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Abstract—Data is the driver of artificial intelligence in require-

ments engineering.  While some applications may lend themselves 

to training sets that are easily accessible (such as sentiment detec-

tion, feature request classification, requirements prioritization), 

other tasks face data challenges.  Tracing and domain model build-

ing are examples of applications where data is not easily found or 

in the proper format or with the necessary metadata to support 

deep learning, machine learning, or other artificial intelligence 

techniques.  This paper surveys datasets available from sources 

such as the Center of Excellence for Software and Systems Trace-

ability and provides valuable metadata that can be used by re-

searchers or practitioners when deciding what datasets to use, 

what aspects of datasets to use, what features to use in deep learn-

ing, and more.   

Index Terms—artificial intelligence, requirement engineering, 

deep learning, machine learning, datasets, metadata, training sets 

I. INTRODUCTION 

One need only look at the program for the IEEE International 

Conference on Requirements Engineering 2018 (RE 2018) to 

see the impact of artificial intelligence (AI) on academic re-

search for requirements engineering.  Topics ranging from clas-

sification of requirements, prioritization of requirements, senti-

ment analysis of reviews of software features, elicitation of se-

curity requirements, validation of requirement reviews, and pro-

cess mining all require the application of artificial intelligence 

techniques.  These topics are not merely ivory tower fodder.  Pe-

rusal of the industry track papers for RE 2018 indicates that ar-

tificial intelligence supports many important undertakings to, for 

example, detect requirements ambiguity, diagnose requirements 

violations, identify uncertainty in contextual requirements, and 

perform requirements classification for redundancy and incon-

sistency checking. 

Those who seek to apply artificial intelligence techniques for 

requirements engineering such as machine learning, neural net-

works, and genetic algorithms may quickly encounter their first 

challenge: lack of data.  Once data is obtained, researchers may 

encounter another challenge: understanding the data. 

It may be easier to find appropriate datasets for certain en-

deavors in requirements engineering than for others.  Take sen-

timent analysis, for example.  Feature reviews can be found for 

software applications, most including a score or number of stars 

assigned by the author.  Researchers can use these scores as a 

de-facto training set where a higher score indicates a happier 

user. 

Tracing research faces data challenges.  It can be difficult to 

find multiple artifacts for a given application, be it open or 

closed source.  Once software applications with multiple arti-

facts are located, it is rare for actual trace links (answer sets) to 

exist.  Rath et al. [15] have begun work to use commits to assist 

in recovering answer sets and Kalim et al. [16] have developed 

a tool for crowd sourcing of answer sets (called MIDAS), but 

some projects do not have the required commits and the MIDAS 

tool requires an initial answer set of some sort. 

This paper supports application of artificial intelligence for 

requirements engineering by analyzing a collection of traceabil-

ity datasets.  The information can be used to assist researchers in 

selecting datasets and in understanding selected datasets and 

their attendant results.  The metadata can also assist in feature 

selection for machine learning. 

The paper is organized as follows.  Section II presents the 

approach we used to gather metadata on the data sets.  Section 

III presents the metadata.  Section IV describes related work, and 

Section V concludes.   

II. BACKGROUND AND APPROACH 

This section provides background information on traceabil-

ity and its terminology.  It presents the tools used to obtain 

metadata on each dataset: readability-metrics, Stanford Parser, 

and TraceLab.  The metadata is also described. 

A.   Traceability 

Requirements traceability is defined as “the ability to de-

scribe and follow the life of a requirement, in both a forwards 

and backwards direction (i.e., from its origins, through its devel-

opment and specification, to its subsequent deployment and use, 

and through periods of on-going refinement and iteration in any 

of these phases) [1]. ”  In most tracing research, various tech-

niques are applied to find potential or candidate links between 

elements of source and target artifacts.  For example, one may 

trace from a requirements specification to a design document.  



The candidate links that are retrieved by the technique are then 

examined or vetted by human analysts in order to determine the 

final links.  The final links are then compared against a gold 

standard or answer set in order to determine the accuracy of the 

tracing technique. 

B.   Readability-metrics 

Earlier work by Hayes et al. [2] demonstrated that certain 

characteristics of trace datasets could be used to predict trace 

links between source and target artifacts.  Particularly, measures 

pertaining to the readability of the text contribute most to the 

accuracy of the predictions.  This paper follows that example and 

mines the same measures for each dataset using the readability-

metrics tool and TraceLab component for Stanford Parser [3] de-

veloped by the second and third co-authors.  The tool provides 

two types of measures.   

1) Readability measures: In general, readability measures 

attempt to estimate the ease or difficulty with which one can 

read and comprehend a text.  Most measures provided by read-

able.com are ease of reading measures, meaning the higher the 

value, the harder the text is to read.  These measures tend to 

follow the grade levels of the United States, so that a measure 

of 9 means that the text could generally be understood by a 

student at the 9th grade level.  The measures falling under this 

category include (equations are in Fig. 2 at the end of the paper): 

a) Flesch reading ease: Ease with which a text can be read 

(higher = easier to read), based on sentence length and word 

length. 

b) Flesch-Kincaid grade level: Grade level of a text 

(higher = harder to read), it uses average sentence length (in 

words) and average number of syllables per word. 

c) SMOG index1: Estimate of years of education needed to 

read text (higher = harder to read), it uses a count of polysyllable 

words and adds a constant. 

d) Automated readability index: Alternative means of 

measuring grade level of a text (higher = harder to read), uses 

average number of characters per word and average number of 

words per sentence. 

2) Basic text measures: These measures characterize the 

structure of the text.  The measures falling under this category 

include: 

a) Number of words: Complex text elements will have 

many sentences (higher = harder to read). 

b) Number of sentences: Complex text elements will have 

many sentences (higher = harder to read). 

c) Mean words per sentence: Complex sentences have 

many words (higher = harder to read) 

d) Number of polysyllable words: Complex words have 

many syllables (higher = harder to read). 

e) Percentage of polysyllable words: Complex words have 

many syllables (higher = harder to read). A polysyllable is de-

fined here as a word that contains three or more syllables. 

                                                           
1 SMOG requires a minimum of 30 sentences for a calculation. Some datasets 

did not meet this and thus had 0 as scores. 

C.   Stanford Parser 

The Stanford Part-Of-Speech Tagger [13] reads in text and 

assigns parts of speech tags, such as NN for proper noun, to each 

word or symbol. The english-left3words-distsim.tagger training 

model was used to tag each data set. Once the data sets were 

tagged, each word was split from its tag, and tags that started 

with JJ, NN, PRP, or VB were counted. The tags indicated if the 

word was an adjective, noun, pronoun or verb, respectively. The 

total number of tags in each data set were also counted. 

D.   TraceLab 

Traceability researchers have long developed their own si-

loed traceability tools, such as Poirot [4], RETRO.NET [5], and 

ADAMS [6].  Besides requiring a large investment of time and 

energy to develop, these tools do not readily permit replication 

of experiments, comparison of results, and do not support reuse 

or easy modification.  To address this, a group of researchers led 

by DePaul University and William and Mary University devel-

oped TraceLab [6].   

TraceLab is an experiment environment that provides a 

graphical interface in which researchers can create and run trac-

ing, or more generally any, experiments consisting of reusable 

components that are executed sequentially. These components 

contain pre-written code that can be placed in the experiment in-

terface to manipulate data stored in the workspace. Having com-

ponents written in advance with their code isolated from one an-

other allows experiments to be shared more easily among re-

searchers, improves replicability, and decreases development 

time. 

To obtain the parts of speech metadata, a TraceLab compo-

nent was developed to utilize the Stanford Parser’s part-of-

speech tagger.  The experiment using this component is shown 

in Figure 1. 

 

 
Fig. 1.  Stanford Parser component in TraceLab. 

To obtain the readability and basic text metadata, a Python 

package was developed comprised of functions that can calcu-



late various readability metrics for a body of text. This function-

ality is facilitated by the Natural Language Toolkit package [11], 

which provides word and sentence tokenizers as well as an in-

terface to the CMU Pronouncing Dictionary [12]. This diction-

ary maps English words to their pronunciations as a list of pho-

nemes and was used to determine the number of syllables a word 

contains. 

III. METADATA 

This section presents the metadata for the datasets as well as 

correlation analysis results. 

A.   Dataset Selection 

To identify datasets for use, recent traceability papers, the 

Community Data Sets page of the Center of Excellence for Soft-

ware and System Traceability (COEST) website, and the dataset 

collection of our research group were examined.  Once datasets 

were identified, their artifacts were also examined. Datasets in-

cluding artifacts that could not be processed by the readability 

tools were omitted.  Reasons for exclusion were varied such as 

the existence of non-English text or code in the datasets, and lack 

of complete sentences in the datasets. This resulted in only five 

datasets being used from the COEST repository (coest.org, Re-

sources, Community Datasets) and only one from the University 

of Kentucky repository (https://selab.netlab.uky.edu/AIRE-

2019-hayes-payne-leppelmeier-meta-data.zip). 

Table I gives an overview of each dataset, providing the 

name, description, source and target artifact types, and number 

of links in the answer set.  As can be seen, there are several do-

mains represented such as health care (CCHIT, Infusion Pump), 

science (CM-1), business (GANNT), and telephony (Waterloo). 

These trace datasets lend themselves well to use of artificial 

intelligence for requirements engineering.  The Waterloo dataset 

provides 34 student projects all written to the same specification 

for internet telephony.  An answer set is provided for each.  A 

researcher could use a subset of the 34 for model building/train-

ing and predict trace links on the test set (the remainder).  

Also, per Zogaan et al.’s Traceability-Data Quality Assess-

ment (T-DQA) Framework [17], Waterloo is accessible (availa-

ble, not licensed, stored in our repository that has been made 

available), possesses intrinsic characteristics (it is from a useful 

domain and has 34 development teams represented), it has con-

textuality (is relevant and trustworthy), and it can be interpreted 

(thus it possesses representational characteristic). 

The CM-1 dataset has been used frequently, possibly more 

than any other trace dataset (Zogaan et al. show it as the aero-

space domain with 22 uses [17]). This dataset is notoriously 

challenging for tracing techniques when it comes to precision (a 

measure of how many false positive links a trace method re-

trieves).  A researcher can apply artificial intelligence techniques 

to strive to improve the precision for this dataset.  Per the T-

DQA, CM-1 is accessible (available, not licensed, stored in UK 

repository, which has been made available), intrinsic (aerospace 

domain), contextual (relevant, trustworthy), and representational 

(interpretable). 

CCHIT and Infusion Pump are in the health care domain.  It 

is easy for researchers to find repositories of health care docu-

ments in order to augment queries when tracing, build domain 

ontologies, generate word embeddings, etc. These datasets are 

accessible (available and no license and stored at COEST), in-

trinsic (useful domain), contextual (relevant and trustworthy), 

and representational (interpretable). 

GANTT is a business application that can be used to manage 

any project including software engineering projects.  It has been 

used in software maintenance tasks that apply trace matrices re-

sulting from tracing techniques.  AI researchers could use this 

dataset with other business applications or could pursue tracing 

research, perhaps replicating the earlier experiments to see if 

their improved trace matrices (from AI techniques) yield im-

proved software maintenance results.  Looking at the T-DQA, 

GANTT is accessible (available, not licensed, stored in UK re-

pository, which that has been made available), intrinsic (business 

domain), contextual (relevant, trustworthy), and representational 

(interpretable). 

TABLE I.  DATA SET OVERVIEW 

Dataset 

Name 

Description Source 

artifacts 

Target 

artifacts 

Links 

Infusion 

Pump 

(COEST) 

A dataset that 

extracts 

requirements 
and components 

from a 

specification for 
a medical 

infusion pump. 

126 high-level 

requirements 

21 low-level 

components 

131 

CCHIT-2-
WorldVista 

(COEST) 

An industrial 
dataset that 

provides trace 

links between 
CCHIT 

healthcare 

regulatory codes 
and 

requirements for 

WorldVista. 

116 
regulatory 

codes 

1064 
requirements 

587 

GANTT 
(UK) 

A dataset for a 
project 

management 

tool. 

17 high-level 
requirements 

 

 

69 low-level 
design 

elements 

68 

CM-1 (UK) A partially sani-

tized dataset for 

a space science 
instrument from 

NASA, written 

in C with 20 
KSLOC 

235 high level 

requirements 

220 design el-

ements 

361 

WARC 

(UK) 

A dataset for a 

web archive 

tool. 

42 functional 

requirements, 

21 

nonfunctional 
requirements 

(63 total) 

89 software 

requirement 

specifications 

136 

Waterloo 
(UK) 

An internet 
telephony 

application 

developed by 34 
student groups 

as part of a 

course at Univ. 
of Waterloo. 

1092 
functional 

requirements, 

209 
nonfunctional 

requirements 

(1301 total) 

383 use cases 2475 



WARC is a multi-artifact dataset that can support, e.g., trac-

ing and requirements classification research (non-functional re-

quirements are a separate artifact). Also, human study data exists 

[18], indicating how human analysts interacted with trace matri-

ces built using traditional information retrieval methods:  AI re-

searchers could repeat that study using improved trace matrices. 

B.   Metadata 

Review of related work on metadata and machine learning 

shows that there are taxonomies for metadata, that metadata is 

widely used by services such as YouTube and Google, but that 

there is little information on what metadata is used or how it is 

selected: except for an article on doing so for technology-as-

sisted review (automatically classifying documents based on ex-

pert input).  That work stated “Questions still remain, however, 

regarding the extent to which metadata fields should be utilized, 

which fields are likely to be most constructive, and which tech-

niques would prove most efficacious…” and then go on to say 

that they defer “treatment of the question of exactly which spe-

cific metadata fields are best suited for machine learning. [19]” 

With no prior art to guide the selection, we chose to use the 

metadata that showed promise in predicting trace links in the AI 

work of Hayes et al. [2]. 

It is possible that the readability measures are collinear due 

to the use of similar measures in each (number of words per sen-

tence, for example).  Also, it is clear that the basic text measures 

are not independent (e.g., number of words, number of sen-

tences, and mean words per sentence). Multi-collinearity analy-

sis and principal-component analysis to reduce correlated data 

remains as future work.  

The tools presented in Section II were used to collect 

metadata for the datasets.  Each measure was described in Sec-

tion II B. or Section II. C. The tables are provided at the end of 

the paper2.  Table IV presents the basic text measures from the 

readability-metrics Python script (number of words, number of 

sentences, mean words per sentence, number of polysyllables, % 

polysyllables).  Table V presents the readability measures from 

the readability-metrics Python script (Automated readability in-

dex, Flesch reading ease, Flesch-Kincaid grade level, SMOG in-

dex).  Table VI presents the parts of speech measures from the 

Stanford Parser TraceLab component (number of tags, nouns, 

pronouns, adjectives, and verbs). 

This metadata could be used to assist trace researchers using 

AI techniques.  For example, trace researchers could generate 

trace links for one of the provided datasets using standard tech-

niques such as vector space model (VSM).  The researchers 

could then separate the correct links retrieved by VSM from the 

incorrect links.  Merging in our metadata, a model could be built, 

which would then be used to predict trace links for another trace 

dataset (for which our metadata was also generated) using the 

researchers’ particular AI method. 

Also, in determining which datasets to use for an AI under-

taking, the metadata can assist.  Imagine a researcher undertak-

ing sentiment analysis.  Datasets with a large number or percent-

age of adjective tags (JJ) could be good candidates for such re-

                                                           
2 Table number/order was dictated by page breaks to meet the page limit 

search.  Classification of requirements as functional or non-func-

tional could lead a researcher to seek datasets with a large num-

ber or percentage of verbs.  In performing requirements ambigu-

ity detection, a researcher could seek datasets that are at ex-

tremes on polysyllabic words (perhaps hypothesizing that re-

quirements that are ambiguous will contain many polysyllabic 

words (complex words) and that requirements with few polysyl-

labic words will be less likely to be ambiguous). 

C.   Analysis of Metadata 

Descriptive data for the basic text metadata is provided in 

Table IV.  As can be seen, the number of words varies greatly, 

ranging from a minimum of 493 words (Gantt dataset) to a max-

imum of 29409 words (CCHIT dataset).  Number of words with 

polysyllables also varies greatly from 60 (Gantt dataset) to 5416 

(CCHIT dataset) though percentage of polysyllables only ranges 

from 0.1 to 0.19.  Table V presents the same data but for the 

readability measures.  Flesch-Kincaid grade level varies from a 

minimum of 4.173 to a maximum of 13.889 with a mean of 8.46.  

The automated readability index has a median of 10.226 with a 

minimum of 5.718 and a maximum of 15.721. 

Correlation analysis was performed to support feature selec-

tion and analysis.  It was hypothesized that datasets from the 

same domain would be more highly correlated to each other than 

datasets from different domains.  To test this hypothesis, Pear-

son’s Correlation Coefficient was calculated for the basic text 

metadata, for the readability metadata, and for the parts of 

speech tag counts.  Pearson’s coefficient ranges from -1 to +1, 

where a value of 0 means no correlation.  The correlation be-

tween the health care datasets (Infusion Pump and CCHIT) and 

each of the non-health care datasets was also calculated, using 

the nine measures from the basic text and readability metadata.  

Finally, correlation analysis between all the datasets was per-

formed.  The results were all above 0.99, indicating positive cor-

relation (e.g., as GANTT metadata values increase, so do CM-1 

metadata values).  Tables II and III are examples of correlation 

runs.  Unfortunately, no interesting results were found that 

would indicate what set of measures might discriminate between 

datasets of one domain versus a different domain. 

IV. RELATED WORK 

Dekhtyar et al. described the need for benchmarks in tracea-

bility, emphasizing the need for data and information about the 

datasets [8].  Sundaram et al. provided datasets and baselines for 

traceability, with emphasis on the accuracy of various tracing 

techniques [9].  In May 2019, a panel was held at the Software 

and System Traceability (SST) workshop [10] held at Interna-

tional Conference on Software Engineering.  Panelists explained 

their thoughts on the application of machine learning and other 

artificial intelligence techniques to tracing.  Data, and lack 

thereof, was a major topic discussed during the session.   

V. CONCLUSION 

We have provided metadata for a collection of traceability 

datasets to support artificial intelligence for requirements engi-

neering.  We have provided the scripts and components we used 



to generate the metadata as well as made the datasets and 

metadata available (see Section III A.).  We performed some pre-

liminary analysis on the metadata to support feature selection. 

The correlation analysis did not immediately reveal features that 

are domain specific.  Future work includes: undertaking a sys-

tematic analysis for other possible metadata as well as correla-

tion analysis on that data, collecting additional datasets, and per-

forming analysis for collinearity of the metadata followed by 

principal components analysis (if warranted). 
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TABLE II.  COMPARISON OF CORRELATION VALUES AMONG HEALTH CARE DATASETS 

 

  

InfusionPump/ 

Requirements 

InfusionPump/ 

Components CCHIT/target CCHIT/source 

InfusionPump/Requirements 1    

InfusionPump/Components 0.99 1   

CCHIT/target 0.99 0.99 1  

CCHIT/source 0.99 0.99 0.99 1 

 



TABLE III.  COMPARISON OF CORRELATION VALUES AMONG NON-HEALTH CARE DATASETS 

 

  CCHIT/target CCHIT/source GANNT/low GANNT/high 

CCHIT/target 1    

CCHIT/source 0.99 1   

GANNT/low 0.99 0.99 1  

GANNT/high 0.98 0.98 0.99 1 

 

 

Flesch reading ease3 =  206.835 − 1.015 × 〈𝑤𝑜𝑟𝑑𝑠 ÷ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠〉 − 84.6 ×  〈𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠 ÷ 𝑤𝑜𝑟𝑑𝑠〉 

 

Flesch-Kincaid grade level2 = 0.39 × 〈𝑤𝑜𝑟𝑑𝑠 ÷ 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠〉 + 11.8 ×  〈𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠 ÷ 𝑤𝑜𝑟𝑑𝑠〉 − 15.59 

SMOG Index4 = 1.0430√〈𝑛𝑢𝑚𝑏𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠 ×  
30

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
〉 + 3.1291  

 

Automated Readability Index5 = 4.71 ×  〈
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑤𝑜𝑟𝑑𝑠
〉 + 0.5 ×  〈

𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
〉 − 21.43 

Fig. 2.  Equations for readability metrics. 

 

 

TABLE IV.  READABILITY-METRICS BASIC TEXT METADATA 

 

Name 

Number of 

words 

Number of sen-

tences 

Mean words 

per sentence 

Number of pol-

ysyllables 

% 

polysyllables 

InfusionPump/Requirements 3601 256 14.07 537 0.15 

InfusionPump/Components 1470 68 21.62 280 0.19 

CCHIT/source 2785 111 25.09 407 0.15 

CCHIT/target 29409 1018 28.89 5416 0.18 

GANNT/low 1554 106 14.66 204 0.13 

GANNT/high 493 28 17.61 60 0.12 

CM1/source_artifacts 556 30 18.53 61 0.11 

CM1/target_artifacts 5884 204 28.84 629 0.11 

WARC/SRS 1737 103 16.86 257 0.15 

WARC/NFR 534 23 23.22 98 0.18 

WARC/FRS 597 44 13.57 93 0.16 

waterloo/low 12527 436 28.73 1718 0.14 

waterloo/high 19429 1406 13.82 1944 0.1 

Mean 6198.15 294.85 20.42 900.31 0.14 

Min 493 23 13.57 60 0.10 

Max 29409 1406 28.89 5416 0.19 

Median 1737 106 18.53 280 0.15 

 

                                                           
3 https://www.webfx.com/tools/read-able/flesch-kincaid.html 

4 https://en.wikipedia.org/wiki/SMOG 
5 http://www.readabilityformulas.com/automated-readability-index.php 

 



TABLE V.  READABILITY-METRICS READABILITY METADATA 

 

Name 

Automated 

readability index Flesch reading ease 

Flesch-Kincaid grade 

level SMOG index 

InfusionPump/Requirements 5.86 82.91 5.19 11.4 

InfusionPump/Components 12.81 49.76 11.69 14.72 

CCHIT/source 12.47 58.62 11.32 14.07 

CCHIT/target 15.26 46.94 13.89 16.3 

GANNT/low 7.7 74.2 6.55 11.05 

GANNT/high 6.62 80.34 6.43 0 

CM1/source_artifacts 10.23 85.62 5.92 11.28 

CM1/target_artifacts 13.86 72.54 10.3 13.16 

WARC/SRS 8.14 82.32 5.97 12.15 

WARC/NFR 11.48 61.28 10.48 0 

WARC/FRS 5.81 85.65 4.68 11.43 

waterloo/low 15.72 49.66 13.47 14.47 

waterloo/high 5.72 89.76 4.17 9.85 

Mean 10.13 70.74 8.47 10.76 

Min 5.72 46.94 4.17 0 

Max 15.72 89.76 13.89 16.31 

Median 10.23 74.2 6.55 11.43 

 

 

 

TABLE VI.  STANFORD PARSER METADATA 

 

Name Number of tags 

Number of 

nouns 

Number of pro-

nouns 

Number of ad-

jectives 

Number of 

verbs 

InfusionPump/Requirements 3697 1239 23 252 478 

InfusionPump/Component 1470 642 10 60 228 

CCHIT/target 29334 5714 52 1044 2418 

CCHIT/source 2781 888 12 164 413 

GANNT/Low 1554 527 18 68 286 

GANNT/High 493 148 6 16 80 

CM1/source 598 121 1 14 57 

CM1/target 6064 765 28 123 362 

WARC/SRS 1738 528 16 132 263 

WARC/NFR 536 183 3 29 77 

WARC/FRS 595 195 7 38 92 

waterloo/low 13222 4829 82 448 2014 

waterloo/high 21307 5963 106 697 2273 

 

 


