
1 

A Case History of International Space Station Requirement Faults 
  

Jane Huffman Hayes  
Inies Raphael C.M. 

Elizabeth Ashlee Holbrook 
University of Kentucky Department of Computer Science 

hayes@cs.uky.edu, {irchem2 | ashlee}@uky.edu 

David M. Pruett 
Geocontrol Systems Incorporated 

david.m.pruett1@jsc.nasa.gov 

 
Abstract 

 
There is never enough time or money to perform 
Verification and Validation (V&V) or Independent 
Verification and Validation (IV&V) on all aspects of a 
software development project, particularily for complex 
computer systems.  We have only high-level knowledge 
of how the potential existence of specific requirements 
faults increases project risks, and of how specific V&V 
techniques (requirements tracing, code analysis, etc.) 
contribute to improved software reliability and reduced 
risk.  An approach to this problem, fault-based analysis, 
is proposed and a case history of the National 
Aeronautics and Space Administration’s (NASA) 
International Space Station (ISS) project is presented to 
illustrate its use.  Specifically, a tailored requirement 
fault taxonomy was used to perform trend analysis of 
the historical profiles of three ISS computer software 
configuration items as well as to build a prototype 
common cause tree.  ISS engineers evaluated the results 
and extracted lessons learned. 
 

1. Introduction 
 

   In order to reduce the risk associated with software 
and to verify whether software meets its requirements, 
Verification and Validation (V&V) activities are 
performed as a part of the overall development process. 
The V&V techniques are sometimes performed by a 
third party, referred to as an Independent Verification 
and Validation (IV&V) agent.  We are never able to 
perform all the V&V or IV&V activities that we would 
like to perform.  We need a way to ensure that the 
activities that we do perform will be the most effective 
at reducing risk for the project.  Fault-Based Analysis 
(FBA) is one way to approach these challenges [5].   
   The IEEE standard definition of an error is a mistake 
made by a developer.  An error may lead to one or more 
faults [9].  To understand FBA, a look at a related 
technique, Fault-Based Testing (FBT), is in order.  
Fault-Based Testing generates test data to demonstrate 
the absence of a set of pre-specified faults. There are 

numerous FBT techniques.  These use a list of potential 
faults to generate test cases, generally for unit- and 
integration-level testing [17, 2].  Research has been 
performed in the area of software safety fault 
identification [16], including research into numerous 
fault analysis techniques such as petri-net safety 
analysis [10], Failure Mode, Effects, Criticality Analysis 
(FMECA) [14], and criticality analysis [24]. Similar to 
FBT, Fault-Based Analysis identifies static techniques 
(such as traceability analysis) and even specific 
activities within those techniques (e.g., perform back-
tracing to identify unintended functions) that should be 
performed to ensure that a set of pre-specified faults do 
not exist.  As part of Fault-Based Analysis, a tailored 
taxonomy can be developed.  Historical data can be 
used to determine the fault types that are most likely to 
be introduced or risk analysis can be performed to 
determine the fault types that would be most devastating 
if overlooked.  Static techniques that prevent or detect 
these fault types are then applied as part of the V&V 
and/or IV&V effort [5]. 
   As mentioned above, Fault-Based Analysis has 
similarities to Fault-Based Testing, where one targets 
the strongest fault class when designing test generation 
algorithms in order to increase the effectiveness of the 
tests without unduly introducing overlap [8].  FBA is 
also risk-driven, and attempts to select V&V techniques 
to apply in order to best achieve a project’s goals.  In 
this way, it is similar to test case selection during 
regression testing, where one attempts to reduce the 
time required to re-test a modified program by selecting 
a subset of the existing test suite [22].  A more extensive 
survey of related work, such as orthogonal defect 
classification [3] can be found in [5]. 
   Our current work focuses on requirements Fault-
Based Analysis.  A requirement fault is a fault that 
originates during the requirements phase (e.g., omitted 
requirement, incomplete requirement description).  This 
paper concentrates on the historical analysis aspect of 
requirements Fault-Based Analysis.  Specifically, we 
applied our taxonomy tailoring processes from [5] to the 
requirements faults of three computer software 
configuration items (CIs) of the International Space 



2 

Table 1.  ISS requirement fault taxonomy. 
Major Fault Sub-Faults 
1. Requirements Originate in Requirements phase; found in 

Requirements Specifications 
.1 Incompleteness 
 

.1.1 Incomplete    Decomposition 

.1.2 Incomplete Requirement Description  
.2 Omitted/Missing 
 

.2.1 Omitted Requirement 

.2.2  Missing External Constants 

.2.3 Missing Description of Initial System 
State 

.3 Incorrect .3.1 Incorrect External Constants 
.3.2 Incorrect Input or Output Descriptions 
.3.3 Incorrect Description of Initial System  
State 
.3.4 Incorrect Assignment of Resources 

.4 Ambiguous 
 

.4.1 Improper Translation 

.4.2 Lack of Clarity 
.5 Infeasible .  ---------------------- 
.6 Inconsistent  .6.1 External Conflicts 

.6.2 Internal Conflicts 
.7 Over-specification   --------------------- 
.8 Not Traceable .---------------------- 
.9 [reserved for the 
future] 

----------------------- 

.10 Non-Verifiable  ---------------------- 

.11 Misplaced ----------------------- 

.12 Intentional 
Deviation  

----------------------- 

.13 Redundant  ----------------------- 
 
Station.  A highly complex system with available 
historical data, ISS provides an ideal environment to 
apply Fault-Based Analysis work to software and 
system development.  We performed trend analysis on 
the results, then built a small common cause tree and 
extracted lessons learned. 
   The paper is organized as follows.  Fault-Based 
Analysis, the requirement fault taxonomy, and the 
processes for tailoring fault taxonomies and for building 
the common cause tree are presented in Section 2.  The 
International Space Station case history is discussed in 
Section 3.  Sampling, trend analysis, and lessons learned 
for the ISS case history are found in Section 4.  Finally, 
Sections 5 and 6 presents lessons learned and directions 
for future work. 

 
2. Fault-Based Analysis 
 
   Fault-based analysis, as applied to requirement faults, 
can help prevent and/or detect faults early in the 
software lifecycle, resulting in significant cost savings 
[1].  In earlier work by Hayes [5], a generic fault 
taxonomy was selected as the basis for requirements 
Fault-Based Analysis, requirements faults were 
examined, and a method for extending a taxonomy was 
developed and implemented.  To provide a 
requirements-based fault analysis approach, an overall 
methodology was defined [4]: (i) build a requirement 

fault taxonomy and a process for tailoring it; (ii) build a 
taxonomy of V&V techniques and build a matrix of 
their validated fault detection capabilities; and (iii) 
develop guidance to V&V agents and software projects 
for use of the fault-based analysis methodology and 
assist in its adoption.  Here, we focus on tailoring a 
taxonomy for a given CI and for a given time period 
(item (i) above) as well as extracting related guidance 
for the project (item (iii) above).  In this section we will 
present our requirement fault taxonomy, the 
configuration item process for tailoring a taxonomy, and 
our preliminary work on common cause analysis. 
 
2.1  Requirement Fault Taxonomy 
 
   The Nuclear Regulatory Commission (NRC) 
requirement fault taxonomy from NUREG/CR-6316 
[12] was the basis for our earlier work [5].  We found 
many papers that confirmed these requirements fault 
types and found only a few papers that described “new” 
requirement faults (see [6]).  In [5], we examined 
requirement faults for several NASA software systems.  
The examination resulted in a number of changes to the 
taxonomy.  The resulting “generic NASA requirement 
fault taxonomy,” found in Table 1, has thirteen fault 
categories [5].  Their definitions can be found in [5, 6].  
 
2.2 Configuration Item (CI) Process 
 
   The process to determine the fault distribution for a CI 
is shown in Table 2. The table consists of entry criteria, 
activities, exit criteria, inputs, outputs, and process 
controls/metrics.  All inputs such as requirement faults 
and/or problem reports must be available before the 
process starts.  Entry criteria must be met. 
   Next, activities are performed including selecting a 
project-specific requirement fault taxonomy, choosing a 
CI from the list of CIs, examining problem reports or 
requirement faults of the chosen CI, etc.  Note that the 
CI-process uses the same set of activities as the in 
project-process, discussed in [5, 6].  Although the 
activities are the same, they are applied to the specific 
CI of interest, not to the entire project.  The outputs of 
this process are the fault frequency counts of the faults 
and the crucial requirement fault categories (those most 
frequently occurring) for the CI.   
   We calculate fault exposure values as the product of 
the tolerance factor and the probability of its occurrence 
[6].  From the fault exposure values, we create a 
prioritized list of faults that could have critical effect on 
the system.  We repeat this process for each CI of 
interest.  If certain fault types are found more frequently 
for a given CI, then it is important to seek improvement  



3 

Table 2.  CI-process for tailoring a taxonomy. 

 
in that area and to attempt to prevent and/or detect these 
fault types [5].   
   The process controls ensure that all versions of our 
requirement fault   taxonomy are   properly   maintained 
under configuration control.  Process metrics include 
person hours for the effort, number of CIs, number of 
requirement faults, historical probability of occurrence, 
and fault exposure values [6]. 
 
2.3 Common Cause 
 
  To determine the feasibility of identifying root causes,  
a small, prototype common cause tree was constructed.  
A common cause tree is similar to a fault analysis tree, 
and presents root causes of requirement faults as well as 

actions that may be taken to prevent these faults.  We 
examined information found in 25 problem reports 
(PRs).  Problem reports were divided by fault category.  
Two senior analysts examined the PRs and looked for 
common causes.  They found three:  noncompliant 
process, lack of understanding, and human error.  Next, 
countermeasures were determined for each common 
cause.   
   Faults caused by noncompliant processes may be 
remedied through formal process certification, effective 
question and answer processes, more managerial 
involvement, and trained staff at each certification level.  
Faults with human error as a cause may be avoided by 
strengthening the question and answer process and by 
furthering the technical expertise of those on the project. 

Finally, a lack of understanding of requirements 
may be countered with a more in-depth technical 
review process and increased technical 
expertise.  Specifying requirements using clear 
and precise language, and paying close attention 
to subtleties of natural language may help avoid 
misunderstanding and human error [4]. The 
resulting common cause tree is shown in Figure 
1.  Further information may be found in [6]. 
  The ISS engineers found the common cause 
tree to be useful and have requested that we 
build a much larger tree, providing more 
detailed causes.  We plan to adopt some of the 
causes delineated by Leszack, Perry, and Stoll 
[10] in our future efforts.  

Entry Criteria Activities Exit Criteria 
1. All inputs are available 
2. NASA has authorized 

use of project data 
3. NASA has authorized 

the taxonomy 
extension project 

1. Select project-specific requirement fault taxonomy 
2. Select a CI from the list of project CIs 
3. Categorize the fault for the CI according to the project-

specific fault taxonomy 
4. Determine the frequency of faults for the CI 
5. Identify the crucial fault categories for the CI 
6. Repeat Steps 2 through 5 for all other CIs 

1.  A CI-specific 
requirement fault 
taxonomy has been 
developed 

Inputs Process Controls/Metrics Outputs 
1. Project-specific fault 

taxonomy 
2. Requirement 

faults/problem reports 
for the CIs 

3. CI-specific information 
(goals priorities for all 
CIs 

Process Controls: 
1. Maintenance of configuration control of taxonomy 
2. Maintenance and management of NASA CI data by 

project 
Metrics: 
1. Person hours for effort 
2. Number of CIs 
3. Number of faults 
4. Historic probability of occurrence 
5. Fault exposure values 

1. Frequency 
counts of faults 

2. Crucial fault 
categories for 
the CI 

3. Prioritized fault 
list for the CI 

 



 . 4

Figure 2. Timeline of activities for the Configuration Items of the ISS, 1998 – 2004. 
 

CI A
1998 1999 2000 2001 2002

Requirements 
finalized
and specs 
baselined for 
release 1

Requirements 
finalized
for release 2

Formal testing 
for release 1 
completed

Initial testing 
of second 
version of 
release 2; 
requirements 
established 
for release 3

CI B
1998 1999 2000 2001 2002

Requirements 
finalized
and specs 
baselined for 
release 1

Requirements 
finalized
for release 2; 
additional qual. 
testing for 
release 1 

Qual. testing 
for release 
2; reqts
review held 
for release 3

Qual. testing of 
rescaled release 
2; release 3 qual. 
testing

CI C
1998 1999 2000 2001 2002

Requirements 
finalized
for release 1

Qual. testing of 
release 1

Final design 
reviews held; 
S/W-H/W 
integration
testing

Addt’l 
testing of 
second 
version of 
release 2

Identified 
additional 
version of 
release 1; 
additional qual. 
testing for 
release 1

Qual. testing 
for release  
1

Qual. testing of 
rescaled release 
3

2003

2003

2003

Qual. testing of 
rescaled release 
2, additional 
version; qual. 
testing of re-
rescaled release 
3

Qual. 
Testing       
for 
release 
2

Qual. Testing       
for release 3;
Reqts 
established for 
release 4

Qual. 
Testing       
for 
release 
4

CI A
1998 1999 2000 2001 2002

Requirements 
finalized
and specs 
baselined for 
release 1

Requirements 
finalized
for release 2

Formal testing 
for release 1 
completed

Initial testing 
of second 
version of 
release 2; 
requirements 
established 
for release 3

CI B
1998 1999 2000 2001 2002

Requirements 
finalized
and specs 
baselined for 
release 1

Requirements 
finalized
for release 2; 
additional qual. 
testing for 
release 1 

Qual. testing 
for release 
2; reqts
review held 
for release 3

Qual. testing of 
rescaled release 
2; release 3 qual. 
testing

CI C
1998 1999 2000 2001 2002

Requirements 
finalized
for release 1

Qual. testing of 
release 1

Final design 
reviews held; 
S/W-H/W 
integration
testing

Addt’l 
testing of 
second 
version of 
release 2

Identified 
additional 
version of 
release 1; 
additional qual. 
testing for 
release 1

Qual. testing 
for release  
1

Qual. testing of 
rescaled release 
3

2003

2003

2003

Qual. testing of 
rescaled release 
2, additional 
version; qual. 
testing of re-
rescaled release 
3

Qual. 
Testing       
for 
release 
2

Qual. Testing       
for release 3;
Reqts 
established for 
release 4

Qual. 
Testing       
for 
release 
4

 
 

3. International Space Station Case 
History 

   The International Space Station (ISS) represents a 
global partnership of sixteen nations and will have over 
two million lines of on-board and over ten million lines 
of ground support software [20].  In our case history, we 
examined only a subset of this expansive system.  The 
tailored requirement fault taxonomy (project-specific) 
for ISS is shown in Table 1.   
   The configuration items (CIs) that we examined are all 
mission critical portions of the ISS and have real-time 
capabilities.  To maintain anonymity, we will refer to 
them as CI A, B, and C.  CI A is roughly 125,000 lines 
of code, CI B is roughly 45,000 lines of code, and CI C 
is roughly 89,000 lines of code.  All of the code is 
written in Ada except for minor efficiency 
enhancements in low-level code.  Note that these CIs 
were specified, designed, and developed by a large U.S. 
aerospace contractor who was following Department of 
Defense standard 2167A [15] software development 
processes. Requirements are tagged at the "shall" level.  
The requirements are typically one sentence in length, 
but often reach multiple levels of indentation showing 
logical relationships.  We examined requirement fault 
reports from 1998 to 2004. 

   CI A consists of 430 requirements.  All requirements 
are in the software requirement specification (SRS), 
referencing paragraphs in the interface control 
document (ICD) as appropriate. The references are the 
“shalls” so the actual requirements count is not 
transferred from the ICDs. The SRS covers releases 1-4 
of the software.  
   CI B consists of 339 requirements for release 1 of the 
software.  The second release of the software 
implemented 850 requirements, and the current release 
has about 875 requirements.  CI C consists of 339 
requirements for release 1 of the software. 
   A brief history of these CIs, for the problem report 
time period examined, is depicted in Figure 2.  Note that 
2004 is not shown or discussed as only partial data was 
available for that year at the time of the study (only one 
requirement fault was categorized for that year).  In 
1998, requirements were being finalized for the initial 
releases of CIs A and B.  A system specification review 
(SSR) was held in 1998 and the SRS was baselined.  
The software interface control documents took longer, 
and were baselined later in 1998. 
   In 1999, the requirements were finalized for release 2 
of CIs A and B and for release 1 of CI C.  Formal 
testing 



 . 5

Table 3.  Summary of all CIs  by year. 

 
of CI B and CI C was planned for this year, but ended 
up being pushed back until late 2000 and late 2001 
respectively due to hardware interface testing and 
development issues.  The formal testing for the first 
release of CI A, originally planned for early 1998 and 
then the middle of 1998 and then the end of 1998, was 
completed between late 1999 and early 2000.   
    In 2000, in addition to the milestones mentioned 
above, an additional release of CI B was identified due 
to problems found during hardware integration and 
software stage testing.  CI A release 2 underwent 
qualification testing in October 2000, delayed from late 
1998 and again from late 1999.  Also, final design 
reviews were held for CI C as well as 
software/hardware integration testing. 
   In July 2001, CI A underwent initial testing of the 
second version of release 2, delayed from earlier in the 
year due to functional changes.  Also, the requirements 
for release 3 of this CI were established.  Qualification 
testing of the rescaled second release of CI B began in 
September and was completed in November.  Also, CI 
A underwent additional testing of the second version of 
release 2.  Qualification testing for release 3, originally 
planned for early 2002, occurred in the middle of 2002. 

   Later in 2002, the requirements for release 4 of CI A 
were baselined.  Qualification testing, planned for late 
2002, was performed for this release in March 2003.    
The overall schedules of the flight software were 
continually changing during the development of the 
Station for a variety of reasons. The primary one 
relating to software requirements was the software 
ICDs. These ICDs were all bi-lateral between CIs. At 
the beginning of the software development effort, the 
development organization had not settled on a viable 
way to identify the interface requirements, mainly due 
to a lack of a good way to structure the requirements. 
This led to several aborted methods of documentation 
(including all electronic) as several different methods 
were attempted. For some CIs, the final solution did not 
arrive until after their first release of the requirements 
documents.  This caused some rework and compromises 
in the designs. The final solution to document the 
interface requirements around communications 
protocols (ISO 7 layer model) and to restrict the data 
and command definitions to only data and commands 
actually used (functional rather than pass-through) 
finally resolved many issues. 
 

Major Fault 1998 1999 2000 2001 2002 2003 2004 Total Percentage of ISS 
Faults by Category 

.1 
Incompleteness 

1 
[1,0,0] 

16 
[2,13,1] 

4 
[0,4,0] 

6 
[3,2,1] 

9 
[1,2,6] 

5 
[2,2,1] 

0 
[0,0,0] 

41 
[9,23,9] 

23.30% 
[12.68%, 

30.26%,31.03%] 
.2 
Omitted/Missing 

0 
[0,0,0] 

7 
[3,4,0] 

3 
[1,2,0] 

3 
[1,1,1] 

5 
[2,0,3] 

1 
[0,1,0] 

0 
[0,0,0] 

19 
[7,8,4] 

10.80% 
[9.86%,10.53%,13.79%]

.3 Incorrect 3 
[3,0,0] 

23 
[7,16,0] 

7 
[3,4,0] 

9 
[8,0,1] 

6 
[0,1,5] 

4 
[0,3,1] 

1 
[1,0,0] 

53 
[22,24,7] 

30.11% 
[30.99%,31.58%,24.14%]

.4 Ambiguous 0 
[0,0,0] 

13 
[9,4,0] 

4 
[1,3,0] 

2 
[1,1,0] 

4 
[0,1,3] 

0 
[0,0,0] 

0 
[0,0,0] 

23 
[11,9,3] 

13.07% 
[15.49%,11.84%,10.34%]

.5 Infeasible 0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0% 
[0%0,%0,%] 

.6 Inconsistent 1 
[1,0,0] 

13 
[8,5,0] 

1 
[0,1,0] 

3 
[2,1,0] 

5 
[0,2,3] 

0 
[0,0,0] 

0 
[0,0,0] 

23 
[11,9,3] 

13.07% 
[15.49%,11.84%,10.34%]

.7 Over-
specification 

0 
[0,0,0] 

0 
[0,0,0] 

1 
[0,1,0] 

0 
[0,0,0] 

1 
[0,0,1] 

0 
[0,0,0] 

0 
[0,0,0] 

2 
[0,1,1] 

1.14% 
[0%,1.32%,3.45%] 

.8 Not Traceable 0 
[0,0,0] 

1 
[1,0,0] 

2 
[2,0,0] 

1 
[1,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

4 
[4,0,0] 

2.27% 
[5.63%,0%,0%] 

.9 [Reserved for 
future] 

0 
[0,0,0] 

1 
[1,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

1 
[1,0,0] 

0.57% 
[1.41%,0%,0%] 

.10 Non-
Verifiable 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0% 
[0%,0%,0%] 

.11 Misplaced 0 
[0,0,0] 

0 
[0,0,0] 

1 
[1,0,0] 

0 
[0,0,0] 

1 
[0,0,1] 

0 
[0,0,0] 

0 
[0,0,0] 

2 
[1,0,1] 

1.14% 
[1.41%,0%,3.45%] 

.12 Intentional 
Deviation 

2 
[2,0,0] 

1 
[0,1,0] 

1 
[0,1,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

4 
[2,2,0] 

2.27% 
[2.82%, 2.63%,0%] 

.13 Redundant 
or Duplicate 

0 
[0,0,0] 

1 
[1,0,0] 

0 
[0,0,0] 

1 
[0,0,1] 

2 
[2,0,0] 

0 
[0,0,0] 

0 
[0,0,0] 

4 
[3,0,1] 

2.27% 
[4.23%,0%,3.45%] 

Total 7 
[7,0,0] 

76 
[32,43,1] 

24 
[8,16,0] 

25 
[16,5,4] 

33 
[5,6,22] 

10 
[2,6,2] 

1 
[1,0,0] 

176 
[71,76,29] 

100.01% 
[100.01%,100%,99.99%]

Percentage of 
ISS Faults by 

Year 

3.98% 
[9.86%, 
0%,0%] 

43.18% 
[45.07%, 

56.58%,3.45%] 

13.63% 
[11.27%, 

21.05%,0%] 

14.20% 
[22.54%, 

6.58%,13.79%]

18.75% 
[7.04%, 

7.89%,75.86%]

5.68% 
[2.82%, 

7.89%,6.90%]

0.57% 
[1.41%, 
0%,0%]

99.99% 
[100.01%, 

99.99%,100%] 

 



 . 6

4. Analysis of International Space Station 
Requirement Fault Frequency 

 
   The CI-process discussed in Section 2 was applied to 
the three CIs of the ISS.  In addition to examining the 
requirement fault frequency by CI, the frequency was 
also examined by year.  The sampling methodology 
used, trend analysis, discussion of findings, and lessons 
learned are presented below. 
 
4.1  Sampling 
 
   The sampling was performed as follows.  All 
requirement faults (documented in PRs for the ISS 
project) for each of the three CIs were extracted from 
the ISS configuration management tool and were saved 
in separate spreadsheets. Two senior verification and 
validation analysts (who are experienced with NASA 
software systems as well as other mission critical 
systems) were given the three spreadsheets and a set 
number of hours for the tasking (102 hours).  The first 
analyst spent about 15% of his time formatting the data 
to ease categorization and calculations (roughly eight 
hours).  He then spent one-third of his remaining hours 
(15.4 hours) on each of the three spreadsheets to ensure 
equal sampling (46.4 hours total).   For each 
spreadsheet, he examined every fifth fault report and 
categorized it.  Both the problem report description and 
the analysis report (written by the engineer who 
investigated the problem report) were used for 
categorization.  He then gave a list of the problem report 

IDs that he had categorized to the second analyst (but 
not the categories that he assigned).  The second analyst 
then categorized the same fault reports as the first 
analyst (he expended 47.25 hours on categorization).  
The analysts then met and came to agreement on fault 
categories for PRs with conflicting categories. 
   There are approximately 6,500 fault reports relating to 
requirements for ISS.  There were 573 for the three CIs 
being examined.  Of these, we examined 115, or 20%.  
Of those examined, we found that many were not 
requirement faults or were enhancement requests or 
suggested changes to process activities.  These were 
marked as not applicable.  Many of the problem reports 
documented more than one fault.  We found that there 
were 176 faults within the fault reports that we 
examined, or on average 1.5 faults per problem report.  
 
4.2 Trend Analysis and Discussion 
 
   Trend analysis was performed in two steps.  First, 
visual analysis was performed and results were 
discussed with and reviewed by NASA engineers.  In 
addition, using the year as a dependent variable and 
examining two independent variables (CI and fault 
category), analysis of variance was applied (assuming 
that the data is distributed normally).  Our null 
hypotheses are that: there is no difference between the 
fault frequencies observed for the three CIs; there is no 
difference in the fault frequency observed for the seven 
years; and that there is no interaction between CI and 
year   with respect   to fault   frequency.  The alternative  

Table 4.  Analysis of variance results for all fault categories and CIs by year. 

YEAR SOURCE OF VARIATION SS DF MS F P-VALUE F CRIT SIGNIFICANT? 

1998 Fault category 2 4 0.5 1 0.46 2.8 no 

1998 CI 3.33 2 1.67 3.33 0.088 3.11 yes, at 0.1 level 

1999 Fault category 44.25 3 14.75 0.85 0.51 4.76 no 

1999 CI 162.67 2 81.33 4.69 0.059 5.14 yes, at 0.1 level 

2000 Fault category 6.27 4 1.57 1.92 0.2 2.8 no 

2000 CI 20.13 2 10.06 12.33 0.003 3.11 yes, at 0.1 level 

2001 Fault category 11.06 4 2.77 0.85 0.53 2.8 no 

2001 CI 16.53 2 8.27 2.53 0.14 3.11 no 

2002 Fault category 4.93 4 1.23 1.08 0.42 2.8 no 

2002 CI 32.93 2 16.47 14.53 0.002 3.11 yes, at 0.1 level 

2003 Fault category 7.33 4 1.83 3.79 0.05 2.8 yes, at 0.1 level 

2003 CI 2.13 2 1.06 2.20 0.17 3.11 no 

2004 Fault category 0.27 4 0.06 1 0.46 2.8 no 

2004 CI 0.13 2 0.06 1 0.40 3.11 no 



 . 7

 
Table 5.  Tailored taxonomy for the ISS CIs. 

hypotheses are that differences do exist for the above. 
 We will reject the null hypothesis in favor of the 
alternative hypothesis when the probability that the 
observed result is due to chance is 0.1 or less (alpha = 
0.1).  This alpha level is appropriate as we have a fairly 
small sample.   
   The results of these two steps are presented below, as 
well as a discussion of the findings.  Table 3 provides 
the number of faults per year for all the CIs as well as 
the total for all three CIs.  For example, reading across 
the row, in 1998, there was one total incompleteness 
fault across all three CIs; that fault was for CI A.  In 
addition, incompleteness faults accounted for 23.3% of 
all faults, but accounted for 13.07% of the faults for CI 
A, for 30.26% for CI B, and for 31.03% for CI C.   
Reading down the 1998 column, there were a total of 
seven requirement faults found that year for the three 
CIs, or 3.98% of the total and 9.86% of CI A’s faults. 
 
4.2.1 Results by Year.  In examining the results by 
year, we can see from Table 3 that 1999 had over twice 
as many requirement faults (43.18%) as any other year.  
Table 4 provides the sum of squares, degrees of 
freedom, mean of the squares, f-value, p-value, f-
critical, and significance for all years, fault categories, 
and CIs.  We can see from Table 4 that fault category is 
not significant for 1999 (p-value of 0.51), but that CI is 
statistically significant at the 0.1 level (p-value of 
0.059).  The next highest year for faults was 2002 at 
18.75%.  Also, configuration item C had five times 
more requirement faults in 2002 than for any other year.  
This was surprising to the NASA engineers.  They 
believed that one reason for this might be that the 
requirements are now being written at a greater level of 

detail, and this might have previously lead to more 
occurrences of fault types 1.1 (incomplete) and 1.4 
(ambiguous).   
   The year 1999 for configuration item A accounted for 
four-fold more faults than the year 2000 and two-fold 
more faults than the year 2001.  This was not a surprise, 
as formal testing was occurring in late 1999, and one 
would expect the engineers to discover some 
requirements problems as they test the software (e.g., a 
test case fails, the ensuing debugging investigation 
indicates that the code and design were in accordance 
with the original requirement but that the requirement 
was faulty).  Configuration item B also had many more 
faults in 1999 than the other years – almost three times 
as many as for the year 2000, and seven times as many  
as for the years 2001, 2002, and 2003.  Note that the 
only remaining years (1998 and 2004) had no faults 
reported.  This was not a surprise to the NASA 
engineers as 1999 was a year of much requirement work 
for CI B.  
 
4.2.2 Results by CI.  In Table 3, CIs A and B had very 
similar numbers of faults, with CI C having much fewer 
faults (29 total versus 71 and 76 respectively for CIs A 
and B).  This was not surprising to the NASA engineers, 
and they felt it was not due to the requirements for CI C 
being of higher quality than for the other two CIs.  This 
difference is explained in that the requirements were at a 
lower level of detail than the other CIs. This is the 
opposite effect of that mentioned in 4.2.1.  
 
4.2.3 Results by Fault Category.  Examining the 
summary of all three CIs (Table 3), one finds that 
categories 1.3 (incorrect), 1.1 (incomplete), 1.4 
(ambiguous), 1.6 (inconsistent), and 1.2 (omitted) are 
dominant (in that order).  In fact, for each of the three 
CIs, these five categories account for at least 85% of all 
the faults.  In CI A, category 1.3 (incorrect) was by far 
the largest category at 30.99%.  1.4 (ambiguous) and 1.6 
(inconsistent) represented half as many faults at 
15.49%.  CI B was dominated by categories 1.1 
(incomplete) and 1.3 (incorrect) at 30.26% and 31.58% 
respectively.  CI C had 1.1 and 1.3 as dominant 
categories at 31.03% and 24.14% respectively.   It is 
interesting to note that category 1.1 (incomplete) was 
not as frequent for CI A as for the other two CIs, having 
only 12.68% of its faults in this category (as opposed to 
30.26% and 31.03% for the other two CIs).  The NASA 
engineers feel that this can be attributed to the system 
team writing the requirements for the CI A software. In 
this particular case, the CI A systems team was 
embedded in the development team.  Therefore, less 
incomplete requirements existed for that CI than for the 

Major Fault % of CI Faults by Category 
.1 Incompleteness 0.233 

.2 Omitted/Missing 0.108 

.3 Incorrect 0.301 

.4 Ambiguous 0.130 

.5 [Reserved for future] --- 

.6 Inconsistent 0.130 

.7 Over-specification 0.011 

.8 Not Traceable 0.023 

.9 [Reserved for future] --- 

.10 [Reserved for future] --- 

.11 Misplaced 0.011 

.12 Intentional Deviation 0.023 

.13 Redundant/Duplicate 0.023 



 . 8

other CIs that did not have as great an involvement from 
the system teams.  Based on these results, we developed 
a tailored taxonomy for the three CIs (it is common to 
all three)  by   removing   two   fault types   from   the   
ISS taxonomy (infeasible and non-verifiable).  This is 
shown in Table 5. 
 
4.2.4 Interaction between CI and Year.  We also 
examined the "within" effect of the independent  
variables.  Table 6 provides the same columns as Table 
4, but examines the five main fault categories (1.1, 1.2, 
1.3, 1.4, 1.6) by year and possible interaction with CI.  
The table indicates that there is an interaction of CI and 
time (year) with a p-value of 1.59E-07. 
 
5.  Lessons Learned 
 
   As indicated above, each of the results was reviewed 
with a senior NASA engineer who has worked on the 
ISS program for 17 years.  His question responses were 
then reviewed by several other experienced NASA 
engineers.  The consensus opinion is reported here.  In 
addition, the following questions were explored:   
[1] Do you agree that the prominent fault categories shown 
in this study have also been “problem areas” historically?  If 
so, why?   
[2] Have steps already been taken in some of the non-
prominent fault areas that may explain why those fault 
categories are so much lower? 
[3] Are the prominent fault categories being addressed?  Are 
there obvious common causes that point to ways to address 
these areas? 
[4] Are there lessons learned as a result of this case history 
that can be used to help write better requirements in the 
future? 
     The engineers did agree that the five prominent 
categories (categories 1.3 (incorrect), 1.1 (incomplete), 
1.4 (ambiguous), 1.6 (inconsistent), and 1.2 (omitted)) 
have historically been “problem” areas (question 1).  
They also noted that these were the same problems seen 
most frequently in requirements on other programs on 
which they have worked (ground real time, laboratory 
control, environmental control software systems).    It 
has also been the experience of the first author that these 
same faults occur most frequently on the domains on 
which she has performed IV&V (specifically for 
weapon system software).  Further discussion of why 

these have been historical problem areas will be 
presented below. 
    The engineers felt that fault frequencies in categories 
1.8 (not traceable) and 1.10 (non-verifiable) were low 
because there are good tracing practices in place and 
these items are audited (question 2).  Also, these fault 
types are easy to catch via audit.  It was agreed that 
categories 1.11 (misplaced) and 1.12 (intentional 
deviation) should be expected to be low.  If 
decomposition of the system requirements into elements 
and then major components (including the software) has 
been accomplished, with strong software ICDs between 
the CIs, then requirements should not be misplaced.  
The writing of intentionally deviating requirements is 
expected to be rare or non-existent. 
   The frequency of occurrence for category 1.13 
(redundant or duplicate) faults was surprising to the 
engineers, in contrast with the first author’s experience 
in her IV&V work (question 2).  The engineers felt that 
since redundancy is designed into the CIs of the ISS, an 
engineer would rarely make the mistake of writing a 
redundant requirement.  This may be a useful 
observation:  that when engineers are specifically 
concentrating on writing requirements to ensure 
redundancy in a system, they will be less likely to 
introduce redundant requirements. 
   Engineers felt that category 1.5 (infeasible) faults 
were not frequently encountered for two reasons.  First, 
many knowledgeable system engineers are involved in 
the requirements discussions and will discover 
potentially infeasible requirement ideas before they are 
written down.  Second, the good traceability practices 
mentioned above, including tracing requirements to test 
cases early in the lifecycle (at the preliminary design 
review), ensure that any infeasible requirement will be 
detected very early in the lifecycle.  Similarly, the 
NASA engineers felt that faults in category 1.7 (over-
specification) would be rare because of the senior 
system engineers involved in the requirements 
discussions. 
    The engineers felt that several of the prominent fault 
categories could be explained by one phenomenon 
(question 3):  the occurrence of incomplete (category 
1.1), omitted or missing (1.2), incorrect (1.3), or 
ambiguous (1.4) requirements is indicative of a lack of 
engineers, knowledgeable in the thermal, power, 

Table 6.  Analysis of variance results for CI by year

SOURCE OF VARIATION SS DF MS F P-VALUE F CRIT SIGNIFICANT?
Categories 1.1, 1.2, 1.3, 1.4, 1.6 by year 228.6 6 38.1 12.76236 3.44E-10 1.84 Yes, at 0.1 level 

CI 33.66 2 16.83 5.636364 0.005 2.36 Yes, at 0.1 level 

Interaction 217.1 12 18.1 6.060606 1.59E-07 1.63 Yes, at 0.1 level 

. 



 . 9

environmental, etc. systems, working on these particular 
requirements.  
   Category 1.6 (inconsistent) was more perplexing.  
Though this category was not ranked as high as many of 
the others, it still accounted for roughly 10% of the 
faults.  Interestingly, these faults were evenly split 
between external and internal inconsistencies (for every 
CI as well as for the roll up of all CIs).  The engineers 
felt that there were no communication problems that 
contributed to this, as the same company worked on the 
requirements for each CI and the requirements and 
development software engineers even sat in the same 
area.  One possibility is that the complexity of the 
domain of ISS and the detail level that is required in this 
type of a system makes this area a challenge, regardless 
of the skill level of the personnel or close 
communications.  This is also an area for further study.  
We are currently expanding our common cause tree to 
more formally investigate the common causes for the 
most prominent fault categories. 
   The engineers noted that two of the CIs had very 
similar fault profiles, as expected.  This was expected 
because they control multiple spacecraft systems 
(power, thermal, etc.) whereas the other CI does not.  
Also of particular interest is the data that the engineers 
thought they would see in the case history, but did not.  
For example, there was no perceivable difference seen 
in the number of faults occurring in a CI that was being 
developed by multiple companies using different 
internal processes.  The engineers had hypothesized that 
this difference might have caused different fault profiles 
to occur; however, as noted above, the major difference 
had to do with the structure of the CI rather than the 
development culture. 
    The engineers felt that the immediate “lessons 
learned” from the case history were (question 4): 
[1] Use systems engineers, responsible for the 

spacecraft systems being controlled by the 
software, when possible to assist with requirement 
specification, 

[2] Use senior personnel, when possible, to specify 
requirements and to participate in requirement 
discussions, 

[3] Continue with traceability activities, 
[4] Have engineers document only one fault in a 

problem report, 
[5] Further investigate the area of inconsistency,  
[6] Identify processes which could be used to reduce 

the most frequently occurring fault types, and 
[7] Document interface requirements around 

communications protocols and restrict data and 
command definitions to functional definitions used. 

 
 

6. Future Work 
 
   Though we have made progress in this effort, much 
work remains.  We have defined the future work in two 
phases.  In the first phase,  we will research existing 
IV&V technique taxonomies.  Working with the NASA 
research community and one or more NASA projects, 
we will implement the process developed in [5, 6] to 
extend the IV&V techniques taxonomy.  We will 
perform a literature survey for evidence that IV&V 
techniques detect certain requirements faults; build a 
traceability matrix (which techniques can detect fault 
types); use expert opinion to fill in gaps in the matrix; 
working with the Jet Propulsion Laboratory, populate 
the Advanced Risk Reduction Tool (ARTT) with this 
data; use expert opinion to validate the ARTT data 
(using different experts than for the matrix completion); 
and disseminate the findings.   
   As a second phase, we plan to examine the notion that 
projects specifically built with redundancy may not 
encounter redundant requirement faults.  We plan to 
investigate the inconsitency fault category levels as well 
as perform common cause analysis. Additionally, 
examination of fault counting approaches for problem 
reports may provide interesting insights.  
   Elimination of requirement faults represents our 
greatest opportunity to save development cost and time.  
Thus we have pursued this first.  Similarly, elimination 
of design faults is desirable.  To that end, future work 
beyond this will concentrate on design techniques and 
faults, coding techniques and faults, etc. using the same 
approach for fault-based analysis that was used for 
requirements [5]. 
 
Acknowledgments 
 
   Our work is funded by NASA under grant 
NNG04GA38G.  Our thanks to Pete Cerna, Kenny 
Todd, Mike Norris, Bill Gerstenmaier, Bill Panter, 
Marcus Fisher, and the International Space Station 
project.  We thank Andrea Hunt and Olga Dekhtyar for 
their assistance. 

 
7. References 
 
[1] Boehm, B. Software Engineering Economics. Prentice-

Hall, Inc., 1981. 

[2] Chen, Tsong and Lau, Man, “Test Suite Reduction and 
Fault Detecting Effectiveness:  An Empirical 
Evaluation,” Lecture Notes in Computer Science, 
Volume 2043, Springer-Verlag, pp. 253 – 265. 

[3] Chillarege, R., Bhandafi, I., Chaar, J., Halliday, M., 
Moebus, D., Ray, B., and Wong, M. "Orthogonal Defect 



 . 10

Classification A Concept for In-Process Measurements," 
1EEE TSE, vol. 18, no. 11 (Nov. 1992), pp. 943-956. 

[4] Davis, A.  Software Requirements: Analysis and 
Specification. Prentice-Hall, Inc., New York, 1990. 

[5] Hayes, J. Huffman.  “Building a Requirement Fault 
Taxonomy:  Experiences from a NASA Verification and 
Validation Research Project,” Proceedings of the 
International Symposium on Software Reliability 
Engineering, ISSRE 2003, pp. 49 – 59, Denver, CO, 
November 2003. 

[6] Hayes, J. Huffman, SAIC, D.N. American.  Final Report 
for Fault-Based Analysis: Improving Independent 
Verification and Validation (IV & V) through 
Requirements Risk Reduction.  SAIC-NASA-98028. 20 
December 2002. 

[7] Helmer, G., Wong, J., Slagell, M., Honaar, V., Miller, L., 
and Lutz, R.  ``A Software Fault Tree Approach to 
Requirements Analysis of an Intrusion Detection 
System," Symposium on Requirements Engineering for 
Information Security (SREIS'01), March 5-6, 2001, 
Indianapolis, Indiana, Postscript. Extended version 
invited for Special Issue of The Requirements 
Engineering Journal, to appear. 

[8] Kuhn, D.R.  Fault classes and error detection capability 
of specification-based testing.  ACM Transactions on 
Software Engineering and Methodology (TOSEM)  
Volume 8 ,  Issue 4  (October 1999).  

[9] IEEE Standard Glossary of Software Engineering 
Terminology. IEEE Std 610.12-1990, 1990. 

[10] Leszak, M, Perry, D.E., and Stoll, D. A Case Study in 
Root Cause Defect Analysis, Proceedings of the 22nd 
International Conference on Software Engineering 
(ICSE), Limerick, Ireland, 2000, pp.428-437.  

[11] Leveson, N., and Stolzy, J., Safety Analysis Using Petri 
Nets, IEEE Transactions on Software Engineering, SE-
13(3), 1987. 

[12] Lutz, R. "Analyzing Software Requirements Errors in 
Safety-Critical, Embedded Systems", Proc. RE'93: First 
1EEE International Symposium on Requirements 
Engineering, January 1993, 126-133. 

[13] Miller, L.A., Groundwater, E.H., Hayes J.E, Mirsky, 
S.M., “Guidelines for the Verification and Validation of 
Expert System Software and Conventional Software,” 
NUREG/CR-6316, SAIC-95/1028, Volume 1. 

[14] MIL-STD-1629A, Notice 2, Military Standard, 
Procedures for Performing a Failure Modes Effects and 

Criticality Analysis, Department of Defense, 
Washington, D.C., November 28, 1984 (though 
subsequently cancelled in August 1998, this standard is 
still quite useful). 

[15] MIL-STD-2167A, Military Standard, Defense System 
Software Development, Department of Defense, 
Washington, D.C., February 29, 1988. 

[16] Mojdehbakhsh, Ramin, “Software Lifecycle and Analysis 
Techniques for Safety-Critical Computer-Controlled 
Systems,” Dissertation, George Mason University, 1994. 

[17] Morell, Larry, “Theoretical Insights into Fault-based 
Testing,” Proceedings of the Second Workshop on 
Software Testing, Verification, and Analysis 1998, 19 – 
21 July 1998, pp. 45 – 62. 

[18] Munson, J.C., Nikora, A.P. Toward a quantifiable 
definition of software faults.  13th International 
Symposium on Software Reliability Engineering, 2002, 
p. 388 –395. 

[19] NASA Software Safety Guidebook. MIL-STD-882C. 

[20] NASA Space Link, 
http://spacelink.nasa.gov/NASA.Projects/Human.Explora
tion.and.Development.of.Space/Human.Space.Flight/Inte
rnational.Space.Station/. 

[21] Offutt, J. and Hayes, J. Huffman. "A Semantic Model of 
Program Faults," published in The Proceedings of the 
International Symposium on Software Testing and 
Analysis, pages 195-200, ACM, San Diego, California, 
January 1996. 

[22] Rothermel, G., Harrold, M.J., Analyzing Regression Test 
Selection Techniques. IEEE Transactions on Software 
Engineering, 22(8), Aug. 1996. 

[23] von Mayrhauser, A., J. Wang, M.C. Ohlsson and C. 
Wohlin, Deriving a Fault Architecture from Defect 
History, Proceedings of the International Symposium on 
Software Reliability Engineering, ISSRE99, pp. 295-303, 
November 1999, Boca Raton, Florida, USA. 

[24] Wallace, D., and Fujii, R., Software Verification and 
Validation:  An Overview, IEEE Software, Volume 6, 
No. 3, May 1989. 

 


