
 1

PREREQIR: Recovering Pre-Requirements via Cluster Analysis

Jane Huffman Hayes

Dept. of Computer Science
University of Kentucky

hayes@cs.uky.edu

Giuliano Antoniol

Dépt. de Génie Informatique

École Polytechnique de Montréal
antoniol@ieee.org

Yann-Gaël Guéhéneuc

Dept. of Computer Science
Université de Montréal

guehene@iro.umontreal.ca

Abstract

 High-level software artifacts, such as requirements,
domain-specific requirements, and so on, are an
important source of information that is often neglected
during the reverse- and re-engineering processes. We
posit that domain specific pre-requirements
information (PRI) can be obtained by eliciting the
stakeholders’ understanding of generic systems or
domains. We discuss the semi-automatic recovery of
domain-specific PRI that can then be used during
reverse- and re-engineering, for example, to recover
traceability links or to assess the degree of
obsolescence of a system with respect to competing
systems and the clients’ expectations. We present a
method using partition around medoids and
agglomerative clustering for obtaining, structuring,
analyzing, and labeling textual PRI from a group of
diverse stakeholders. We validate our method using
PRI for the development of a generic Web browser
provided by 22 different stakeholders. We show that,
for a similarity threshold of about 0.36, about 55% of
the PRI were common to two or more stakeholders and
42% were outliers. We automatically label the
common and outlier PRI (82% correctly labeled), and
obtain 74% accuracy for the similarity threshold of
0.36 (78% for a threshold of 0.5). We assess the recall
and precision of the method, and compare the labeled
PRI to a generic Web browser requirements
specification.

1. Introduction

 Software systems change. Their evolution must be

carefully managed and must be intimately related to

high-level software artifacts such as requirements,

analysis models, and design models. Yet, as systems

evolve, the high-level artifacts are not updated and the

source code often becomes the sole reliable source of

system information.

 High-level software artifacts, such as requirements

and information available prior to requirement

specification, are vital not only to successful

development [5] but also to successful maintenance and

evolution activities. In particular, we are interested in

pre-requirements information (PRI) that include

system concepts, user expectations, the environment of

the system, etc. Examples of PRI for a generic word

processor might include “be able to specify the

language for spell checking,” “run under Linux,” and

“not require conversion of existing files.”

 Consequently, in this paper, we address the problem

of recovering PRI in a semi-automated and cost-

effective way. Recovering PRI is difficult because it

requires interactions with stakeholders and because

information gathering is mostly performed via

interviews that are time consuming and expensive. PRI

structuring is labor-intensive and is traditionally

performed manually.

 Few research works address the problem of

recovering, validating, or evolving PRI [31], despite

the relevance of PRI and requirement documents

during the reverse- and re-engineering processes.

Indeed, PRI could help in: ensuring a common

terminology among stakeholders; identifying reuse

opportunities; assessing the degree of obsolescence of a

system with respect to competing systems and the

clients’ expectations; recovering traceability links;

adding new features; developing test cases; improving

existing functionalities; or porting a system to a new

paradigm or environment. This is true because all

these activities require high-level documentation

detailing implemented functionalities, domain

concepts, explicit or implicit dependencies, and so on.

 Therefore, we posit that much of the PRI for a

particular domain or generic system exists in the mental

models of the diverse stakeholders of the system.

Mental models capture the stakeholders' understanding

of the domain and the system to-be-built or evolved,

including how it should work, stakeholder needs and

expectations of the system functionality, usefulness,

etc. The present work focuses on textual PRI.

 Applying information retrieval (IR) techniques and

data clustering, we propose PREREQIR, a method to

obtain, structure, analyze, and label projections of

stakeholders’ domain-specific mental models in the

form of PRI, interchangeably called user needs. We

apply PREREQIR to the PRI obtained from 22 volunteer

participants for a generic Web browser, a common

 2

software system used in different ways by many

stakeholders. We show that the PREREQIR method helps

us automatically obtain two sets of PRI for Web

browsers: a set of common user needs; and a set of

uncommon, or outlier, user needs. We compare the two

sets of domain-specific user needs to a generic Web

browser requirement specification. We conclude that

the method allows us to recover, structure, analyze, and

label the PRI document with good accuracy: recall and

precision both in the 70% range when cluster similarity

is 0.36 or higher.

 The main contributions of this paper are as follows:

• Examines the problem of obtaining, semi-

automatically structuring, analyzing, and labeling PRI

using IR techniques and clustering,

• Reports on the PRI of 22 participants that is obtained,

structured, analyzed, and labeled,

• Reports on the recall and precision of the method, and

• Applies the PRI labels resulting from the method in a

traceability task.

 We organize the paper as follows: Section 2

introduces some definitions and the problem. Section 3

describes our method. Section 4 illustrates our method

via a case study. Section 5 describes an assessment of

the accuracy of the method and its usefulness in a

traceability task. Section 6 discusses related work.

Section 7 concludes and presents some future work.

2. Definitions and Problem

 Our work focuses on recovering and structuring

textual PRI. In this section, we discuss mental models

and PRI, our PREREQIR method, and specific

techniques supporting the method.

2.1. Mental Models and PRI

“[A] domain is used to denote or group a set of

systems or functional areas within systems that exhibit

similar functionality. [21]” Within a domain, a

requirement is a necessary capability or characteristic

of a system. A generic requirement is a necessary

capability or characteristic of any system in a domain.

A generic or domain requirement specification is a

collection of requirements that specify a domain.

In a typical development process, domain

engineering and application engineering occur in

parallel. To produce the requirements for a software

system, one first performs domain analysis, which

results in a domain model. Analysis is performed on

the domain model. During this analysis, stakeholder

requirements must be negotiated and consolidated into

an agreed upon set of requirement specifications (RS)

for evaluation and approval.

As the system evolves, the distance between the

current implementation and the high-level

documentation increases and negotiated RS may no

longer reflect the actual system.

We are interested in the domain model or generic

requirements specification, specific to a domain, not to

a system, because we believe that stakeholders innately

know what constitutes a word processor, a payroll

system, etc. Although we cannot directly access the

stakeholder mental models, we can access their textual

projection or PRI. At any point in time, stakeholders’

mental models constitute PRI because they express the

user perception of what the system should do.

2.2. Problem Statement

 A few years after deployment, the RS may be non-

existent, incomplete, and/or outdated. The RS may no

longer specify the needs of the stakeholders. In writing,

recovering, or revising a RS, it is crucial to ensure that

all stakeholders, i.e., programmers, managers, testing

team members, marketing personnel, and end users,

share a common understanding of the system.

Therefore, the RS should reflect the stakeholder PRI to

ensure that the implementation, enhancement, or

evolution of the system satisfies stakeholder

expectations and needs.

 Once obtained, PRI can be grouped into common

and outlier user needs. PRI from similar stakeholders

can be: grouped—such as all developers or all end

users; compared within groups—how similar are the

PRI of all end users? of all the testers?; compared

between groups—how similar are the PRI of the

average developer and the average end user?; and

labeled or tagged. PRI can be used to build a generic

or domain-specific RS that can then be used for

validation [22, 23] or traceability recovery [2, 6, 8, 9,

10, 11, 16, 20, 30].

3. The PREREQIR Method

 The challenge lies in recovering and processing the

PRI. We propose the PREREQIR method, consisting of

three steps: obtain and vet a list of PRI; structure PRI

via cluster analysis; and analyze the clustered PRI.

3.1. Obtaining PRI

 Most of the documentation that accompanies large

software systems consists of free text documents

expressed in a natural language. (PRI in other forms

 3

than text could be transcribed as text.) Examples

include requirements and design documents, user

manuals, logs of errors, maintenance journals, and also

annotations of individual programmers and teams.

Even when semi-formal models are used, free text is

essential to add semantic and context information.

Therefore, it is natural to ask stakeholders to provide

PRI in the form of free text.

 We believe that a minimally-biased and minimally-

intrusive way to obtain PRI from stakeholders is

through a single inquiry. The inquiry should not be

interactive, but rather issued via an anonymous

questionnaire/Web form to ensure that the stakeholders

are not influenced by the researchers.

3.2. Structuring PRI

 Once obtained via questionnaire, the PRI must be

analyzed and structured. We map the textual fragments

composing the stakeholder PRI into a vector space via

stopping, stemming, and dictionary building. Singular

text fragments are then compared and grouped based

on distance and then by using a similarity threshold.

Standard vector space retrieval is used [3] to study the

presence or absence of a strong structure among the

PRI. If there is a weak separation among the groups,

i.e., many clusters that contain few PRI, then we

investigate the presence of a hierarchical structure

using an agglomerative nesting algorithm.

Decomposing with Vector Space. An individual

textual PRI or user need, for example “the user shall be

able to hear audio files such as .wav,” is viewed as a

query for which we search in the collection of all other

PRI, also known as the document collection.

 We define V = {k1,…,kN} as the vocabulary or list of

keywords of a given document collection. A vector

model of document d is a vector (w1,…,wN) of keyword

weights where wi is computed as wi = tfi(d) • idfi. tfi(d)

is the term frequency or frequency of keyword ki in the

document and idfi, the inverse document frequency, is

computed as idfi = log2 (n/ dfi) where n is the number of

documents in the collection and dfi is the number of

documents in which keyword ki occurs. To determine

the similarity between a query vector q = (q1,…,qN) and

a document vector d = (w1,…,wN), the similarity is the

cosine of the angle between the vectors [3]:

sim(d,q) = cos(d,q) =

∑∑

∑

==

=

N

j
j

N

j
j

N

i
ii

qw

qw

0

2

1

2

1

 Most grouping and clustering algorithms deal with

dissimilarity rather than with similarity. However, once

a similarity measure is defined, dissimilarity can be

obtained via a transformation as follows:

∞

≠−
=

otherwise

 0),(if 1
),(

1

),(
qdsim

qdsimqddiss

Dissimilarity has been used to cluster the textual user

needs mapped into vector space using partitioning

around medoids to study data structure and to obtain

information on the number of clusters present in the

data. Details follow.

Partitioning around medoids (PAM). PAM groups

PRI using a medoid, which is the PRI that is closest to

the center of a cluster composed of k other PRI. The

parameter k is selected so that the average dissimilarity,

with respect to the medoid, is minimal.

The algorithm works as follows: first, k PRI are

randomly selected and promoted as medoids, i.e.,
representatives of clusters. Each PRI is then assigned to

the nearest medoid X. An objective function is

calculated as the sum of dissimilarities of all PRI to

their nearest medoids, using the squared error criterion.

The algorithm then swaps a randomly selected PRI Y

with one medoid X, if the swap reduces the objective

function. The swapping process is iterated until the

objective function can no longer be reduced [26].

Obtaining the optimal number of clusters. To

determine the optimal number of clusters, Kaufman and

Rousseeuw [13] proposed silhouette statistics. For a

PRI i, let a(i) be the average distance to the other PRI

in its cluster, and b(i) be the average distance to PRI in

the nearest cluster. The silhouette statistic is:

{ })(),(max

)()(
)(

ibia

iaib
is

−
= .

Kaufman and Rousseeuw suggested choosing the

optimal number of clusters as the value maximizing the

function s(i) = (b(i) – a(i)) / max(a(i), b(i)) over all the

PRI. Traditionally, it is assumed that the error curve

shows a knee for the optimal number of clusters [7].

Values of the maximum of the average silhouette

statistics above 0.70 indicate that a very strong

clustering structure has been found – that is, separated

clusters. Values between 0.50 and 0.70 highlight a

reasonable structure, while values in the range 0.25 and

 4

0.50 indicate a weak structure. Values below 0.25

indicate the absence of a structure.

Clustering with AGNES. We cluster the PRI using

the AGNES clustering algorithm (Agglomerative

Nesting) [27] to obtain evidence of a hierarchical

structure because several respondents gave close

answers and there was no easy way to manually group

them. PAM gave a weak cluster structure so we used

AGNES, which revealed a strong hierarchical structure,

because it has been used in previous reverse

engineering research. AGNES uses the dissimilarity

between pairs of PRI in a cluster and between pairs of

clusters to merge PRI and clusters iteratively. First,

AGNES selects the two least dissimilar PRI and

merges them into a cluster. It proceeds similarly with

every PRI, thus forming clusters of pairs of PRI. Then,

AGNES iteratively selects least similar clusters and

merges them into larger clusters. AGNES ends when

all the PRI are merged into a unique cluster. AGNES

selects the closest PRI to be merged using different

strategies such as: average dissimilarity between the

PRI in the two clusters, or minimum or maximum

dissimilarity between any two pairs of clusters. In

reported computations, average dissimilarity between

PRI was applied; similar results were obtained with the

other two strategies. At each step, AGNES provides an

Agglomerative Coefficient (AC) measuring the

clustering structure of the clusters. AC is measured as

the strength of the hierarchical structure discovered; an

AC value above 0.9 is an indication of a very strong

hierarchical structure. The AGNES strategy is to build

a complete tree grouping all PRI together. However,

only sub-trees that cluster very similar PRI are of

interest. In PREREQIR, we impose a minimum value of

similarity between PRIs grouped into a sub-tree node,

thus pruning the tree and grouping together only

strongly related PRIs. Non-clustered PRIs are outliers

with respect to the structured PRI document but not

necessarily with respect to the traditional outlier

definition. In fact, the imposed similarity threshold can

be much higher than 1.5 the inter-quartile range below

the lower quartile.

3.3. Analyzing PRI

 The result of the structuring of the PRI is a set of

clusters that are merged PRI, i.e., PRI that embody the

stakeholders’ understanding of a system or domain.

Our analysis of these merged PRI consists of two major

activities: understanding the outliers (see Section 4)

and automatically labeling the merged PRI.

Automatically Labeling Merged PRI. To generate a

useable textual artifact of the merged stakeholder PRI,

we label each cluster. First, we parse each PRI of a

cluster, remove stop words, and apply a stemmer. We

then build a cluster-specific dictionary with associated

weights where every word is weighted by its frequency

in the cluster. If a word is in all the PRI in a cluster, its

weight is 1.00. If a word appears in half of the PRI, its

weight is 0.50. Next, for the given stemmed PRI, we

sum up the weights of the stems present in the cluster

dictionary to obtain a positive weight. Then, we count

the number of words in the cluster-specific dictionary

that are absent in the current PRI and obtain a negative

weight. We associate a fitness value to the PRI

computed as the ratio between the positive and

negative weights. Finally, we select the PRI with the

highest fitness value in the cluster as its label.

4. Case Study of PREREQIR

 We illustrate PREREQIR on a case study of PRI for a

Web browser collected from numerous stakeholders.

4.1. Objects of the Study

 A Web browser is a ubiquitous system, commonly

used in today’s society by a large variety of

stakeholders. It allows searching for information,

surfing on the Internet, posting news, and writing

blogs. Moreover, for such a common system, we were

able to find generic requirements specifications for

comparison with the PREREQIR PRI.

4.2. Subjects of the Study

 We used ‘convenience sampling’ and sent our

questionnaire to more than 200 of our colleagues and

acquaintances. Among the 200 recipients, 25 sent back

their questionnaires, of which we kept only 22 for this

study. We omitted any questionnaire that was not

totally completed.

 The demographics of the respondents of the 22

retained questionnaires follows. On average, the

respondents were 36 years of age (σ = 9.55 years). It

took the respondents, on average, 29 minutes to write

down their PRI or user needs (σ = 10 minutes). Twenty

respondents were male, two were female. Eighteen

respondents have held a bachelor’s degree for an

average of ~13 years (σ = ~10 years). Seventeen

respondents have held a master’s degree for an average

of ~11 years (σ = ~8 years). Eleven respondents have

held a Ph.D. degree for an average of ~8 years (σ = ~7

years). Among the respondents, there were: 10

 5

researchers, five lecturers/professors, four students, one

programmer, and two project managers. All of the

respondents reported using Web browsers several times

a day. The respondents were from nine different

countries, including Italy, Canada, Hungary, the United

States, France, and Germany.

4.3. Obtaining the PRI

 A key decision for the study was the form and the

tool to obtain stakeholder PRI. Our goal was to include

a variety of stakeholders: managers, programmers,

researchers, students, non-computer experts, etc.

Therefore, we developed a questionnaire where

stakeholders can report, in free text, a ranked list of

what they perceived as the essential features of a Web

browser. The questionnaire is available at

https://web.soccerlab.polymtl.ca/repos/soccer-lab/web-

questionnaire/. We sent the questionnaire to the 200

participants in early 2008 under strict anonymity. That

is, we know to whom we sent the questionnaire, but we

do not know who answered it because the PRI were

received by a dedicated process on our e-mail server

and were rendered anonymous before being sent to us.

 The 22 retained questionnaires contain 433 PRI or

user needs in the form of sentences. Randomly selected

examples of such PRI include:

 “Tabbed Browsing”

and:

 “Offline working mode – The browser should

allow the user to browse previously visited web pages

while disconnected from the network.”

 These two PRI highlight the gap existing among the

level of abstraction, the wording, and the consideration

of the different stakeholders. Some descriptive

statistics for the PRI obtained from the respondents

follow. The unprocessed PRI range from 1 to 69 words.

On average, the unprocessed PRI have 15.53 words.

When stemmed and stopped, the average length of PRI

is 10 words. The PRI provided by the respondents are,

therefore, rather short.

4.4. Structuring the PRI

 Following our method, we applied the various IR and

clustering techniques on the obtained PRI. A

preliminary study of our data set revealed a weak

structure with a maximum of the average silhouette

statistics of 0.26 in the region between 165 and 168

clusters; this suggests an optimal number of clusters of

about 170 and the presence of a weak separation

between clusters.

Figure 1. The Structure of the Clusters.

 We then applied the Agglomerative Nesting

algorithm to the 433 user needs/PRI. When building

the complete tree, where all the user needs are

contained in the tree structure, the AC was 0.99,

providing evidence of a strong hierarchical structure in

the PRI. Figure 1 shows relevant AGNES information:

an average similarity score is assigned at each level of

the built tree. Top clusters, which aggregate lower level

clusters, correspond to more general PRI. We observe

that the number of top level clusters, the dark curve at

the bottom, reaches a plateau in the similarity region

close to 30%, where the overall tree contains about 500

nodes and 300 leaves.

4.5. Analyzing the PRI

 Once obtained, the clusters represent merged PRI

that embody the stakeholders’ understanding of a

generic Web browser. We briefly discuss outliers and

the labels of the merged PRI.

Understanding Outliers. Setting a similarity

threshold or choosing any given height in the tree built

by AGNES results in the exclusion of a subset of PRI

from the merged PRI. These excluded needs, in some

sense, represent outliers not captured while

automatically merging PRI. When we applied the

traditional outlier definition, the percentage of outliers

was considerably lower, about 5-15%. We made sure

that retained AGNES clusters excluded these PRI. In

this process, we discovered two categories of outliers.

In the first category, there are very detailed user needs

referring to a particular given technology such as Ajax

or supported features such as “the browser should pass

the ACID and ACID2 test.” These are discovered via

the traditional definition of outliers. The second

category includes outliers that are due to vagueness in

the user need formulation (e.g., “it should be easy to

0
100

200
300

400

500
600
700
800

900
1000

0
.0

3
5

0
.0

7
5

0
.1

1
5

0
.1

5
5

0
.1

9
5

0
.2

3
5

0
.2

7
5

0
.3

1
5

0
.3

5
5

0
.3

9
5

0
.4

3
5

0
.4

7
5

0
.5

1
5

0
.5

5
5

0
.5

9
5

0
.6

3
5

0
.6

7
5

0
.7

1
5

0
.7

5
5

0
.7

9
5

0
.8

3
5

0
.8

7
5

0
.9

1
5

 Tops
 Intermediate

 Overall

 Outliers

 Leaves

 T
h
re

s
h
o
ld

 6

use”) or due to very different ways of expressing user

needs that are already retained in the PRI. For a

threshold of 0.36, about 55% of the PRI were common

to two or more stakeholders and 42% were outliers.

Labeling Clusters. We labeled the clusters following

the method described in Section 3.3. We validated

each label manually using the process described in

Section 5.1 and found that about 82% of the labels are

correct. Some clusters and their labels are:

Cluster I contained these user needs or PRI:

1 – “The browser shall allow searching text in a page.”

2 – “The web browser shall allow users to search

text on the page.”

PRI 1 has positive weight, negative weight, and fitness

scores of 6, 2, 3, respectively. PRI 2 has scores 7, 1, 7

and is thus selected as the label. Other clusters include

(with labels in bold):

• Cluster M: (1) “Show source HTML for current

page.”; (2) “Possibility to show the HTML

source of the current page.”

• Cluster N: (1) “The browser shall support the

tabbed browsing.”; (2) “Tabbed browsing.”

• Cluster Z: (1) “Should have help system context

sensitive help glossary on line help, etc.”; (2)

“Help – The system should provide context

sensitive help.”

5. Assessment of PREREQIR

 The previous section illustrated our method on a

case study. We now assess the accuracy of our method

in terms of precision and recall [3]. The first

assessment concerns the precision and recall of the

method with respect to the obtained clusters and

answers the question: “How relevant are the merged

PRI?” The second assessment concerns the usefulness

of the method on a typical traceability problem and

answers the question: “How revealing are the merged

PRI compared to PRI obtained by another method?”

5.1. Cluster Verification

 To assess the relevance of the merged PRI, we

manually verified each cluster and then calculated the

standard IR measures precision and recall. Recall

measures the degree to which all the documents

matching a given query in a collection are retrieved. In

our method, recall refers to whether or not our method

selects the right clusters. Precision measures the quality

of the retrieved lists of documents. In our experiment,

precision measures the quality of the clusters.

 Two of the authors independently verified the

clusters, assigning “Yes,” “No,” or “Maybe” to each

cluster. A conservative approach was used to resolve

conflicts: “Yes” was assigned if both authors said

“Yes,” “No” was assigned if one of the authors said

“No,” and “Maybe” was assigned in the other cases.

 We use this ground truth conservatively, not in favor

of the method, by only considering “Yes” assignments

when computing precision and recall. The following

procedure was used to calculate the precision and recall

at various threshold levels. For a given similarity

threshold, we scan the spreadsheet of the clusters

vetted by the researchers. We keep all the clusters, the

merged PRI, above the threshold. PRI were then

classified as follows: if a PRI is in a cluster marked as

“Yes,” we gave the PRI the same status, “Yes” - even if

the PRI also appears in a cluster marked as “No.” We

then computed the precision and recall.

 As can be seen in Figure 2, recall starts at about 66%

when imposing no threshold on the similarity score,

i.e., all clusters are considered, and increases to 78%

when the threshold is 0.285. It sharply decreases as the

threshold increases. Precision starts at about 43% with

no threshold and then climbs to about 86% at threshold

0.82, then continues up to 1.0 at threshold 0.92 where

we have only one cluster.

Figure 2. Recall, Precision, and Outliers of
Clusters.

 The percentage of outliers is a bit high, but a visual

examination of these showed that many of the PRI left

outside of the clusters are already in some existing

clusters, e.g., print page, bookmark page, etc. Our

conservative approach also tends to increase the

number of outliers.

 The optimal number of clusters is also of interest.

Figure 1 shows that as the similarity threshold

0

0,2

0,4

0,6

0,8

1

1,2

0
,2

2
5

0
,2

8
5

0
,3

4
5

0
,4

0
5

0
,4

6
5

0
,5

2
5

0
,5

8
5

0
,6

4
5

0
,7

0
5

0
,7

6
5

0
,8

2
5

0
,8

8
5

Precision
Recall
Percentage of Outliers

T
h

re
s
h

o
ld

 7

decreases, there is an increase in the number of retained

clusters and a loss in accuracy. In particular, in the

region close to 50% similarity, having around 200

clusters, the number of clusters judged as “No” by the

authors increases and thus reduces accuracy. This is not

surprising because PAM predicted around 170 clusters.

It can also be seen that top, high level concepts confirm

a curve with an inflexion change in concavity and a

maximum. If we use the inflexion before the maximum

as the threshold, we obtain a similarity threshold close

to 50%, which yields about 80% recall and 70%

precision. The error rate also means that 70% of the

clusters are valid. Recalling that this automated process

did not require any manual intervention, 70% appears

to be a useful accuracy level. Higher threshold values

increase precision at the price of lowered recall. On the

other hand, we can see in Figure 2 that precision and

recall intersect in the region close to 36% similarity.

Overall, a threshold of 0.36 gives rise to 128 retained

clusters and precision/recall values of about 70%.

5.2. Traceability Task

 To assess the usefulness of the method, we use the

labeled PRI, which consists of the 128 common user

needs and the 181 outlier user needs, and compare

them against the PRI for a Web browser provided by

an independent organization on its Web site,

www.learnthenet.com. We refer to these as the LtN

PRI [12]. This mimics the situation in which an

obsolete requirement document is traced into new PRI,

to quantify how much of the new functionalities are

already implemented and reusable, for example. We

used vector space retrieval with tf-idf weighting to

perform the trace.

 There are 20 LtN PRI, textual in nature, ranging

from 5 to 73 words, having on average 23.5 words.

Some examples of LtN PRI are:

• LtN18: “Should include a Status Bar at the bottom

to display the progress of web page transactions,

such as the address of the site contacted, whether

the host computer has been contacted, and the size

and number of the files to be downloaded.”

• LtN10: “The toolbar should include a Reload or

Refresh button to load the web page again.”

 Using a similarity threshold of 0.20, two of the co-

authors independently marked each LtN PRI as “Yes,”

“No,” or “Maybe.” The results were then reconciled

using the conservative approach described in Section

5.1. The results show that 14 of the 20 LtN PRI are

found in the PRI obtained with certainty from our 22

respondents. The 14 PRI were all marked as “Yes” by

both authors. If we also include the two marked as

“Maybe,” there are 16 LtN PRI out of 20 that are

traced in the respondents’ PRI. An example of LtN PRI

not found follows:

• LtN6: “Should include a toolbar: a row of buttons

at the top of the browser that helps travel through

the web of possibilities, keeping track of where the

user has been.”

 Seventeen of the 128 common PRI are found in the

LtN PRI - 19 if we include PRI marked as both “Yes”

and “Maybe.” Examples of missing PRI include:

• Cluster O: “Possibility to show the HTML source

of the current page.”

• Cluster P: “The system shall support automatic

updates.”

 Ten of the 181 outlier PRI are found in the LtN PRI

- 14 if we include PRI marked as both “Yes” and

“Maybe.” Missing PRI include:

• Cluster Q: “Should support localization can start

with English but all GUI stuff should be

externalized”

• Cluster R: “Allow saving of portion of the current

page in many formats PS, PDF, JPG”

 Therefore, it appears that PRI can be used to ensure

that all requirements are indeed needed by the users. In

our study, between 70% (“Yes” only) and 80% (“Yes”

and “Maybe”) of the LtN PRI are also found in the

PRI obtained from the respondents.

 PRI can also be used to ensure that an old

requirement specification is still complete. It appears

that a number of PRI have not been included in the LtN

generic Web browser specification. As a minimum, the

common and outlier PRI should be examined to ensure

consideration for inclusion. We conclude that our

method is useful in a software development project.

5.3. Discussion and Threats to Validity

 In our study, we attempted to obtain PRI from a

diverse set of stakeholders. The presented results are

encouraging, yet are subject to some validity threats.

External validity threats concern the generalization

of our findings. We believe that our findings support

the evidence that PREREQIR can be applied and that

modern IR techniques and tools help reduce the cost of

building a PRI document. The scenario presented is

realistic and likely to be representative of many real-

world situations. However, although we sent our

questionnaire to more than 200 colleagues and

acquaintances, we essentially obtained PRI from

respondents who use Web browsers several times per

day and thus can be considered experts in Web

browsers. Also, the group is highly educated. We

believe that only people with knowledge in Web

 8

browsers were intrigued enough by our study to answer

the questionnaire in a short time frame. This unwanted

homogeneous group of experts decreases the

generalization of our study and, consequently, the

generalization of our method. In future work, we will

apply our method on PRI obtained from more

respondents, from various backgrounds.

Moreover, we have not specifically studied the issue

of vocabulary. However, our work in Information

Retrieval and on many other systems (such as scientific

instruments, space telescopes, LEDA, Albergate,

Eclipse, and Mozilla) shows that vocabulary is tied to

the domain and to the system, and that is why thesauri

are useful. Thus, we plan to replicate the study and

integrate other tools such as thesauri or ontologies,

when available, in the extension of the current work.

 Construct validity threats concern the relationship

between the theory and the observation. Such threats

arise from possible errors introduced by measurement

instruments. PRI clustering, indexing, and similarity

computation were performed using widely adopted

toolsets. For example, we used the Perl stopper and

stemmer available from the Virginia Polytechnic

Institute and State University. Also, a TDF-IDF

implementation is available from the open-source

Lucene project. We used R from CRAN for PAM, and

our Java AGNES version is the re-implementation of a

well known and classic AGNES algorithm. Precision

and recall are computed based on the sole agreed

decision of our two experts and are thus computed in a

conservative way. Nevertheless, we cannot exclude the

possibility that another chain of tools, or ranking from

different experts, may produce slightly different results,

or that different developers would rate functions in

different ways. One critical element is the choice of the

AGNES similarity threshold. We inspected the

precision and recall plots versus the similarity

thresholds to validate our choice of a similarity close to

the silhouette knee; other researchers may apply

different strategies, such as grouping a fixed percentage

of PRI or requiring that each cluster contains at least

three or more PRIs. These strategies would produce

different tree pruning thresholds and thus would

structure different PRI documents.

 Reliability validity concerns the possibility of

replicating the study and obtaining the same results.

The questionnaire and documentation are publicly

available on the server of the SOCCER Laboratory

(https://web.soccerlab.polymtl.ca/repos/soccer-lab/web

-questionnaire/); the set of collected requirements are

available from the authors upon request.

 Internal validity refers to the influence of

independent variables on dependent variables and the

existence of confounding factors. The main threat to

the internal validity of this study is the level of

subjectivity introduced by experts. However, as

explained in Section 5.1 and 5.2, we attempted to

minimize this subjectivity with a conservative approach

based on the expert agreement (both experts must agree

on a “Yes” for a cluster or a link to be correct).

 We do not know if the accuracy of 70% clusters

marked as relevant PRI is generally valid as only one

study was performed on one domain, but it is still an

interesting finding. More studies on different domains

will follow in future work.

6. Related Work

 Related work is organized into two subsections: (1)

mental models and requirements engineering, and (2)

application of IR techniques.

6.1. Mental Models and Requirements

Engineering

The mental model that people have of a domain is often

incomplete [4, 18] which leads to faulty reasoning.

Communication issues, such as use of different

terminology, may result in misunderstandings of

people’s mental models of a to-be-built system [4].

Differing goals of users and analysts can also indicate

different mental models. Browne et al. [4] suggest that

the most common problems of requirements

determination need to be examined, and that the

cognitive underpinnings of these problems need to be

identified. They further recommend appropriate

techniques such as devil’s advocacy, what-if analysis,

scenario response, etc. to deal with the cognitive issues.

In related work, Pitts and Browne looked at how

analysts decide that enough requirements information

has been collected. There exist cognitive stopping

rules that help explain analyst behavior.

Representational stability is such a rule, that analysts

will stop asking for additional information when they

feel that their mental model is stable [19].

Goldin and Berry applied signal processing methods

to collections of natural language text in order to

extract abstraction information. They demonstrated

their method by abstracting tables of contents from

software system requests for proposals [31].

Svetinovic examined the semantic similarity of domain

models (DMs) specified by students at the University

of Waterloo and determined that the use of his artifact,

the unified Use Case statechart, could help improve

semantic likeness of the DMs [32].

Kudikyala and Vaughn applied pathfinder networks

(PFNETs) from the artificial intelligence field to sets of

 9

requirements categorized by two groups – developers

and customers. These sets of requirements were

deemed as the mental models of each stakeholder

group. The PFNETs of these models were then

mathematically compared to find the similarity, as well

as to identify duplicate or misunderstood requirements

[22]. The main differences between the work of

Kudikyala and Vaughn and the work presented here are

that: our method involves elicitation of requirements;

we concentrate on generic or domain requirements, as

opposed to system or application specific requirements;

we do not ask the stakeholders to categorize the

requirements; and we do not use simple correlation to

determine similarity.

 6.2. Application of IR techniques

 Several surveys and overviews of clustering

techniques applied to software engineering have been

published in the past, for example, by Wiggerts [28]

and by Tzerpos and Holt [24]. The latter authors, in

[25], defined a metric to evaluate the similarity of

different decompositions of software systems. They

proposed a novel clustering algorithm specifically

conceived to address the peculiarities of program

comprehension; they also addressed the issue of

stability of software clustering algorithms [26].

 Applications of clustering to reengineering were

suggested in [1] where Anquetil and Lethbridge

devised a method for decomposing complex software

systems into independent subsystems. Source files were

clustered according to file names and their name

decomposition. Mancoridis et al. [15] presented an

approach relying on inter-module and intra-module

dependency graphs to refactor software systems.

 Cleland-Huang et al. [11] examined the application

of non-functional requirements (NFR) to aspects. They

mined and then classified NFR from a collection of

textual requirements by using indicator terms specific

to the NFR. For example, they used the terms

confidentiality, integrity, and completeness along with

other terms to detect security NFR. It seems that such

a method may also prove useful for eliciting functional

requirements, although a training set must be obtained.

Such a method may also be applicable to obtaining

PRI, especially if the PRI are non-functional such as

reliability, performance, security, etc.

 There has been work on mining aspects or non-

functional requirements from computer applications by

performing pattern matching against the Abstract

Syntax Tree or by analyzing dynamic execution traces,

but each of these methods require that source code or

executable exist [14, 17]. It seems reasonable that such

approaches may work for mining PRI also. An

advantage of our method is that it does not require that

code, design, or even requirements exist.

7. Conclusions and Future Work

 In this paper, we presented a method, PREREQIR, to

recover and structure the pre-requirements information

(PRI) obtained from stakeholders, which are projection

of the stakeholders’ mental models. We applied

information retrieval (IR) techniques to cluster the PRI,

to analyze their hierarchical structure, to identity

unique PRI, and to automatically label the clusters.

 We report the results of applying PREREQIR on the

PRI obtained from 22 respondents. We show that using

the agglomerative nesting (AGNES) algorithm, we

cluster PRI with an accuracy of 70%. We show that, for

a similarity threshold of about 0.36, about 55% of the

PRI were common to two or more stakeholders and

42% were outliers. We automatically label the

common and outlier PRI with 82% of the labels being

correct. Also, the method achieves roughly 70% recall

and 70% precision when compared to a ground truth.

Bearing in mind that IR methods tend to work well on

large datasets, our method achieves a decent precision

and recall on our relatively small dataset - 433 total

PRI. Thus, it seems reasonable that our method could

be applied to a larger set of PRI with at least

comparable results. Although our method may not be

generally applicable, the accuracy is high enough to

warrant further investigation.

 In future work, we will survey a broader, more

diverse set of stakeholders for multiple domains. We

will improve the questionnaire used to collect

information. We will study the use of different

clustering mechanisms. We will also study the use of

more sophisticated methods for selecting labels.

8. Acknowledgments

Our thanks to Stephanie Ferguson, Jane Cleland-Huang,

and Lisa Montgomery. This work is sponsored by NASA

under grant NAG5-11732, NSERC Canada Research Chair

Tier I in Software Change and Evolution, NSERC Discovery

grant, and NSF under grant CCF-0811140.

9. References

[1] Anquetil N., Lethbridge T., “Extracting concepts from

file names – A new file clustering criterion,” Proceedings of

the International Conference on Software Engineering, IEEE

Computer Society Press, 1998, pp. 84-93.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and

Merlo, E. “Recovering Traceability Links between Code and

 10

Documentation.” IEEE Transactions on Software

Engineering, Volume 28, No. 10, October 2002, 970-983.

[3] Baeza-Yates, R., B. Ribeiro-Neto. Modern Information

Retrieval, Addison-Wesley, 1999.

[4] G.J. Browne, V. Ramesh, “Improving information

requirements determination: a cognitive perspective,”

Information & Management, Elsevier, Volume 39, Issue 8,

September 2002, Pages 625-645.

[5] Dhar, V. Jarke, M. “Dependence directed reasoning and

learning in systems maintenance support.” IEEE

Transactions on Software Engineering, Volume 14, No. 2,

February 1988, 211-227.

[6] Egyed, A. “A Scenario-Driven Approach to Trace

Dependency Analysis,” IEEE Transactions on Software

Engineering (TSE), Volume 29, Number 2, February 2003,

pp. 116-132.

[7] Gordon, A. D., “Classification,” Chapman & Hall, Boca

Raton, 2nd edition, 1999.

[8] O.C.Z. Gotel and A.C.W. Finkelstein. “An analysis of the

requirements traceability problem.” In 1st International

Conference on Requirements Engineering, pages 94--101,

1994.

[9] Hayes, J.H.; Dekhtyar, A.; Sundaram, S.K., “Advancing

candidate link generation for requirements tracing: the study

of methods,” Transactions on Software Engineering, Volume

32, Issue 1, Jan. 2006 Page(s): 4 – 19.

[10] Jane Cleland-Huang, Carl K. Chang, Mark J.

Christensen: “Event-Based Traceability for Managing

Evolutionary Change.” IEEE Trans. Software Eng. 29(9):

796-810 (2003).

[11] Jane Cleland-Huang and Raffaella Settimi and Xuchang

Zou and Peter Solc, “The Detection and Classification of

Non-Functional Requirements with Application to Early

Aspects,” in Proceedings of the IEEE International

Conference on Requirements Engineering (RE) 2006.
[12] Learn the Net, Michael Lerner Productions,

www.learnthenet.com/.

[13] Kaufman, L. and Rousseeuw, P.J. (1990). Finding

Groups in Data: An Introduction to Cluster Analysis. Wiley,

New York
[14] Magiel, B., A.v. Deursen, R.v. Engelen and T. Tourw´e,

2004. “An evaluation of clone detection techniques for

identifying crosscutting concerns.” In Proc. Intl. Conf.

Software Maintenance (ICSM). IEEE Computer Society.
[15] Mancoridis S., Mitchell B. S., Rorres C., Chen Y.,

Gansner E. R., “Using automatic clustering to produce high-

level system organizations of source code,” Proceedings of

the International Workshop on Program Comprehension,

IEEE Computer Society Press, 1998.
[16] Marcus, A.; Maletic, J. “Recovering Documentation-to-

Source Code Traceability Links using Latent Semantic

Indexing,” Proceedings of the Twenty-Fifth International

Conference on Software Engineering 2003, 3 – 10 May

2003, pp. 125 – 135.

[17] B. Nora, G. Said, and A. Fadila. “A comparative

classification of aspect mining approaches.” Journal of

Computer Science, 2(4):322--325, 2006.
[18] D.N. Perkins, R. Allen, J. Hafner, “Difficulties in

everyday reasoning, in: W. Maxwell (Ed.), Thinking: The

Expanding Frontier, Franklin Institute Press, 1983.

[19] Mitzi G. Pitts and Glenn J. Browne. “Stopping

Behavior of Systems Analysts During Information

Requirements Elicitation.” Journal of Management
Information Systems, M.E. Sharpe, Inc., Volume 21, 2004,

pp. 203-226.

[20] B. Ramesh, “Toward Reference Models of

Requirements Traceability. “ IEEE Trans. Software Eng.

27(1): 58-93 (2001).

[21] Domain Engineering and Domain Analysis, SEI

Software Technology Roadmap,

http://www.sei.cmu.edu/str/descriptions/deda.html.

[22] K. Kudikyala and R. Vaughn, “Understanding Software

Requirements Using Pathfinder. Networks”, CROSSTALK,
The Journal of Defense Software Engineering, May 2004,

pp. 21 – 25.
[23] A.G. Sutcliffe and N. A. Maiden, “Use of Domain

Knowledge for Requirements Validation,” In Proceedings of

the IFIP Wg8.1 Working Conference on information System

Development Process (September 01 - 03, 1993). N. Prakash,

C. Rolland, and B. Pernici, Eds. IFIP Transactions, vol. A-

30. North-Holland Publishing Co., Amsterdam, The

Netherlands, 99-115.

[24] Tzerpos V., Holt R. C., “Software Botryology:

Automatic clustering of software systems,” DEXA

Workshop, IEEE Computer Society Press, 1998, pp. 811-

818.

[25] Tzerpos, V., Holt, R. C., “MoJo: A distance metric for

software clusterings,” Proceedings of Working Conference

on Reverse Engineering, IEEE Computer Society Press,

1999, pp. 187-195.

[26] Partitioning Around medoids (PAM).

www.unesco.org/webworld/idams/advguide/Chapt7_1_1.htm

[27] Agglomerative Nested Clustering,

http://www.unesco.org/webworld/idams/advguide/Chapt7_1

_4.htm

[28] T. A. Wiggerts “Using clustering algorithms in legacy

systems remodularization,” in: Proceedings of IEEE Working

Conference on Reverse Engineering, IEEE Computer Society

Press, 1997.

[29] Andrea Zisman, George Spanoudakis, Elena Pérez-

Miñana, Paul Krause: “Tracing Software Requirements

Artifacts.” Software Engineering Research and Practice

2003:448-455

[30] Mohammad El-Ramly, Eleni Stroulia and Paul

Sorenson “Recovering software requirements from system-

user interaction traces” Proceedings of the 14th international

conference on Software engineering and knowledge

engineering, 2002, pages 447-454

[31] Goldin, L. and Berry, D. M. 1997. AbstFinder, A

Prototype Natural Language Text Abstraction Finder for Use

in Requirements Elicitation. Automated Software Engg. 4, 4

(Oct. 1997), 375-412.

[32] Svetinovic, D. 2006 Increasing the Semantic Similarity

of Object-Oriented Domain Models by Performing

Behavioral Analysis First. Doctoral Thesis. UMI Order

Number: AAINR23541., University of Waterloo.

