

www.computer.org/software

Improving After-the-Fact Tracing and Mapping:
Supporting Software Quality Predictions

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram

Vol. 22, No. 6

November/December 2005

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

3 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

specifications record design rationales as they
make relevant decisions. In some cases, you can
generate mappings or traceability information
as a process unfolds—for example, developers
working on design. But many cases require
mapping preexisting information—for example,
when you must build a knowledge base, or when
a verification and validation (V&V) agent or in-
dependent verification and validation (IV&V)
agent must determine a trace. We refer to this lat-
ter practice as after-the-fact tracing.

The requirements traceability matrix, map-
ping elements of a high-level artifact such as re-
quirements to elements of a low-level artifact
such as design, forms the basis of good V&V.
Software engineers can use the RTM to predict
a software system’s quality as it’s being built,
well before any code is written. However, de-
spite the RTM’s advantages, its development

process requires that analysts manually dis-
cover and vet links between artifact levels. Our
work focuses on the challenge of automatically
identifying potential or candidate links. We de-
veloped an approach to tracing and mapping
that aims to use fully automated information
retrieval techniques, and we implemented our
approach in a tool called RETRO (Requirements
Tracing on Target). Backed by empirical re-
sults, we discuss the advantages our approach
has over others in the industry.

The requirements traceability
matrix

Software engineers can use the RTM for
such tasks as

■ traceability analysis (Do all low-level ele-
ments have parents?),

focus
Improving After-the-Fact
Tracing and Mapping:
Supporting Software Quality Predictions

T
he software engineering industry undertakes many activities that
require generating and using mappings. Companies develop
knowledge bases to capture corporate expertise and possibly
proprietary information. Software developers build traceability

matrices to demonstrate that their designs satisfy the requirements. Proposal
managers map customers’ statements of work to individual sections of com-
panies’ proposals to prove compliance. Systems engineers authoring interface

predictor models

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan Sundaram,
University of Kentucky

The requirements
traceability matrix
has proven useful
in assisting with
the prediction of
software product
quality before code
is written. Automated
information retrieval
techniques could
lead to its widespread
adoption.

■ completeness analysis (Have all high-level
requirements been fully satisfied?), and

■ test coverage assessment (Do test cases ex-
ist for each requirement?).

To comprehend the importance of the RTM,
you need only look at one headline-grabbing in-
cident. When NASA lost its Mars Climate Or-
biter, US taxpayers lost a $125 million space-
craft, and the space program lost the single
communication link that was to exist between
the Mars Polar Lander and Earth.1 The loss
was due to a software issue: navigation infor-
mation was specified in English rather than
metric units in a module. The earliest opportu-
nity to discover this anomaly was during re-
quirements tracing and RTM development.

Benefits
As Barry Boehm’s work2—recently recon-

firmed by Stephen Schach and his colleagues3—
indicates, issues identified early in software sys-
tem development are much less costly and time
consuming to repair than if left undetected un-
til later. Using the RTM to perform analyses
such as traceability analysis and completeness
analysis provides quantitative results that can
be used to predict software quality. For exam-
ple, traceability analysis measures the percent-
age of elements without parents. Completeness
analysis measures the percentage of parents not
fully satisfied by their children elements. If the
percentage of unsatisfied parent elements is
high, we can predict with high probability that
a poor-quality software system will be devel-
oped (incomplete system). If the percentage of
elements without parents is high, then we can
predict with high probability that a poor qual-
ity software system or unsecure system will be
developed or cost escalations and schedule de-
lays will occur because of unintended functions
in the system.

Obstacles
Accepting the RTM’s importance often isn’t

enough to encourage its development, how-
ever, due to its tedious development process.
The analyst performing this unenviable task
must examine each high-level element one by
one and find matches among the low-level ele-
ments. RTM development doesn’t differ much
from other processes involving information re-
trieval, such as Internet searching. In tracing
from a high-level requirements document to a

design document, you can view the high-level
requirements as queries (such as the ones we
write in a search field) into the design elements
that play the same document collection role as
a Web-page collection on the Internet.

The key difference between RTM construc-
tion and searching the Web becomes apparent
when you consider the role of the human in
each process. The state of the art in RTM gen-
eration has the human analyst

■ manually assign keywords to all elements
of all artifact levels or build detailed key-
word thesauri,

■ manually or semiautomatically perform all
searches for low-level elements that map to
high-level elements, and

■ render a decision for each discovered can-
didate link.

In contrast, when searching the Web, the
user must only specify her information need
and examine the results for relevant Web
pages. Specially designed software performs
the actual search. At the core of this software
lie different information retrieval techniques
for determining the relevance between the doc-
uments in the collection (Web pages) and user
queries. Long before the user’s search, search-
engine software automatically indexes all the
documents.

The difference between the amount of man-
ual labor in requirements tracing as compared
with Web search is stark. Is it any wonder then
that tracing is tedious, error prone, and bor-
ing? Is it any wonder that V&V analysts want
an improved process?

The solution: automation
In our opinion, the best way to improve

RTM generation is to model it on how search
engines operate. The analyst’s role would
change from a human search engine to a veri-
fier who checks the automatically generated
candidate RTMs. Software would assume the
responsibility of indexing the high- and low-
level elements and determining (at the outset)
pairs of similar elements.

To achieve this goal, the system must be
able to automatically identify potential or can-
didate links. The new approach to this chal-
lenge is to use fully automated information re-
trieval techniques. Researchers have begun
investigating the application of such tech-

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 3 1

Accepting the
importance

of the
requirements
traceability
matrix often

isn’t enough to
encourage its
development.

niques to this problem with encouraging re-
sults.4–7 For example, we have observed that
manual tracing and keyword matching require
more effort yet provide less accuracy.6

To illustrate our approach to candidate-link
generation for after-the-fact tracing, we exam-
ine the following scenario: a V&V analyst has
been asked to determine if a collection of de-
sign specifications fully satisfies a requirement
specification. This task is often called forward
tracing (see figure 1). We frame forward trac-
ing as an IR problem. We’ll step requirement
by requirement through the specification
(shown at the lower right of the figure), treat-
ing each requirement as a query into the col-
lection of design elements (“the document col-
lection” in information retrieval terms).

Information retrieval methods
for requirements tracing

Information retrieval works in two stages.
First, the IR system analyzes and indexes an in-
coming document collection. As a result of this
process, a representation of each document is
constructed and archived. Second, the system
analyzes and represents incoming queries, as
with the documents, and uses a matching or
ranking algorithm to determine which docu-
ment representations are similar to the query
representation.

In the next sections, we describe the results of
using two different IR approaches: vector space
model with term-frequency-inverse document
frequency (tf-idf) term weighting8 and latent se-

mantic indexing.9 To enhance retrieval, we used
a simple thesaurus. We also simulated the ana-
lyst’s work by incorporating user feedback in
the retrieval process. Finally, we considered the
effects of producing filtered candidate-link lists.
We have used a number of typical IR measures
to evaluate the performance of these methods.
We’ll discuss each of these.

However, it is appropriate to first mention
some preprocessing that occurs regardless of the
IR technique used: stopword removal and stem-
ming. We use a standard list of stop words such
as “the,” “and,” and “of,” and remove these
terms from consideration. We use Porter’s stem-
ming algorithm to remove suffixes of words to
extract their stems—for example, “document-
ing,” “documents,” and “documentation” all
become the stem “document.”10

Vector space retrieval
Vector space retrieval methods represent each

document and each query as a vector of key-
word (term) weights. IR researchers have pro-
posed different term weighting schemes. We use
tf-idf, the standard term-weighting computa-
tion method. To compute term weights, this
method uses term frequency (tf), the (normal-
ized) number of times that each term (or word)
occurs in a given query or document, and in-
verse document frequency (idf), which meas-
ures how rarely the term is found in the entire
collection. Term frequency helps capture key-
words that occur often in a given document. In-
verse document frequency captures the rare
terms with high distinguishing ability. Once the
system builds the document and query vector, it
computes the similarity between them as the co-
sine of the angle between them.8

Latent semantic indexing
Latent semantic indexing is a dimensional-

ity reduction technique. Vector space retrieval
methods construct a document-by-keyword
matrix, which can be viewed as a mapping be-
tween the keywords and documents. The
larger the vocabulary—the list of unique words
or terms found in the queries and the docu-
ment collection—the larger the matrix be-
comes. Also, the matrix can become sparse—
most keywords will not occur in most queries
and documents. LSI employs singular-valued
decomposition of the document-by-term ma-
trix to represent it as a product of two ortho-
normal matrices and a diagonal matrix of its

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Representation

Matching algorithm

Design document

1.

2.

3. Analyst
Requirements document

Yes

Yes

No

Feedback

Figure 1. Requirements
tracing scenario as an
information retrieval
problem.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 3 3

Constructing a
requirements

tracing matrix is
an interactive

process.

eigenvalues. By reducing the number of eigen-
values considered, we can construct reduced-
dimensionality approximations of the original
matrix. These reduced-dimensionality matrices
might encompass some underlying (latent) con-
cepts or domains of interest within the docu-
ment collection. The similarity comparison be-
tween document vectors and query vectors is
then performed on the reduced space.

Thesaurus
Artifacts being traced to each other often are

written by different individuals or organizations
or use different “lingo.” For example, one arti-
fact might use the word “error” whereas an-
other artifact uses the word “failure.” Standard
IR techniques will not recognize these two
words as being relevant to each other. One way
to address such situations is to build a simple
thesaurus. Our thesaurus is a set of triples of the
form (v, a, w), where v and w are terms and a
indicates the degree of relevance between the
two. Many standard thesauri are free or rela-
tively inexpensive. We found that it’s possible to
build a simple thesaurus in a short period, often
using preexisting artifacts as a basis (such as an
appendix of acronyms or a data dictionary). For
example, we built the thesaurus for the Mod-
erate Resolution Imaging Spectroradiometer
(MODIS) data set in just 20 minutes. The the-
saurus is then used in conjunction with either
tf-idf or LSI as follows: if the system finds that
terms in the vector of the query or document are
from the thesaurus, it adds the product of their
weights and a to the similarity measure.

Feedback
Constructing an RTM using automated

tools is an interactive process. The software
provides the analyst its best guess, and the ana-
lyst examines the lists of candidate links and
updates them. But what happens if the analyst
communicates her decisions back to the soft-
ware? IR research shows that the use of such
analyst feedback (think clicking on “More links
like this” in a Web search engine) provides im-
proved results. Thus, we introduce the notion
of analyst feedback to improve tracing. Here,
the tracing tool shows the analyst a candidate
link list and asks the analyst to vet the links.
Suppose the analyst is tracing from a require-
ments specification (query) to a design docu-
ment (document collection). If the analyst indi-
cates that a candidate link is true, the keywords

found in that document increase in value in the
query vector. If the analyst indicates that the
link is false, the keywords found in that docu-
ment decrease in value in the query vector. Af-
ter the analyst completes a round of feedback,
the tracing tool reruns the appropriate IR
method using the reweighted query vectors. We
used several feedback approaches, and Stan-
dard Rochio feedback performed best.8

Filtering
Just as in Web search, a long list of irrelevant

items that have been retrieved can easily over-
whelm an analyst or user. One way to alleviate
this is to use filtering. The idea is to only display
items that have relevance above a certain level.
For example, filtering at 0.1 would display to
the analyst only candidate links with relevance
of 0.1 or higher. We applied filtering at various
levels: 0.05, 0.1, 0.25, 0.3, and so on.

Measures of success
We applied many common IR measures to

evaluate how well the methods perform. We
address recall, precision, and selectivity here.

Recall. Recall is a coverage measure. Given the
theoretical “true trace” or “answerset,” it meas-
ures the percentage of true links retrieved. Re-
call is the number of correct retrieved links (C)
divided by C plus the number of correct missed
links (M). We want recall to be as high as pos-
sible for tracing tasks. But note that you could
achieve 100 percent recall by merely retrieving
all elements for each query. The result, though,
would be very low precision.

Precision. Precision is a signal-to-noise ratio.
It examines how much “junk” an analyst must
examine. It’s measured as the number of cor-
rect retrieved links (C) divided by C plus the
number of retrieved false positives (F). We
want this measure to be as high as possible.

Selectivity. The tracing activity could theoret-
ically require an analyst to manually perform
M � N comparisons, where M is the number
of high-level elements and N is the number of
low-level elements. A tracing method that so-
licits feedback from the analyst should result
in the problem space (that starts as M � N) be-
coming smaller with each iteration. We’d like
the problem space to become small as quickly
as possible. Selectivity helps to measure this. It

is measured as the number of correct candi-
date links (C) plus the number of false posi-
tives (F) divided by the product of M and N.

RETRO: Requirements Tracing
on Target

We implemented our approach to tracing
and mapping in our RETRO tool. Tracing using
RETRO is a multistep process. First, the analyst
selects the documents for tracing through the
GUI. The GUI is written in Java and the input
documents are flat files. Next, the Build mod-
ule, written in C++, builds the corpus (the ma-
trix of the occurrence of terms) for the selected
artifacts. Each element of each artifact is output
in its vector representation. The vectors are rep-
resented as XML and passed to the IR toolkit,
written in C++. After the tool applies the se-
lected IR method (tf-idf or LSI), the results
(candidate-link lists with relevance values) are
passed in XML to the filtering module (written
in C++). The filtering module applies a filtering
technique and sends the results to the GUI. The
analyst then assesses the candidate-link lists
and makes choices (“yes, this is a link,” “no,
this is not a link”). The tool sends the choices
to the feedback module that reweights the vec-

tors for the high-level artifact. Then, the
process starts again.

Results to date
We applied our toolkit to two data sets. The

first, MODIS, is a NASA science instrument.11

It comprises 19 high-level elements extracted
from a larger top-level requirement specifica-
tion and 49 low-level elements extracted from
a software requirement specification. The two
levels have 41 correct links between them. The
information on the correct links is stored in
the answer set (the “theoretical true trace”).
The second data set is called CM1 and is also
from a NASA science instrument. The data
has been provided by the Metrics Data Pro-
gram (see the “Related Links” sidebar for this
and other useful URLs). MDP sanitized the
data to hide the project’s identity. There are
235 high-level elements from a requirement
specification, 220 low-level elements from a
design specification, and 361 correct links.

In our experiments with these data sets, we
used the following user feedback strategy. On
each iteration and for each high-level require-
ment, we examined two previously unseen can-
didate links with highest relevance and speci-
fied, according to our answer set, whether or
not they were correct. In addition, for each it-
eration, we considered the accuracy of both the
unfiltered list of candidate links and the fil-
tered lists. We used filter threshold values of
0.05, 0.1, 0.15, and 0.2. We ran experiments
with and without a thesaurus. For LSI, we ran
experiments at differing matrix dimensionality.

Perhaps the easiest way to depict the meth-
ods’ accuracy is through the two primary
measures of recall and precision. As men-
tioned earlier, we are most interested in high
recall, but we also want acceptable precision.
In addition, we want selectivity to be as low as
possible. In table 1, we show the recall, preci-
sion, and selectivity values obtained for exper-
iments run with RETRO on MODIS and CM1
data sets with no filtering or feedback. Note
that the best result we have achieved is 10.1
percent precision, 100 percent recall, and 43.1
percent selectivity for MODIS using tf-idf plus
thesaurus. Though recall is excellent, precision
and selectivity are unacceptable.

Table 2 shows that filtering and feedback
make a tremendous difference. Even with fil-
tering at a very low level of 0.05 (show all
links that have relevance above 0.05), we can

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Holagent Corporation’s RDD-100: www.holagent.com/products/
product1.html

Metrics Data Program: http://mdp.ivv.nasa.gov
Metrics Data Program’s CM1 Project: http://mdp.ivv.nasa.gov/mdp_

glossary.html#CM1

Related Links

Table 1
Results of information retrieval methods on CM1
and MODIS data sets (no feedback, no filtering)*

MODIS CM1

Precision Recall Selectivity Precision Recall Selectivity
Method (%) (%) (%) (%) (%) (%)

Tf-idf 7.9 75.6 41.9 1.5 97.7 42.8
Tf-idf + thesaurus 10.1 100.0 43.1 1.5 97.7 42.8
LSI (10/100) 6.3 92.6 64.1 0.9 98.6 71.5
LSI + thesaurus 6.5 95.1 63.7 0.9 98.6 71.5
(10/100)
LSI (19/200) 4.2 63.4 65.2 0.9 98.8 73.9
LSI + thesaurus 5.4 80.4 65.8 0.9 98.8 73.9
(29/200)

*Bold denotes best results.

achieve recall of 80.5 percent and precision of
70.7 percent for tf-idf on MODIS. Note that the
results are achieved on the 8th iteration of feed-
back. Without feedback (but with filtering of
0.05), our best recall result occurs for CM1 us-
ing tf-idf: 92.2 percent. Precision, however, is
only 4.4 percent. For MODIS with tf-idf (with fil-
tering of 0.2), our best precision is 21.6 percent,
but recall is a very low 19.5 percent. When we
take advantage of both filtering and feedback
techniques, we achieve excellent results. For ex-
ample, we achieve 90.2 percent recall and 77.1
percent precision for the 0.15 filter for MODIS

with tf-idf plus thesaurus. Similarly, for the same
filter value, we obtain 82.4 percent precision
and 68.3 percent recall for MODIS with tf-idf.

From table 2, we can see that adding a the-
saurus for MODIS increased accuracy some-
what (recall went up to 97.6 percent on the

0.05 filter with thesaurus). But a thesaurus
doesn’t always improve results. In table 1, the
results for CM1 were the same regardless of
whether a thesaurus was used.

In our work, it has become obvious that we
needed to assign at least rough levels of
“goodness” to determine if methods are ap-
propriate for tracing. We defined acceptable,
good, and excellent levels in table 3.

We developed a footprint graph to depict

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 3 5

Table 2
Effects of relevance feedback and filtering on the results of information

retrieval methods*
Filter 0.05 0.1 0.15 0.2

Iteration Recall Precision Recall Precision Recall Precision Recall Precision
Method (%) (%) (%) (%) (%) (%) (%) (%)

MODIS, tf-idf 0 48.8 7.8 29.3 11.8 24.4 17.2 19.5 21.6
1 48.8 8.1 29.3 12.6 24.4 20.0 22.0 36.0
2 48.8 8.9 31.7 17.6 24.4 31.3 24.4 47.6
3 53.7 11.1 31.7 21.7 31.7 38.2 31.7 61.9
4 65.9 14.9 46.3 33.9 36.6 51.7 31.7 65.0
5 68.3 19.7 53.7 51.2 46.3 70.4 41.5 77.3
6 70.7 33.7 65.9 64.3 48.8 74.1 48.8 80.0
7 75.6 50.0 68.3 70.0 63.4 78.8 51.2 80.8
8 80.5 58.9 70.7 74.4 68.3 82.4 63.4 86.7

MODIS, tf-idf + thesaurus 0 78.0 12.1 65.9 22.3 46.3 25.7 39.0 33.3
1 78.0 12.1 61.0 21.6 51.2 33.3 41.5 44.7
2 78.0 12.7 61.0 25.0 51.2 42.9 46.3 61.3
3 78.0 14.1 63.4 29.5 56.1 50.0 53.7 68.8
4 90.2 18.9 75.6 37.3 56.1 52.3 56.1 69.7
5 95.1 22.4 75.6 46.3 58.5 57.1 56.1 67.6
6 97.6 30.3 78.0 52.5 65.9 69.2 58.5 70.6
7 97.6 39.2 92.7 60.3 78.0 74.4 75.6 77.5
8 97.6 43.0 92.7 65.5 90.2 77.1 78.0 82.1

CM1, tf-idf 0 92.2 4.4 76.5 10.8 53.7 19.1 32.7 27.1
1 91.7 4.3 77.0 10.9 55.4 19.8 38.0 31.6
2 91.4 4.3 76.2 10.8 59.0 20.8 42.9 34.4
3 91.7 4.4 77.6 10.9 63.2 22.0 45.4 34.8
4 92.0 4.4 78.9 11.1 66.5 23.1 48.8 35.6
5 92.0 4.4 81.4 11.5 67.6 23.6 52.6 37.6
6 92.2 4.4 82.8 11.7 70.1 24.3 55.4 39.1
7 92.2 4.4 84.2 11.9 70.9 24.5 57.6 39.6
8 92.2 4.5 84.8 12.0 74.0 24.8 61.2 40.9

*Bold denotes best results.

Table 3
“Goodness” levels*

Measure Acceptable Good Excellent

Recall > 60% > 70% > 80%
Precision > 20% > 30% > 50%

*Levels below these are unacceptable.

these goodness levels. Figure 2 shows the ac-
ceptable, good, and excellent levels of recall
and precision in the upper right quadrants of
the graph. Next, we took all the data points
we have for various runs (points from the 0th
iteration of tf-idf, points from the 1st itera-
tion, and so on) for a data set and showed
them on a scatter plot. The concern isn’t that
all points must be acceptable, but that some
acceptable (or better) points must exist.

Figure 2 depicts the footprint graph for the
MODIS data set for the tf-idf method. Some of

the data points fall in the acceptable, good,
and excellent regions. For reference, we added
a result we obtained in previous work of a hu-
man analyst working with this data set.6 Fig-
ure 3 shows the footprint graph for CM1, for
both tf-idf and LSI. This graph makes clear
that we’re not achieving the same success for
the larger data set as we are for the smaller
one. We plan to address this by applying more
advanced IR methods and tailoring them to
the tracing problem’s characteristics. We can
also see that filtering has a tremendous impact
on the recall and precision. The upper-left
group of points represents the highest recall
but the lowest precision—this is without fil-
tering. The next collection of points (below
and to the right) is for filtering level 0.05. Re-
call decreases, but precision increases. As you
continue to move down the graph and to the
right, you can see that precision gradually in-
creases to 0.67, but recall also decreases to
0.39. This effect is highly visible in figure 3 be-
cause the traces for runs with different filter
values are highly separable. In figure 2, we
highlighted the unfiltered points for the read-
ers’ benefit.

We show only a few exemplary results in
this article. Many such figures and results are
available in previous works.6,12 We can state
that, in general, high iterations lead to higher
recall and precision values. Higher filter values
increase precision, but at the price of recall.

O ur approach to prediction provides a
significant advantage over other meth-
ods: We can provide predictive infor-

mation before any code has been written. Other
techniques use data from previous releases to
build predictive models, an approach useful
only for future developments. Our approach
helps analysts make predictions early enough to
allow improvements on current projects.

Our RETRO tool has outperformed analysts,
even those using state-of-the-art tools.6 Specif-
ically, in the pilot experiment6 using the MODIS

data set, the analyst working with the results
from a proprietary toolkit achieved 46.15 per-
cent overall precision and 43.9 percent overall
recall. As figure 2 and table 2 show, our results
are much higher. We hope that the ease of
RTM development with RETRO will encourage
more widespread RTM development, even if
after the fact, to promote software quality pre-
dictions earlier in the life cycle.

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Tf-idf footprint for MODIS, top 2

0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Re
ca

ll

No
filter

Tf-idf
Tf-idf+ thesaurus
Human analyst

Figure 2. Footprint
graph for MODIS using
term-frequency-inverse
document frequency
(tf-idf).

Re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

No filter

F= 0.1

F= 0.05

F= 0.15

F= 0.2

F= 0.25

F= 0.3

Tf-idf
Tf-idf + thesaurus
LSI 100 dim
LSI 200 dim

Tf-idf and LSI footprint for CM1, top 2

Figure 3. Footprint
graph for CM1 using
tf-idf and LSI.

We already successfully integrated our
methods into a requirements tracing tool used
by an IV&V organization on NASA and US
Navy mission-critical software systems. We’ve
also made the RETRO tool available to several
other IV&V organizations and one European
systems engineering organization. You can
also use the toolkit for purposes more general
than tracing. Contact us if you’re interested in
learning more about RETRO or if you would
like to volunteer to assist us with ongoing
studies of tracing.

Acknowledgments
NASA funds our work under grant NAG5-11732.

We thank Stephanie Ferguson and Ken McGill. We
also thank the Metrics Data Program, Mike Chap-
man, and the MODIS program. We also thank our stu-
dents who worked on RETRO: James Osborne, Sarah
Howard, Ganapathy Chidambaram, and Sravanthi
Vadlamudi.

References
1. M. O’Brien and Associated Press, “NASA: Human Er-

ror Caused Loss of Mars Orbiter,” CNN.com, 10 Nov.
1999, www4.cnn.com/TECH/space/9911/10/orbiter.03.

2. B.W. Boehm, Software Engineering Economics, Prentice
Hall, 1981.

3. S. Schach et al., “Determining the Distribution of Main-
tenance Categories: Survey versus Empirical Study,”
Kluwer’s Empirical Software Eng., vol. 8, no. 4, 2003,
pp. 351–365.

4. G. Antoniol et al., “Recovering Traceability Links be-
tween Code and Documentation,” IEEE Trans. Soft-
ware Eng., vol. 28, no. 10, 2002, pp. 970–983.

5. A. Marcus and J. Maletic, “Recovering Documentation-
to-Source Code Traceability Links using Latent Semantic
Indexing,” Proc. 25th Int’l Conf. Software Eng. (ICSE
03), IEEE CS Press, 2003, pp. 125–135.

6. J.H. Hayes et al., “Improving Requirements Tracing via
Information Retrieval,” Proc. Int’l Conf. Requirements
Engineering (RE 03), IEEE CS Press, 2003, pp.
138–147.

7. J.H. Hayes et al., “Helping Analysts Trace Require-
ments: An Objective Look (2004),” Proc. 12th Int’l Re-
quirements Eng. Conf. (RE 04), IEEE CS Press, 2004,
pp. 249–261.

8. R. Baeza-Yates and B. Ribeiro-Neto, Modern Informa-
tion Retrieval, Addison-Wesley, 1999.

9. J. Haritsa, M. Carey, and M. Livny, “On Being Opti-
mistic about Real-Time Constraints,” Proc. 9th ACM
SIGACT-SIGMOD-SIGART Symp. Principals of Database
Systems, ACM Press, 1990, pp. 331–340.

10. M.F. Porter, “An Algorithm for Suffix Stripping,” Pro-
gram, vol. 14, no. 3, 1980, pp. 130–137.

11. MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS, 10 Nov.,
1997, NASA.

12. J. Hayes et al., Helping Analysts Trace Requirements:
An Objective Look, tech. report TR 392-04, Depart-
ment of Computer Science, Univ. of Kentucky, 2004.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 3 7

About the Authors

Jane Huffman Hayes is an assistant professor in the Department of Computer Sci-
ence at the University of Kentucky. Her research interests include requirements, software veri-
fication and validation, traceability, maintainability, and reliability. She received her PhD in in-
formation technology from George Mason University. She’s a member of the IEEE Computer
Society. Contact her at Univ. of Kentucky, 301 Rose St., Lexington 40506-0495;
hayes@cs.uky.edu.

Alex Dekhtyar is an assistant professor in the Department of Computer Science at the
University of Kentucky. His research interests include traceability, management and reasoning
with uncertain information, digital libraries, computing in humanities, and management of XML
data. He received his PhD in computer science from the University of Maryland at College Park.
He’s a member of the ACM; the ACM’s Special Interest Groups on Management Of Data, Infor-
mation Retrieval, and Data Mining and Knowledge Discovery; the American Association for AI;
and the Association for Logic Programming. Contact him at the Univ. of Kentucky, 763G Ander-
son Hall, Lexington, KY 40506-0046; dekhtyar@cs.uky.edu.

Senthil Karthikeyan Sundaram is a PhD candidate in the Department of Com-
puter Science at the University of Kentucky. His research interests include traceability, require-
ments engineering, software design, information retrieval, and data mining. He received his
BE in computer science and engineering from Madras University. He’s a member of the IEEE
Computer Society. Contact him at 444 S Ashland Ave., Apt. B1, Lexington, KY 40502; skart2@
uky.edu.

computer.org@

We publish IEEE Software as
a service to our readers. With
each issue, we strive to present
timely articles and departments
with information you can use.
How are we doing?
Send us your feedback, and help
us tailor the magazine to you!

Write us at

	Improving After-the-Fact Tracing and Mapping: Supporting Sof

