, Angelo, and Paolo proposed an 

approach for deciding software requirement priority using 

machine learning [19]. This approach takes into account both 

the requirements ordering generated using machine learning 

techniques and the stakeholders’ preference. The combination 

of both types of information facilitates the task of 

requirements prioritization. 

Hayes, Li, and Mohammad introduced a method to 

facilitate the task of analyzing software requirements using 

Weka [20]. The key idea of this method is integrating Weka 

methods into requirement research tools such as TraceLab 

[21] so that researchers can focus on software requirement 

analysis.   Huang, Raffaella, Zou, and Solc described an 

approach to detect and classify non-functional requirements 

automatically [22]. The approach iteratively trains a classifier 



of non-functional requirements. Sultanov and Hayes 

introduced a method that uses the machine learning technique 

Reinforcement Learning (RL) to perform requirement tracing 

[23]. The study shows that RL generates high quality 

candidate links between requirement artifacts. Our approach is 

similar to the above in that we used machine learning to 

address a requirement engineering and software engineering 

issue.  In contrast, none of the aforementioned studies address 

our focus:  assessing and predicting testability of 

requirements.   

VI. CONCLUSIONS AND FUTURE WORK 

We have presented an approach for assessing testability of 

requirements based on a collection of requirement quality 

measures. We have conducted an empirical study using a set 

of statistical and machine learning techniques. Our results 

suggest that several measures show promise for assessing 

testability.  The measure now has moderate correlation to 

testability for iTrust.  The measure nocw has moderate 

correlation to testability for Browser.  For both datasets, fkre 

and fkgl have lower correlation coefficients, but are much 

higher than other measures:  cli, fkre, and pred.  Specifically, 

we found that cli was the most predictive measure in the LR 

analysis; other statistically significant measures in LR analysis 

were nocw, pred, and fkre.  We found that fkre and cli were 

important measures in supervised learning.  We also found 

anecdotal evidence that a model trained on one or more 

datasets can be used to evaluate requirements from a different, 

non-trained dataset.   

In the future, we intend to perform more extensive 

empirical studies by considering more real world datasets. We 

also intend to consider more requirement measures, such as 

traceability and completeness. Finally, we intend to perform 

user studies to evaluate how well our approach can help 

developers improve the testability of requirements.    
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Appendix 

 

TABLE 2. BROWSER REQUIREMENTS STATISTICS 

 

TABLE 3. ITRUST REQUIREMENTS STATISTICS 

 fkre fkgl cli now nocw num preds 

Mean 48.3 12.2 
12.

1 
73.8 9.6 7.9 

Median 47.7 11.7 
12.

0 
67.0 8.0 6.5 

Min 14.2 6.0 6.4 20.0 0 2.0 

Max 83.6 24.4 
16.

7 
197.0 32.0 21.0 

Variance 
222.

3 
14.4 4.9 2305.4 52.6 26.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.  Example of “Best” and “Worst” Requirements and Measures 

 

 

 
 

Figure 2. ROC curve for combined measures for iTurst dataset 

 

 
 

 
 

Figure 3. ROC curve for combined measures for Browser dataset 

 

 fkre fkgl cli now nocw num preds 

Mean 64.9 9.0 10.4 44.0 3.5 7.0 

Median 67.1 7.6 10.1 38.0 4.0 6.0 

Min 33.7 4.2 7.8 15.0 0 1.0 

Max 82.5 13.9 15.2 77.0 7.0 17.0 

Variance 242.7 12.6 4.5 456.4 7.7 24.0 

Browser “best” : R8: “The html display zone shall be located directly 

under the toolbar/address field. It shall have the width of the browser 

window and shall occupy the rest of the height of the browser 
window (except for the small space needed to divide it from the 

toolbar/address field and any space you want to allocate for the status 

bar at the bottom).” 

 

AGL      FKRE      FKGL      GFS      SMOG      CLI      ARI 

13          55.1         13             16         10.1          10.9     14.9 
 

Browser “worst” : R9: “The type and the number of controls you 

decide to use for the html display zone is not fixed by the 
requirements. Your solution must satisfy all requirements set in this 

document, but otherwise is up to you.” 
 

AGL      FKRE      FKGL      GFS      SMOG      CLI       ARI 

10          62.9         9.2            13.9      10.1           10.1      8.8 


