
Towards Overcoming Human Analyst Fallibility in the
Requirements Tracing Process (NIER Track)

David Cuddeback
Cal Poly

dcuddeba@calpoly.edu

Alex Dekhtyar
Cal Poly

dekhtyar@calpoly.edu

Jane Huffman Hayes
University of Kentucky
hayes@cs.uky.edu

Jeff Holden
Cal Poly

jholden@calpoly.edu

Wei-Keat Kong
University of Kentucky
wkkong1@uky.edu

ABSTRACT

Our research group recently discovered that human analysts,
when asked to validate candidate traceability matrices, pro-
duce predictably imperfect results, in some cases less accu-
rate than the starting candidate matrices. This discovery
radically changes our understanding of how to design a fast,
accurate and certifiable tracing process that can be imple-
mented as part of software assurance activities. We present
our vision for the new approach to achieving this goal. Fur-
ther, we posit that human fallibility may impact other soft-
ware engineering activities involving decision support tools.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—
tools; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures; K.m [MISCELLANEOUS]:
Software psychology

General Terms

Human Factors, measurement

Keywords

Traceability, tracing, tools, software assurance, accuracy,
validation

1. INTRODUCTION
Change impact analysis, satisfaction assessment, regres-

sion testing, reverse engineering, re-testing are all important
activities in software engineering that share a commonality:
a traceability matrix (TM) is required in order to effectively
proceed. Unfortunately, practitioners often do not build
traceability matrices, or do not keep them up to date. Trac-
ing activities, as conducted in industry, are labor-intensive,
tedious and prone to human error. In the past 10 years, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ‘11 May 21-28 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

traceability research community has worked to address this
problem by developing automated techniques aimed at gen-
erating traceability matrices between pairs of textual soft-
ware engineering artifacts (such as between requirements
and test cases, or requirements and design, etc.) [2, 12, 6,
3]. These methods, based on information retrieval, natural
language processing and text mining techniques, generate
candidate traces (so called until an analyst vets/approves
the trace) much faster than manual tracing.

To date, the quality of a TM produced by automated
methods has been mostly equated to its accuracy as mea-
sured by recall, precision and f -measure. When TMs pro-
duced by automated methods are used in follow-on activi-
ties, automated methods that produce more accurate TMs
are preferable to those that produce lower accuracy TMs.

In mission- and safety-critical applications, traceability
matrices are often mandated or are a standard part of the
software development and software assurance processes (ver-
ification and validation (V&V), independent V&V, safety
case analysis, etc.). There, tracing must be fast, accurate
and certifiable. The former cannot be achieved without in-
tegrating automated methods, while the latter requires that
a human analyst vets the TM. In such situations, which we
call in this paper semi-automated tracing, the overall qual-
ity of the tracing is determined by the accuracy of the TM
produced by the human analyst, not the automated tool.

In 2005, we began to examine the role of the analyst in the
tracing process [8, 7]. Specifically, we asked whether higher-
accuracy candidate TMs reliably lead to higher-accuracy fi-
nal TMs in semi-automated tracing scenarios. Our initial
thought was that the semi-automated tracing behaved essen-
tially in a“garbage-in - garbage-out”way: low accuracy can-
didate TMs would be more daunting for the analysts to deal
with and would yield poor accuracy in the final TM, while
highly accurate candidate TMs would “reveal” the truth to
the analyst resulting in high quality final TMs. Our other
informal expectation was that analysts would tend to gen-
erally improve the accuracy of the TMs during the trace
validation process. We conducted a small number of obser-
vations of industry analysts performing tracing. The results
suggested that our expectations might not be accurate [8].

It was not until the completion of a larger study in late
2009 [4] that we had a chance to put our hypotheses [8,
7] to the test. The results reported in the larger, multi-
institution study [4] have provided more credence to our
emerging doubts that the accuracy of the incoming candi-
date TM and the accuracy of the TM that the analyst sub-

mits are nearly always positively correlated. Where trace-
ability research over the years concentrated on achieving
more accurate TMs produced by automated methods in an-
ticipation that it would lead to immediate improvement in
the tracing processes, our work [4] and the follow-up studies
described in this paper paint a drastically different picture.
Based on these results we observe that in semi-automated
tracing scenarios, the analysts tend to degrade high accuracy
candidate TMs much more often than they improve them.

This observation changes drastically how we view tracing
in software assurance. To ensure high accuracy of the final
TM produced by the analyst, it appears that we can no
longer rely on the high accuracy of the automated method.
Rather, we must admit that while analyst involvement in
the tracing process is necessary, analyst fallibility is inherent
in the process. It is our intent to determine the means of
overcoming it.

In this paper, we overview the experiments we conducted
to study how human analysts validate traceability matrices.
We discuss the key observations that we see emerging from
these studies and their impact on the efforts of the trace-
ability research community to design and implement effec-
tive tracing processes for software assurance. We present an
emerging research agenda and discuss the broader implica-
tions of our discoveries.

2. WHAT WE STUDIED
In order to examine how analysts perform when validating

candidate TMs, we conducted a series of studies. Two of the
studies involved the use of tracing tools for traceability ma-
trix delivery; in the third study, the artifacts were presented
to participants in hardcopy and traced manually.

All three studies utilized the same dataset, a BlueJ plu-
gin Java code formatter named ChangeStyle. This dataset
was chosen because: (a) the domain is easily understood by
study participants, and (b) its size makes trace validation
tasks achievable in about one hour of time. The dataset
contains 32 requirements and 17 system tests. The research
team generated and validated the golden standard TM which
contains 23 links from requirements to system tests [4].

The studies were conducted at two sites: Cal Poly and
University of Kentucky. Participants in all studies were stu-
dents enrolled in various software engineering courses. Each
study assigned each student analyst a candidate TM and
asked them to validate it. In two studies, we used the UI of
two versions of the tracing tool RETRO [9, 5] to deliver the
candidate TMs and facilitate validation. In a third study,
all materials were provided to the participants in hardcopy
and the participants validated candidate RTMs manually.
The participants in all studies were asked to submit their
final TM, whose accuracy was assessed against the golden
standard TM. In all studies, we collected some additional
information about participant prior experience, confidence,
opinion of the tracing process and effort spent on it.

Over the three studies, a total of 88 participants submit-
ted their version of the validated TM. The key results of
our studies are summarized in Figures 1(a)–(f). Graphs are
rendered in recall-precision space. Points on each graph rep-
resent the recall and precision of TMs featured in the study.
Figure 1(a) shows the accuracy of candidate TMs assigned
to study participants; Figure 1(d) shows the accuracy of the
submitted TMs. TMs from the three studies are shown using
different symbols. As seen from Figure 1(a), the accuracy

of initial TMs spanned the recall-precision space1.
Figures 1(b)–(c) and 1(e)–1(f) show each participant’s

performance. For clarity, we split the display by the quad-
rant in the recall-precision space in which the participant’s
initial candidate TM was located. Each participant’s perfor-
mance is represented by a vector with the tail indicating the
accuracy of the initial (assigned) TM and the head (arrow)
of the vector indicating the accuracy of the submitted TM.

3. WHAT WE LEARNED
Submitted RTMs cluster to a ”hotspot”. Figure 1(a)
shows that we assigned candidate TMs to participants rela-
tively evenly over the recall-precision space. At the same
time, Figure 1(d) shows that the accuracy of final TMs
tended to converge in a hotspot region. The hotspot was
initially observed in [4] and confirmed in the follow-up stud-
ies. We define it as containing TMs with 17 (# of system
tests) to 32 (# of requirements) links with accuracy repre-
sented by the f2-measure2 in the [0.6, 0.75] interval. TM
size boundaries were selected to represent the “one link per
test case” and “one link per requirement” intuition, while
the f2 boundaries are “nice” approximations of values that
maximize the tightness of the cluster within the boundaries.
We note, however, that: (a) not a single participant in our
studies recovered the golden standard TM(!), and (b) the
hotspot region falls relatively far from perfect accuracy. The
participants are achieving some form of consensus, but the
achieved consensus is still relatively inaccurate.

Use of tools vs. manual tracing. Overall, similar
trends (see below) were observed across all studies. Some
slight differences are noted here. In the hardcopy study,
there were more final TMs that fell just short of the neces-
sary recall to be in the hotspot. However, participants using
the manual tracing method more reliably produced higher
precision TMs. 31 out of 38 (81.6%) participants who man-
ually vetted the TMs produced final TMs with at least 50%
precision, while 29 out of 45 (64.4%) participants using a
software tool accomplished the same result.

We hypothesize that use of a tracing tool UI for trace val-
idation helps analysts correct errors of omission. RETRO
includes a mechanism to allow analysts to search for key-
words in the artifacts, which can simplify missing link dis-
covery. Analysts who vet the TM manually have no such
support for finding missing links.

All quadrants are different. We observed different an-
alyst behavior based on the accuracy of their starting can-
didate TM in [4]. Follow-up studies add additional credence
to these observations. Furthermore, the studies show that
the general behavior of analysts is consistent, whether they
vet a TM manually or use a software tool. In the low recall,
low precision region (Figure 1(e)), analysts exhibit the de-
sired behavior—replacing bad links with good ones. TMs in
the high recall, low precision region (Figure 1(f)) start with
many links, so analysts focus on weeding out the bad links.
This leads to higher precision. Analysts end up removing
some good links in the process, leading to stagnant or some-
what decreased recall. The opposite behavior is observed

1We tried to achieve even distribution of assigned TMs
within the recall-precision space. Any observed unevenness
is due to non-responses.
2Harmonic mean of recall and precision, favoring recall, as
we consider capturing all true links in a TM as being more
important than not admitting false positives.

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

Old Retro

Retro.Net

manual

RTM size = 17

RTM size = 32

f2 = 0.60

f2 = 0.75

(a)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

(b)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

(c)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

(d)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

(e)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

c
is

io
n

Recall

(f)

Figure 1: Results of our traceability study. (a), (d): distribution of assigned and submitted TMs.
(b),(c),(e),(f): performance of individual participants by accuracy of assigned TM.

in the low recall, high precision region (Figure 1(b)), where
TMs have very few links. Analysts tend to focus on find-
ing more links and, in doing so, add both good (improved
recall) and bad (decreased precision) links. Finally, ana-
lysts vetting TMs from the high recall, high precision region
(Figure 1(c)) reduce the overall accuracy of the RTM, some
by adding bad links and others by removing good links. In
many cases, the resulting TMs are still among the most ac-
curate ones observed, but we want the analysts facing near-
perfect candidate TMs to improve, not degrade the accuracy
of the TM, and we are not observing such behavior.

In the process of conducting a thorough statistical analy-
sis of our results to find the best predictors for the accuracy
of the final TM and the change in accuracy we discovered
that the accuracy of the initial TM (or the cluster it is in) is
a strong predictor for both factors. As participants failed to
recover the golden standard TM, we observe that human an-
alyst fallibility in trace validation tasks is both unavoidable

and predictable.

4. WHAT WE CAN DO
The last observation has a profound impact on how we

approach traceability research. How are we to proceed from
here, with a realization that much of our prior work has
perhaps focused on the wrong problem, or at a minimum
has failed to properly take into account a very important
variable? We address this question below, starting with a
look at possible threats to the validity of our empirical work.

The threats to validity for our work revolve around our
use of a single dataset, and on our use of students as study
participants. Our initial small study [7] was conducted with
software assurance analysts and a different dataset, and its
results are certainly in line with the observations made here.
Thus, there is some anecdotal evidence that our observa-
tions hold across projects. Most students undertaking the
project were juniors or seniors, not so less experienced than

human analysts performing tracing in industry: a task of-
ten relegated to the junior personnel. Note also that Host
et al. found that students are suitable replacements for in-
dustry professionals if performing small tasks of judgment
[10]; this is true of our work. That being said, it is clear
that we must repeat our studies on different datasets, using
different tracing tools, etc. We hope to undertake a similar
study using industry professionals, perhaps in concert with
a planned industry survey for the Center of Excellence for
Software Traceability [11]. Our goal in each of these studies
is to confirm, refute, or modify our current conclusions.

In addressing the ”what now?” question, our dilemma is
not so different from any “irritation” which results in the
“can’t live with ’em, can’t live without ’em.” thought. There
are basically four possible courses of action that could be
pursued. We address each below.

Eliminate or ignore the analyst. In this course of ac-
tion, the research community accepts the challenge of build-
ing techniques that are not fallible. The trusted software
community (safety- and mission-critical software system de-
velopers and assurers) will have to be convinced to modify
their process to no longer require a human to vet the TM.
The only way to achieve this is to develop tools that recover
perfect traces. This approach is unlikely to succeed because:
a) this has been the research community goal all along and
it has yet to be achieved; b) the trusted software commu-
nity may always want a human to have the last say; and c)
even if the communities overcome a) and b), the question of
liability for failures due to mistakes made in the traceability
analysis step may never be resolved. The research agenda
for this course of action shares many goals of our community
articulated in the Grand Challenges of Traceability [1].

Quarantine the analyst. In this approach, traceability
researchers will in essence build a ”wrapper” (using a soft-
ware testing analogy) around the “untrusted” component
(i.e., the analyst). It may look like a firewall or a secu-

rity exception that queries ”Are you sure you want to trust

Bob? Permanently, or just this time?” At this point we can
only speculate on what we would be protecting against. For
example, most automated tracing techniques produce high
recall, low precision candidate TMs [2, 12, 6, 3]. For such
TMs, we might make it much harder for the analyst to reject
a candidate link than to accept it or add a new link. Re-
jection attempts would force the analyst to jump through
a number of extra hoops forcing them to seriously evaluate
causes for their decision. The research agenda for this ap-
proach essentially involves translating the overarching “trust
but verify” principle into the language of tracing activities.
The analyst would be viewed as an almost toxic element in
the process, and the“quarantine”measures would be akin to
blacklisting or other security processes that seek to prevent
miscreants from attacking one’s computer.

Change the analyst. Today’s analysts may be fallible,
but it does not mean that the analysts of tomorrow should
be. One of the key Grand Challenges of Traceability [1]
is Training. We ask ourselves and our community: what
can we do as educators and practitioners to improve analyst
preparedness and to eliminate the analyst fallibility?

Embrace the analyst. Changing the analysts may work
in the long term, but in the short term, other approaches
may be needed. The embrace the analyst course of ac-
tion throws up its hands and accepts that fallible humans are
part of the process. It sets about to systematically and in a
detailed fashion unravel the mystery of the human interact-
ing with the tracing tools/tracing process. This ambitious
undertaking needs to be approached as if there is no existing
knowledge about how humans work with the process. We
may need to experimentally study ONE variable at a time:
size of the TM, experience of the analyst; domain of the
artifacts; tracing tool; accuracy of the candidate TM; etc.
Only then can we have a body of evidence that will permit
us to design techniques to take advantage of the strengths
of humans and to avoid their weaknesses. One could imag-
ine, for instance, a smart tracing tool that has learned its
”owner’s” weaknesses and can help mitigate them, much as
a spell checker or grammar checker assists the writer.

Our experiments yielded a significant amount of data yet
to be analyzed. We are starting to analyze and mine this
data to obtain more insight into the actual process of tracing
and human decision-making in it, in line with the embrace
the analyst approach. Regardless of the need to do more
studies and perform more in depth analysis of the data, it
cannot be understated that this discovery may radically,
revolutionarily change how our community delivers
a ”good” software-supported tracing tool/process to
industrial software assurance professionals.

As a final thought, we posit that tracing is not the only
area where human analysts are fallible. Further, upon dis-
covering that analysts are predictably fallible, it seems al-
most irresponsible to not study the analyst and the accu-
racy of the final product/final decision/final result for any
area/tool/technique/process that relies on the human to
make the final decision or have the final say. In addition
to challenging our traceability research community to el-
evate the study of the analyst to paramount importance,
we suggest that the software engineering research commu-
nity as a whole reconsider the emphasis on evaluating tech-
niques/tools in isolation and urge them to consider the hu-
man in the loop and resulting impacts on final accuracy.

5. ACKNOWLEDGMENTS
Our work is funded in part by a grant from Locheed Martin
and by the NSF grant CCF-0811140. We are grateful to
John Dalbey for providing the source for the ChangeStyle

dataset and to Gene Fisher, Clark Turner and David Janzen
for allowing us to conduct studies in their courses.

6. REFERENCES
[1] Grand challenges in traceability. Technical Report

COET-GCT-06-01-0.9, Center of Excellence of
Traceability, September 2006.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering Traceability Links Between
Code and Documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, Oct 2002.

[3] J. Cleland-Huang, C. K. Chang, and M. Christensen.
Event-Based Traceability for Managing Evolutionary
Change. IEEE Transactions on Software Engineering,
29(9):796–810, 2003.

[4] D. Cuddeback, A. Dekhtyar, and J. Hayes. Automated
Requirements Traceability: The Study of Human
Analysts. In Requirements Engineering Conference
(RE), 2010 18th IEEE International, pages 231–240,
Sydney, Australia, Oct 2010. IEEE.

[5] A. Dekhtyar, J. H. Hayes, and J. Larsen. Make the
most of your time: How should the analyst work with
automated traceability tools? In PROMISE ’07:
Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, page 4,
Washington, DC, USA, 2007. IEEE Computer Society.

[6] J. Hayes, A. Dekhtyar, and S. Sundaram. Advancing
Candidate Link Generation for Requirements Tracing:
the Study of Methods. IEEE Transactions on Software
Engineering, 32(1):4–19, Jan 2006.

[7] J. H. Hayes and A. Dekhtyar. Humans in the
Traceability Loop: Can’t Live With ’Em, Can’t Live
Without ’Em. In TEFSE ’05: Proceedings of the 3rd
International Workshop on Traceability in Emerging
Forms of Software Engineering, pages 20–23, New
York, NY, USA, 2005. ACM.

[8] J. H. Hayes, A. Dekhtyar, and S. Sundaram. Text
Mining for Software Engineering: How Analyst
Feedback Impacts Final Results. In MSR ’05:
Proceedings of the 2005 International Workshop on
Mining Software Repositories, pages 1–5, New York,
NY, USA, 2005. ACM.

[9] J. H. Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook,
S. Vadlamudi, and A. April. REquirements TRacing
On target (RETRO): Improving Software
Maintenance through Traceability Recovery.
Innovations in Systems and Software Engineering: A
NASA Journal, 3(3):193–202, Sep 2007.

[10] M. Host, B. Regnell, and C. Wohlin. Using students as
subjects - a comparative study of students and
professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214, 2000.

[11] http://www.traceabilitycenter.org.

[12] A. Marcus and J. Maletic. Recovering
Documentation-to-Source-Code Traceability Links
Using Latent Semantic Indexing. In Proceedings of the
25th International Conference on Software
Engineering, 2003, pages 125–135. IEEE, May 2003.

