
Validation of Software Testing Experiments
A Meta-Analysis of ICST 2013

Mark Hays, Jane Huffman Hayes
Computer Science Department

University of Kentucky
Lexington, Kentucky, USA

mark.hays@ uky.edu, hayes@cs.uky.edu

Arne C. Bathke
Statistics Department, University of Kentucky
Lexington, Kentucky, USA; arne@uky.edu

Fachbereich Mathematik, Salzburg University
Salzburg, Austria

Abstract— Researchers in software testing are often faced
with the following problem of empirical validation: does a new
testing technique actually help analysts find more faults than
some baseline method? Researchers evaluate their contribution
using statistics to refute the null hypothesis that their technique is
no better at finding faults than the state of the art. The decision
as to which statistical methods are appropriate is best left to an
expert statistician, but the reality is that software testing
researchers often don't have this luxury. We developed an
algorithm, MeansTest, to help automate some aspects of
statistical analysis. We implemented MeansTest in the statistical
software environment R, encouraging reuse and decreasing the
need to write and test statistical analysis code. Our experiment
showed that MeansTest has significantly higher F-measures than
several other common hypothesis tests. We applied MeansTest to
systematically validate the work presented at the 2013 IEEE
Sixth International Conference on Software Testing, Verification,
and Validation (ICST'13). We found six papers that potentially
misstated the significance of their results. MeansTest provides a
free and easy-to-use possibility for researchers to check whether
their chosen statistical methods and the results obtained are
plausible. It is available for download at coest.org.

Keywords—software testing; statistical analysis; empirical
validation

I. INTRODUCTION
Research in software testing often lends itself to empirical

validation; researchers show that some new way of discovering
faults finds more faults or takes less time than the state of the
art. Publications often describe such results as being
significant. While significance is an overloaded term, in the
context of empirical validation, we'd like to think that
significance refers to statistical significance: that a difference
between two means or variances is not likely due to chance.
Significance in this context is demonstrated through formal
hypothesis testing.

Researchers who ascribe to this notion of significance must
also contend with threats to statistical conclusion validity.
Researchers sometimes incorrectly fail to reject the null
hypothesis due to choosing inappropriate statistical test. Worse,
they almost never go back and analyze the statistical power of
their experiment to determine whether their sample size was
appropriate. Less often, they interpret a p-value as a probability
when in fact the assumptions of the underlying statistical test
have not been met. While the former problem can be solved by
using powerful tests, powerful tests make assumptions that run

the risk of suffering the latter problem. This impasse has led
researchers in software testing to rely on classical, possibly
rather conservative tests from the Wilcoxon family because
they "do not wish to make assumptions on the distribution." [1]
We present relatively recent advances in nonparametric
statistics that provide powerful alternatives to the classical
tests.

In this paper, we make several contributions to address
these issues. We introduce an algorithm, called MeansTest, to
introduce the software testing research world to new statistical
tests such as Brunner-Munzel. This process has the potential to
automatically analyze experimental results. To our knowledge,
there is no other approach readily available that goes through
the workflow to analyze the data under study for properties
such as normality, equal variance, and power, and then use that
information to decide which test to apply, and then apply that
test. We have encapsulated those aspects of a professional
statistician’s approach that can reasonably be automated; while
it is obvious that common sense and experience of a trained
statistician can’t be replaced by an automated procedure, we
also found that some crucial steps can indeed be left to
software. The simulation of our algorithm demonstrates its
usefulness. Nevertheless, the idea of automated test selection
will always have an air of controversy and we recommend to
the user to employ our automatism wisely, and with common
sense. However, readers shall keep in mind that the only viable
alternatives would be relying on unrealistic model
assumptions, or restricting oneself to overly conservative tests
and thus failing to detect important effects. We introduce a
unique way to validate the statistical technique that blends
statistics with classification-based validation seen in fields such
as software fault classification. We use our statistical technique
to examine prior art at the 2013 IEEE Sixth International
Conference on Software Testing, Verification, and Validation
(ICST'13) [2] for statistical significance.

This paper is organized as follows. Section II examines
related work in empirical validation. Section III discusses the
challenges that researchers face in performing valid statistical
analysis. In Sections IV and V, we analyze the effectiveness of
MeansTest. Sections VI and VIII state the results of our meta-
analysis of ICST'13. In Section VIII, we discuss our planned
future work.

2014 IEEE International Conference on Software Testing, Verification, and Validation

978-0-7695-5185-2/14 $31.00 © 2014 IEEE

DOI 10.1109/ICST.2014.46

333

II. RELATED WORK
This section presents background information for statistical

analysis for empirically evaluating software testing research.

A. Definitions
To evaluate a hypothesis, researchers in software testing

typically look at one or more summary statistics. The most
common statistic is the mean, or average. Researchers will try
to show that one approach can find more faults on average than
another approach.

According to Cohen, effect size is a key measure in
computing an experiment's power, which is its ability to
correctly reject the null hypothesis [3]. Often, researchers will
run small, initial experiments to see if their ideas hold any
merit. While they may find a positive result, their result might
not be statistically significant. Post-hoc power analysis is a
procedure used at the end of such a pilot study to determine the
sample size required to achieve a statistically significant result.
The analysis assumes that the effect size the researcher
observed will remain constant in the larger experiment.

In this work, we refer to several hypothesis tests for
comparing means. Well-known hypothesis tests include the t-
tests [4] and the Wilcoxon tests [5]. Less well known is the
recent Brunner-Munzel test [6]. The t-tests are considered
parametric tests because they assume parametrized families of
distributions (normal distribution family or others where a
particular distribution can typically be described using one or
two parameters). The Wilcoxon and Brunner-Munzel tests are
considered nonparametric because they do not assume that the
data originates from any particular distribution family.

In particular, the t-tests assume normality: the assumption
that the data fits a normal distribution, also known as a
"Gaussian distribution" or "bell-shaped curve." The normal
distribution is defined to be symmetric, meaning that the mean
and median are equal. Symmetry does not always hold;
distributions like the beta distribution can be asymmetric,
which indicates a significant departure from normality.
Distributions can also have varying peakedness ranging from
the completely flat uniform distribution to the especially sharp
t-distribution. Pearson [7] formally defined these aspects of
non-normality in terms of skewness (asymmetry) and kurtosis
(peakedness). Many methods of varying effectiveness exist for
verifying the normality of data, but we use the Shapiro-Wilk
test [8] because it formally reasons about the likelihood that a
given sample's skewness and kurtosis are a significant
departure from normality.

Some tests assume that the data takes the form of two
independent samples. One might imagine a software testing
experiment where testers are divided into two groups (control
and treatment group) and testers in the treatment group are
given a new method of detecting faults. We might then
formulate a hypothesis that testers in the treatment group find
more faults than testers in the control group; this would be an
example of an experiment with two independent samples.
Other software testing experiments take the form of paired
sample experiments. In these experiments, each defect
detection algorithm under study is applied to every program
under test. The defects found are related (paired) on the

program being tested. The experiment designer establishes
whether their experiment is paired or two-sample based on the
nature of the procedure; it cannot be inferred from the samples.
The choice of two independent samples vs. paired samples
determines which hypothesis tests can be applied.

Some independent samples tests, like the classical Student's
t-test, also assume that the samples have equal variance.
Several formal hypothesis tests exist for disproving this
assumption, such as the classical F-test and the more robust
Brown-Forsythe test [9]. However, this F-test itself makes
strong assumptions about normality, so in cases where
normality is not clearly inferred from the sample data, Brown-
Forsythe can be more appropriate. When the data does not have
equal variance, Welch's t-test is appropriate because it
computes a more robust estimate of the variance.

Finally, it is our experience that the Brunner-Munzel
implementation in R [10] uniquely assumes that there is
overlap between the samples. If one were to plot two
independent samples on a shared number line, the number line
would indicate overlap if at least one value from one sample
fell within the min and max values of the other sample. When
no overlap is present, our experience is that the Brunner-
Munzel test is undefined. Overlap is likely a new assumption to
researchers, but as the description indicates, overlap is
straightforward to test.

B. MeansTest Algorithm
In our prior work [11], we introduced the first iteration of

the MeansTest algorithm. We implemented it for the
experiment design framework, TraceLab [12]. MeansTest
automated important aspects of the basic logic that expert
statisticians use when selecting statistics tests that compare
location parameters, such as the mean and median. MeansTest
implemented the underlying statistical tests and testing of
assumptions by invoking the statistics environment R.
MeansTest reported the p-value, test statistic, and the logical
path it took through the composite component. Our paper
separately gave statistician-crafted language describing the
meaning of each possible path so that researchers could
correctly report the MeansTest output.

Figure 1 displays the precedence graph of the revised
MeansTest algorithm used in this paper. MeansTest operates in
two modes: paired-sample (aka "one-sample") and two-sample.
In the paired mode, depending on the properties of the data
being compared, MeansTest performs either the paired-sample
t-test or Wilcoxon signed-rank test. In the two-sample mode,
MeansTest performs one of: a) the t-test, b) Welch's t-test for
unequal variances, c) Brunner-Munzel, or d) the Mann-
Whitney U test (also known as the Wilcoxon rank-sum test),
again depending on the shape and overlap of the two
distributions.

Since its introduction, we have continued to improve to the
MeansTest algorithm. We introduced post-hoc power analysis
to facilitate pilot studies. In this context, power analysis takes
experiment results that are not statistically significant and
determines the minimum sample size required to make them
significant; this analysis assumes that the observed results are

334

Fig. 1. The MeansTest algorithm, as implemented in TraceLab.

not an artifact of chance. Also, we now directly display in line
with the results the descriptive text that a researcher can cite.

C. Tests for Normality
Razali and Wah [13] compared several algorithms for

determining normality of data. Razali and Wah selected the
four "most common" automated tests for normality: Shapiro-
Wilk, Kolmogorov-Smirnov, Anderson-Darling, and Lilliefors.
They applied these tests to samples of various sizes drawn
from 14 probability distributions; they selected these
distributions "to cover various standardized skewness and
kurtosis values." They generated samples of sizes 10, 20, 30,
50, 100, 200, 300, 400, 500, 1000, and 2000. They found that
the Shapiro-Wilk test was the most efficient overall at
identifying non-normality.

The Razali and Wah paper is relevant to MeansTest for two
reasons. First, they identified the best algorithm to determine
non-normality; note that MeansTest used Shapiro-Wilk in the
initial release. Second, they presented an empirical framework
and data set that could be extended to validate MeansTest.
Table 1 summarizes the probability distributions that Razali
and Wah used. As Table 1 shows, the data is balanced evenly
between symmetric and asymmetric distributions. It also has
balanced skewness (seven values are 0) and kurtosis (seven
absolute values are less than or equal to 1). This balance helps
eliminate bias threats.

TABLE I. RAZALI AND WAH DISTRIBUTIONS

Distribution Skewness Kurtosis
uniform(0,1) 0 -1.2

beta(2,1) -0.5656854249 -0.6
beta(2,2) 0 -0.8571428571
beta(3,2) -0.2857142857 -0.6428571429
beta(6,2) -0.692820323 0.1090909091

t(7,0) 0 2
t(5,0) 0 6

t(10,0) 0 1
t(300,0) 0 0.0202702703

Laplace(0,1) 0 3
chisq(4,0) 1.4142135624 3

chisq(20,0) 0.632455532 0.6
Gamma(1,5) 2 6
Gamma(4,5) 1 1.5

D. Empirical Software Engineering
Dit et al. [14] surveyed software maintenance papers from

the last ten years. Their goal was to reproduce the tools and
results of these papers in the TraceLab framework, then make
the components publicly available. They organized the papers
using the Petersen et al. systematic mapping process [15].
Their steps include: 1) Defining the research questions; 2)
Conducting the search; 3) Selecting screening criteria; 4)
Classifying the technique (in their case: determining the tracers

335

and preprocessors used); and 5) Extracting the data. We reuse
this mapping process in our research.

Basili et al. surveyed empirical software engineering
papers. They created a framework that describes experiments
in terms of the definition, design, implementation, and
interpretation of an experiment. Each part of the framework
has several attributes, such as scope (single project, replicated
project, multi-project variation, blocked subject-project),
perspective, and impact. The authors used this framework to
systematically survey papers. They identified several problem
areas: 1) that there is no consistency among practitioners, 2)
that experiments are hard to precisely define because there is
no standard metric for gauging software quality, 3) the
experiment plan should contain ideas for subsequent
experiments, 4) experiments need to be published in a
repeatable and extendable way, and 5) results need to be
qualified by the controlled variables [16].

Kampenes et al. [17] systematically reviewed the statistical
significance of 103 controlled software engineering
experiments dating between 1993-2002. Their goal was to
examine the proportion of journal papers that report Cohen's
effect size. As a secondary measure, they collected the number
of statistically significant results as reported by the authors.
The 103 papers contained a total of 429 hypothesis tests. Of
those, only 212 tests (49%) indicated statistically significant
results. This proportion serves as a baseline for our meta-
analysis of ICST'13.

III. THE IMPORTANCE OF STATISTICAL ANALYSIS
Generally, statistical inference aims to quantify whether

observed real-data phenomena could be explained by chance
alone, or whether the observed data are so unusual that a
convincing explanation requires a model with components
beyond chance alone [18]. In the case of comparing two
techniques, each technique results in a data sample. Most
likely, the samples will differ from each other. However, even
if both techniques are equivalent, one would expect the
samples to be different due to chance variation. Statistical
inference provides the tools to decide whether the two samples
are different enough to reject the possibility that both methods
were equally effective. To this end, statistical testing
procedures yield p-values. A p-value in this context is the
probability, assuming both methods are indeed equivalent, that
two resulting data samples would be as (or more) different than
the two samples that were observed in the experiment. P-values
are one of the main decision tools in statistical inference. If the
p-value is small, typically less than 0.05, researchers conclude
that the assumption “both methods are indeed equivalent” can
no longer be upheld.

One of the main problems with p-values is that the
underlying probability calculation typically relies on several
model assumptions. Unless these assumptions are carefully
checked and verified, the seemingly precise “p-value” can be
worthless and misleading. For example, the unpaired two-
sample t-test can be used to compare two independent samples.
Observations in each sample are assumed to be normally
distributed with equal variance. If the samples are truly
independent and the observations truly follow normal
distributions and have the same variance, then a reported p-

value of 0.03 can indeed be interpreted as a rejection of the
hypothesis “both methods are equally effective,” while a p-
value of 0.12 does not provide evidence against this
hypothesis. However, if the samples are actually paired instead
of independent, this test will often provide large p-values even
if both methods are rather different. The same can happen if
the data is highly skewed and thus violates the normality
assumption. On the other hand, it can also happen that an
inappropriately chosen statistical test provides a small p-value
even though the methods being compared are not
distinguishable in quality, and the observed differences are in
fact due to chance. Such a test is as undesirable as the first one.
In either case, the resulting p-values do not serve as a
meaningful decision tool, and they do not have the probability
interpretation mentioned above.

The solution to this problem is rather straightforward: only
appropriate inference procedures should be used. The
MeansTest workflow facilitates this by making sure that all of
the important assumptions are being examined and that
appropriate inference procedures are being chosen. As a result,
the final reported p-value for the comparison of two methods
still satisfies the probability interpretation given above. Also,
this p-value can be used to decide whether the hypothesis “both
techniques are equally effective” shall or shall not be rejected.

IV. EXPERIMENT DESIGN
In our experiment, we evaluated the accuracy of the

MeansTest component. We drew samples at random from the
Razali and Wah probability distributions. We drew second
samples at varying distances from the original samples. We
then applied hypothesis tests to see if they could notice the true
difference in the population means.

A. Research question
As stated earlier, the MeansTest workflow combines

several hypothesis tests that researchers already use. In light of
the tendency of researchers to favor the Wilcoxon tests, we
might ponder whether MeansTest is more effective overall than
the Wilcoxon tests. We pose this hypothesis more generally in
the form of RQ0 below.

RQ0: can MeansTest more accurately detect the true
significance of differences/lack thereof than other hypothesis
tests?

B. Data
We studied the Razali and Wah probability distributions

from Table I.

C. Procedure
We expanded the Razali and Wah procedure to cover

statistical significance. Razali and Wah only evaluated the
likelihood that a test of normality could find a known
difference in non-normality. We looked at two aspects: the
likelihood that a hypothesis test would find a significant
difference when a difference was present, and the likelihood
that a hypothesis test would not find a significant difference
when no difference was present. This procedure is more in line
with the usual fault classification experiments in software
testing and gives direct evidence toward answering our
research question.

336

We applied the following hypothesis tests: MeansTest,
Student's t-test, Welch's t-test, Wilcoxon ranked-sum, and
Brunner-Munzel. As mentioned earlier, these tests are all
invoked by MeansTest, so it is worth considering whether
MeansTest can perform any better than its parts.

We ran our hypothesis tests on many pairs of samples.
Each pair consisted of an initial sample and a shifted second
sample. We drew our initial samples from the Razali and Wah
distributions using their sample sizes. To draw the second
samples, we used Cohen's effect size to define the difficulty of
noticing a difference between two samples. We systematically
examined 20 effect sizes: ten of the effect sizes were selected
from zero to one in 0.1 increments, while the other ten had zero
effect size. This selection created a balance between zero
differences and non-zero differences, reducing bias. We
selected the parameters of the second sample's probability
distribution to yield the desired effect size. For each
distribution/sample size/effect size triple, we drew 100 pairs of
initial samples and shifted samples.

The result of running each hypothesis test on each pair of
samples was a p-value. We interpreted the p-value at the 95%
confidence level to determine whether an outcome was
significant (positive) or not significant (negative). We
interpreted the correctness of this result depending on the effect
size. Table 2 concisely demonstrates our classification logic
given a p-value p and an effect size d.

TABLE II. CLASSIFICATION LOGIC

 Positive Negative
True p<0.05,d>0 p>0.05,d=0
False p<0.05,d=0 p>0.05,d>0

We labeled these quantities using TP for True Positive, TN
for True Negative, FP for False Positive, and FN for False
Negative. Using these labels, we then computed the F-measure
of each classification. We use the following definitions to
compute F-measure [19]:

 recall = ��/(�� + ��) (1)

 precision = ��/(�� + ��) (2)

 � = 2 ∗
recall∗precision

recall�precision
. (3)

The F-measure of all hypothesis tests increased with
sample size, but the relative rankings between methods
remained stable. To eliminate the effect of sample size on F-
measure, we ordinally ranked each value at each sample size;
the ranks were consistent across sample sizes. This consistency
allowed us to summarize our results by distribution.

D. Hypothesis
We wanted to show that MeansTest had higher rank than

that of other hypothesis tests. Given a hypothesis test i,
Equations 4 and 5 formally state the null and alternate
hypotheses as:

 �	: Rank(MeansTest) = Rank(
) (4)

 ��: Rank(MeansTest) > Rank(
). (5)

We rejected each null hypothesis with 95% confidence.

V. RESULTS
In this section, we describe our results, including the

rankings by distribution, the p-values for the hypothesis tests,
and the threats to validity.

A. Rankings
Table 3 shows the summary of the ranks on an ordinal scale

of 1-5, using the average for ties. Higher ranks are better.

TABLE III. HYPOTHESIS TEST RANKINGS

Distribution Means
-Test

Wilcoxon t Welch
t

Brunner-
Munzel

beta(2,1) 5 3 1.5 1.5 4
beta(2,2) 3 1 4 5 2
beta(3,2) 3 1 5 4 2
beta(6,2) 5 3 2 1 4

chisq(20,0) 4 3 2 1 5
chisq(4,0) 3.5 3.5 2 1 5

Gamma(1,5) 4.5 3 2 1 4.5
Gamma(4,5) 5 2 3 1 4
Laplace(0,1) 3 5 2 1 4

t(10,0) 4 3 2 1 5
t(300,0) 4 1 5 3 2

t(5,0) 3 4 2 1 5
t(7,0) 3 4 2 1 5

uniform(0,1) 3 1 5 4 2

As Table 3 shows, MeansTest demonstrated favorable
classification behavior over the other tests. While the
individual tests each had their strong and weak points,
MeansTest was able to infer the appropriate test sufficiently to
always place at least third or higher. Contrast that with the
Wilcoxon rank-sum test and Welch's t-test, which both fared
poorly with alarming frequency. Brunner-Munzel, the new
non-parametric test, usually did well. With regard to the added
entry on normality, the t-tests nicely complemented Brunner-
Munzel's weak points, lending credibility to our idea to pick
between the tests based on the normality of the data.

B. Summary statistics
Table 4, in turn, provides summary statistics for Table 3.

TABLE IV. HYPOTHESIS TEST SUMMARY STATISTICS

Test Worst rank Best rank Mean p-value
MeansTest 3 5 3.8 -
Wilcoxon 1 5 2.7 0.013
Welch's t 1 5 1.9 0.0037

t 1.5 5 2.8 0.038
Brunner-
Munzel

2 5 3.8 0.61

To evaluate our set of hypotheses regarding the ranks, we
applied paired hypothesis testing to account for the fact that the
ranks are dependent variables on the distribution being tested.
Since we are here comparing ranks, only a nonparametric rank
test is appropriate. Note that ranks have the property that their

337

sum is always constant (consider the row sums in Table 3) –
therefore violating an always implicitly assumed independence
assumption in parametric tests.

Using this information, we applied the Wilcoxon signed-
rank test (as Brunner-Munzel only applies to independent
samples). As Table 4 highlights, we found that MeansTest had
a significantly higher rank than Wilcoxon rank-sum and the t-
tests. MeansTest did not have a significantly higher rank than
Brunner-Munzel.

C. Threats to Validity
In terms of threats to statistical conclusion validity, our

results only have 95% confidence. We declared our hypotheses
ahead of time so we would not have to worry about inflated
experiment-wide error from performing multiple comparisons.
Even if we had decided on all four tests after performing the
experiment, we should still have at least 80% experiment-wide
confidence according to the very conservative Bonferroni
correction.

In terms of threats to construct validity, these should be
minimal because we used the statistics framework R to perform
all of our statistics. In our previous work [11], we tested each
MeansTest path and confirmed that it returned the same result
as the expert statisticians using other statistics software.
Similarly, in our experiment, we used R to generate the
probability distributions and shift their parameters.

In terms of threats to internal validity, we used a data set
that was previously used in an experiment to assess the ability
of statistics to infer non-normality, which on the surface could
appear to create a bias towards nonparametric statistics. We
defused this threat by establishing that the distributions were
balanced between normal and non-normal skewness and
kurtosis. Many of the distributions used in the experiment, such
as the t distribution, were in fact approximately normal. We ran
each hypothesis test on every data set we generated, so it is not
possible that MeansTest received "easier" samples than the
other tests.

In terms of threats to external validity, we only looked at
the 14 Razali and Wah distributions. While we generated many
samples from these distributions, it is true that there are other
distributions out there such as the negative exponential and
standard normal distributions. This threat is mitigated by
Razali and Wah's methodology, in that they selected
distributions to cover a range of standard skewness and
kurtosis values. Thus, the skewness and kurtosis of many other
distributions are implicitly covered by these 14 distributions.

VI. META-ANALYSIS
Borrowing from the Dit et al. mapping process, we

systematically mapped the proceedings of ICST'13 into our
experiment framework. We applied MeansTest to the
experiments from those papers that 1) featured empirical
comparisons of two or more testing methods/tools, and 2) had
sufficient data in the paper to perform the validation. Based on
the output from MeansTest, we reported the statistical
significance of the experiments' results and provided
recommendations for insignificant results.

A. Research Questions
We are curious to know:

RQ1: How pervasive were Wilcoxon tests at ICST'13?

RQ2: To what extent are the results at ICST'13 statistically
significant?

B. Conducting the search
We systematically examined prior art from ICST'13. As we

will show, ICST'13 was of interest because the venue featured
considerable empirical validation using the Wilcoxon family of
tests. ICST'13 also had several empirical validation papers
which did not comment on the statistical significance of their
results.

C. Screening criteria
We wanted to analyze the existing published results of

papers at ICST'13, so we included papers which consisted of
empirical studies of testing methods that published their data.
We excluded other types of papers such as practical experience
reports and papers with formal proofs.

D. Classification
We classified papers at several levels: their track, their

focus, whether they published raw data, and whether the results
were statistically significant. We considered a result
statistically significant if MeansTest reported at least one
significant result and MeansTest found at least as many
significant results as the authors claimed; if MeansTest
disagreed with the authors about the significance of their
results, we classified that paper overall as not being statistically
significant. In this way, we did not bias our classification
against thorough experiments with many hypothesis tests and
some statistically insignificant results.

E. Data extraction
There were four pieces of data we extracted from each

paper: 1) the paper's hypotheses, 2) the hypothesis testing
applied (if any), 3) the published results and claims of
significance, and 4) the MeansTest assessment of the results.
We extracted these through manual reading and copy/paste of
tables. Whereas Dit et al. reproduced entire experiments and
published the TraceLab components implementing them, we
found that we could sufficiently answer our more modest
research questions through meta-analysis of the published
results.

Figure 2 shows the workflow we created to model
individual comparisons of means in software testing
experiments. Based on the paper's hypotheses, we manually
established the nature of the samples (paired vs. two
independent samples) as an input to the overall workflow.
After inputting each sample, we executed the MeansTest
workflow depicted in Fig. 1, abstracted here as the node
labeled MeansTest. As an output, MeansTest provided
information such as the p-value, the hypothesis test used, and
the sample size required to get a significant result. We
compared those results with the results the authors provided.
We used this workflow to present the results below.

338

VII. META-ANALYSIS RESULTS
Figure 3 shows the scope of the meta-analysis. There were

38 papers in the main testing and industry track. Of those, 24
papers (63%) featured some kind of empirical validation
comparing a method with one or more baseline methods. Of
those 24 papers, only eight papers (33%) reported the statistical
significance of the authors' empirical validation. In response to
RQ1, we note that six papers (75%) used the Wilcoxon tests
with no consideration for alternative tests. Only one of these
papers [20] printed enough raw data to enable a meta-analysis;
the remaining 7 papers reported only summary statistics that
we could not validate with MeansTest.

We examined the remaining 16 papers with no statistical
validation for the presence of raw data. Of the 16 papers, 11
papers (69%) printed enough of their experiment data in the
proceedings to suffice for a MeansTest meta-analysis. Together
with the Canfora et al. paper, we analyzed 12 papers with data.

In response to RQ2, our meta-analysis found that only six
papers (50%) had reproducible statistically significant results
at the 95% confidence level. This proportion is consistent with
the Kampenes et al. systematic review [17]. The remaining six
papers invariably claimed "significant" results even though the
experiment was too small to support the statistical significance
of said results. These issues in the non-significant experiments
could likely be remedied with a larger experiment. In the next
sections, we use the MeansTest power analysis to recommend
appropriate sample sizes.

A. Analyses by experiment
In this section, we briefly summarize the 12 experiments in

question. We report the properties of the experiment as inferred
by MeansTest, including normality, the appropriate hypothesis
test, and MeansTest's p-value for the experiment. In cases
where the authors' results were not statistically significant, we

also state MeansTest's power analysis to suggest the
appropriate course of action in order to get a significant result.

1) Multi-Objective Cross-Project Defect Prediction
Canfora et al. [20] introduce a regression model, which

they call Multiple-Objective Logistic Regression, to predict
defects across projects. They compare their model with a
Within-Project Logistic model, a Single-Objective cross-
project Logistic model, and a Clustering-Based Logistic model.
They study 10 projects. For each project, they compute the cost
of the model, its recall, and precision.

They concede that the Within-Project model is better than
their cross-project model. Using the Wilcoxon signed-rank
test, they report that the Multiple-Objective Logistic model
significantly diverges from the Single-Objective Logistic
model in terms of the cost (p=0.02), but not the precision
(p=0.4). Finally, they report that the Multiple-Objective
Logistic model significantly diverges from the Clustering-
Based Logistic model in terms of the cost (p=0.009) but the
precision is borderline significant (p=0.05). All of the models
had identical recall.

This paper is of particular interest to this meta-analysis
because it features raw data, existing statistical analysis of the
results, and a statistically borderline p-value of 0.05. Better
still, this inconclusive p-value was achieved because the
authors used the least-powerful Wilcoxon test without
justification. MeansTest was designed to address exactly this
situation by automatically inferring whether the data is normal
to lend more power to the analysis when appropriate.

Table I summarizes our meta-analysis of this paper. Most
of our results were the same, but in the case of the borderline
significant p-value, MeansTest concluded that the data was

Fig. 2. Workflow for ICST 2013 meta-analysis.

Fig. 3. Scope of ICST 2013 meta-analysis.

339

sufficiently normally distributed to apply the t-test; this enabled
the difference in precision to become statistically significant.

TABLE V. CANFORA ET AL. VS MEANSTEST

Logistic
model

Cost p-value Precision p-value
Author's MeansTest Author's MeansTest

Within-
Project

- 0.15 - 0.06

Single-
Objective

0.02 0.02 0.4 1.0

Clustering-
Based

0.009 0.01 0.05 0.02

In light of this small victory, one might pause to ponder
whether the MeansTest p-values, themselves, are significantly
different from the p-values of Canfora et al. and the broader
research community. One could recursively apply MeansTest
to the MeansTest p-values and the authors' p-values to make
that determination. If the difference were not significant, the
MeansTest power analysis would recommend the required
sample size needed to get a significant difference. We leave
this problem as future work.

2) Empirical Evaluation of the Statement Deletion
Mutation Operator

Deng et al. [21] examined the effectiveness of the statement
deletion mutation operator. They applied this mutation to 40
Java classes. For each class, the first author built a test set that
killed every deletion mutant. They then applied the test set to
muJava's mutants. They reported that the deletion operator
used significantly less mutants than muJava to get roughly the
same level of coverage as a test set generated from killing
muJava mutants.

In applying MeansTest, we found that neither of the paired
data sets were normally distributed. The statement deletion
operator indeed produced significantly less mutants than
muJava (Wilcoxon signed-rank, p~10^-8). However,
MeansTest reported that the deletion operator had a
significantly worse mutation score than a muJava test set with
mutation score 1 (Wilcoxon signed-rank, p ~10^-7).

3) Symbolic Path-Oriented Test Data Generation for
Floating-Point Programs

Bagnara et al. [22] introduced a performance optimization
to the symbolic constraint solver for C code, FPSE. They ran
their improved code against the stock code and measured the
running time against 1-12 iterations of the C functions
dichotomic() and tcas_periodic_task_1Hz().
They reported improved execution times, including solving
some problems that caused the original code to time out.

MeansTest inferred that the performance data was
approximately normal under dichotomic(), but not under
tcas_periodic_task_1Hz(). The performance
optimization was indeed significantly faster under
dichotomic() (t-test, p=0.02) but not significantly faster
under tcas_periodic_task_1Hz() (Wilcoxon signed-
rank, p-value=0.12). According to MeansTest's power analysis,
the authors would need to run at least 55 iterations to get a
statistically significant difference in performance.

4) Generating Effective Integration Test Cases from Unit
Ones

Pezzè et al. [23] developed an Eclipse plugin, called
Fusion, for automatically generating integration test cases from
the semantics of unit test cases. They compared the number of
faults and false positives found by their method with two other
tools: Randoop and Palus. They performed this comparison
across four programs. They reported that Fusion found
different faults than Randoop and Palus, but had a
comparable number of false positives.

We applied MeansTest 4 times total to compare Fusion
with the other two methods. MeansTest inferred that the
differences between the methods were normally distributed. It
is difficult to formulate a hypothesis for assessing the statistical
significance of finding "different" faults, but Fusion did not
find significantly different number of real faults than either
Randoop or Palus (t-test, p=0.09 and 0.13, respectively).
Fusion indeed found about the same false positives as Randoop
and Palus (t-test, p=0.26 and 0.12, respectively). According to
MeansTest's power analysis, the authors would need to test at
least 12 programs to notice a difference in real faults, and 26
programs to notice a difference in false positives.

5) Improving Test Generation under Rich Contracts by
Tight Bounds and Incremental SAT Solving

Abad et al. [24] developed a new test generator, called
FAJITA. They compared the branch coverage and performance
of FAJITA with Pex, Kiasan, Randoop, AutoTest, and
EvoSuite. They ran these tools on 25 methods across 8 classes.
They reported that FAJITA had the best branch coverage of
all tools.

We applied MeansTest 4 times to compare FAJITA's
branch coverage to that of each of the other tools. We
configured MeansTest to state the authors' hypothesis as one-
sided. MeansTest inferred that the differences between the
tools were not normally distributed. FAJITA did have
significantly greater branch coverage than Pex, Kiasan,
Randoop, AutoTest, and EvoSuite (Wilcoxon signed-rank,
p=0.0008, 0.03, 0.0002, 0.0004, 0.01, respectively).

6) Search-Based Testing of Relational Schema Integrity
Constraints Across Multiple Database Management Systems

Kapfhammer et al. [25] developed an input generator,
called AVM, to test the constraints on database schemas. They
compared the constraint coverage of AVM to DBMonster.
They reported that AVM had better constraint coverage than
DBMonster.

MeansTest inferred that the difference between the data
was not normally distributed. MeansTest concluded that the
constraint coverage of AVM was significantly better than
DBMonster (Wilcoxon, p~10^-5).

7) MFL: Method-Level Fault Localization with Causal
Inference

Shu et al. [26] applied spectrum-based fault localization at
the method level. They compared their technique, MFL, to
existing SBFL tools Tarantula, Ochiai, PFIC, and one based on
the F-measure. They ran these tools across 4 programs each
seeded with about 7 faults and calculated the minimum cost of

340

a developer searching through methods according to the
suspiciousness ranks to find a bug. The authors reported that
MFL was cheaper to use than the other measures in 3 out of 4
programs.

MeansTest inferred that the difference between the
minimum costs of the methods was normally distributed.
MeansTest concluded that the minimum cost of MFL was
significantly cheaper than Tarantula and PFIC (t-test, p=0.033
and 0.34, respectively), but not significantly cheaper than
Ochiai and F-measure (t-test, p=0.07 and 0.06, respectively).
According to MeansTest's power analysis, the authors would
need to test at least 11 programs to notice a difference in
minimum cost in all four tools.

8) Scaling Model Checking for Test Generation using
Dynamic Inference

Yeolekar et al. [27] developed a test generation tool, called
AutoGen, for satisfying structural coverage criteria. They
compared the branch coverage of test cases generated with
their tool against random testing and another test generator
called SatAbs. They applied these tools to 10 functions. They
reported that AutoGen had better coverage than SatAbs and
random testing.

AutoGen had significantly higher coverage than random
(t-test, p~10^-5). The analysis of the difference between
SatAbs and AutoGen is tricky because although SatAbs had
higher coverage in some instances, it timed out on most
functions. If we treat the timeouts as 0% coverage, we see that
AutoGen had significantly higher coverage than SatAbs, but
the difference was not normally distributed (Wilcoxon signed-
rank test, p= 0.04).

9) Transformation Rules for Platform Independent
Testing: An Empirical Study

Eriksson et al. [28] introduced UML transformations to
identify implicit logical predicates ahead of time, before code
is generated from the models. Their goal was to reduce the
number of requirements needed to satisfy logic coverage
criteria such as all-pairs and MCDC. They examine the UML
of 6 programs and apply their transformations to the programs.
They then compute the number of new requirements generated
going from UML to code and show that their method requires
less new rules.

MeansTest inferred that the data was not normally
distributed. The implicit-to-explicit transformations did indeed
generate significantly less rules going from the UML to code;
this result applied to both all-pairs and MCDC coverage
requirements (Wilcoxon, p=0.008).

10) An Efficient Algorithm for Constraint Handling in
Combinatorial Test Generation

Yu et al. [29] introduced their combinatorial test generation
tool, called ACTS. They compared ACTS to other
combinatorial test generators: CASA, Ttuples, and PICT. They
compared the tools' performance in terms of the amount of
time spent building the test set. They evaluated their tools
across 16 programs and concluded that "ACTS can perform
significantly better for systems with more complex
constraints."

MeansTest inferred that the performance data was not
normally distributed. ACTS was significantly faster than
CASA and TTuples, but not PICT (Wilcoxon, p=0.0001,
0.004, and 0.37, respectively). MeansTest estimates that the
authors would need 35 programs to show a statistically
significant difference in the runtime performance between
ACTS and PICT.

11) Oracle-Based Regression Test Selection
Yu et al. [30] examined the problem of regression test

selection as part of change impact analysis at ABB. They
discussed two broad methods of creating test oracles: using
outputs and tracking the internal state. They introduced an
algorithm for inferring the test cases needed to test a change,
based on so-called "internal oracles" that study the effect of
changes on the internals of a system. They compared the faults
found by test sets selected by internal oracles with those
generated by "output oracles" (oracles that only check the
output) on 9 programs. They found that internal oracles
discover significantly more faults than output oracles.

MeansTest inferred that the fault distribution data was
normally distributed. The internal oracle tests found
significantly more faults than the output oracle tests (t-test,
p=0.002).

12) Test Case Prioritization Using Requirements-Based
Clustering

Arafeen and Do [31] examined the issue of test case
prioritization: which test cases are most likely to uncover
faults? They introduced a new test case clustering technique
that orders test cases based on the priority of their
requirements. They introduce several within-cluster ordering
heuristics as well. They compare the effectiveness of
prioritizing with clustering against standard McCabe-style
prioritization metrics on four programs: three versions of iTrust
and Capstone. They find that clustering outperforms McCabe
on iTrust, but not on Capstone.

MeansTest inferred that the relative effectiveness
percentages were normally distributed. The clustering
technique significantly outperformed McCabe on the iTrust
code (t-test, p~10^-14) but not on Capstone (t-test, p=0.18).
The Capstone program was too small to perform a meaningful
analysis.

VIII. DISCUSSION AND FUTURE WORK
An automated selection process for statistical analysis can

help researchers draw conclusions about the statistical
significance of their results in the absence of an expert
statistician. Our validation showed that this process
significantly outperformed blind adherence to the Wilcoxon
nonparametric tests. In light of newer nonparametric
hypothesis tests such as Brunner-Munzel, the adherence to the
Wilcoxon tests that prevailed in ICST'13 may be outdated.
Indeed, we found a specific instance at ICST'13 where our
process found a significant result that was originally reported
as being of questionable significance. While very promising,
our results indicate that our process is still not perfect; it is not
a substitute for an expert statistician. It is ultimately up to an
expert to decide which test is most appropriate in a given
situation.

341

Cross-referencing our meta-analysis with the systematic
review by Kampenes et al. [17], we see that ICST'13 had
almost identical statistical significance as journal papers. About
50% of results were statistically significant in both studies.
Unfortunately, authors at ICST'13 under-reported the statistical
significance of their work compared to the Kampenes et al.
journal papers, with only 33% of empirical validation papers at
ICST'13 reporting their statistics. We hope that our workflow
will make it more convenient for authors in the future to report
statistical significance.

In our meta-analysis of ICST'13, we stated the minimum
sample sizes required to achieve statistically significant results.
Our methodology, well-known to statisticians as power
analysis, is a welcome addition to the automated statistics
mode of thought. Many problem domains call for even more
sophisticated analysis, such as blocked designs and analysis of
variance, for which we have yet to provide a solution. There
are several models of analysis of variance, each with their own
assumptions, so this type of analysis would benefit from an
automated selection process similar to that of MeansTest and
remains as future work.

ACKNOWLEDGMENT
This work was funded in part by the National Science

Foundation under grant CCF-0811140 (research) and Major
Research Instrumentation grant CNS-0959924 provided by
ARRA funding.

REFERENCES
[1] D. D. Nardo, N. Alshahwan, L. C. Briand, and Y. Labiche, “Coverage-

Based Test Case Prioritisation: An Industrial Case Study,” in ICST,
2013, pp. 302–311.

[2] 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, Luxembourg, Luxembourg, March 18-22,
2013. IEEE, 2013.

[3] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Hillsdale, N.J: L. Erlbaum Associates, 1988.

[4] Student, “The Probable Error of a Mean,” Biometrika, vol. 6, no. 1, p. 1,
Mar. 1908.

[5] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biom.
Bull., vol. 1, no. 6, p. 80, Dec. 1945.

[6] E. Brunner and U. Munzel, “The Nonparametric Behrens-Fisher
Problem: Asymptotic Theory and a Small-Sample Approximation,”
Biom. J., vol. 42, no. 1, pp. 17–25, Jan. 2000.

[7] K. Pearson, “‘ Das Fehlergesetz und Seine Verallgemeinerungen Durch
Fechner und Pearson.’ A Rejoinder,” Biometrika, vol. 4, no. 1/2, pp.
169–212, 1905.

[8] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3–4, pp. 591–
611, Dec. 1965.

[9] M. B. Brown and A. B. Forsythe, “Robust Tests for the Equality of
Variances,” J. Am. Stat. Assoc., vol. 69, no. 346, pp. 364–367, Jun.
1974.

[10] R Development Core Team, “R: A Language and Environment for
Statistical Computing,” 2008. [Online]. Available: http://www.R-
project.org.

[11] M. Hays, J. H. Hayes, A. Stromberg, and A. Bathke, “Traceability
Challenge 2013: Statistical Analysis for Traceability Experiments

Software Verification and Validation Research Laboratory (SVVRL) of
the University of Kentucky",” in Proceedings of Traceabillity of
Emerging Forms of Software Engineering 2013.

[12] “TraceLab.” [Online]. Available: http://coest.org/index.php/about-
coest8/current-projects/tracelab. [Accessed: 23-Jan-2012].

[13] N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests,” J. Stat.
Model. Anal. Vol, vol. 2, no. 1, pp. 21–33, 2011.

[14] B. Dit, E. Moritz, M. Linares-Vasquez, and D. Poshyvank, “Supporting
and Accelerating Reproducible Research in Software Maintenance using
TraceLab Component Library,” in Proceedings of 29th IEEE
International Conference on Software Maintenance (ICSM’13) ,
Eindhoven, the Nethelands, 2013.

[15] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proceedings of the 12th
international conference on Evaluation and Assessment in Software
Engineering, Swinton, UK, UK, 2008, pp. 68–77.

[16] V. Basili, R. Selby, and D. Hutchens, “Experimentation in Software
Engineering,” IEEE Trans. Softw. Eng., vol. SE-12, no. 7, pp. 733–743,
Jul. 1986.

[17] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A
systematic review of effect size in software engineering experiments,”
Inf. Softw. Technol., vol. 49, no. 11–12, pp. 1073 – 1086, 2007.

[18] R. R. Wilcox, Applying contemporary statistical techniques.
Amsterdam ; Boston: Academic Press, 2003.

[19] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval.
New York; Harlow, England: ACM Press ; Addison-Wesley, c1999.,
1999.

[20] G. Canfora, F. Mercaldo, C. A. Visaggio, M. D’Angelo, A. Furno, and
C. Manganelli, “A Case Study of Automating User Experience-Oriented
Performance Testing on Smartphones,” in ICST, 2013, pp. 66–69.

[21] L. Deng, J. Offutt, and N. Li, “Empirical Evaluation of the Statement
Deletion Mutation Operator,” in ICST, 2013, pp. 84–93.

[22] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb, “Symbolic Path-
Oriented Test Data Generation for Floating-Point Programs,” in ICST,
2013, pp. 1–10.

[23] M. Pezzè, K. Rubinov, and J. Wuttke, “Generating Effective Integration
Test Cases from Unit Ones,” in ICST, 2013, pp. 11–20.

[24] P. Abad, N. Aguirre, V. S. Bengolea, D. Ciolek, M. F. Frias, J. P.
Galeotti, T. Maibaum, M. M. Moscato, N. Rosner, and I. Vissani,
“Improving Test Generation under Rich Contracts by Tight Bounds and
Incremental SAT Solving,” in ICST, 2013, pp. 21–30.

[25] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-Based
Testing of Relational Schema Integrity Constraints Across Multiple
Database Management Systems,” in ICST, 2013, pp. 31–40.

[26] G. Shu, B. Sun, A. Podgurski, and F. Cao, “MFL: Method-Level Fault
Localization with Causal Inference,” in ICST, 2013, pp. 124–133.

[27] A. Yeolekar, D. Unadkat, V. Agarwal, S. Kumar, and R. Venkatesh,
“Scaling Model Checking for Test Generation Using Dynamic
Inference,” in ICST, 2013, pp. 184–191.

[28] A. Eriksson, B. Lindström, and J. Offutt, “Transformation Rules for
Platform Independent Testing: An Empirical Study,” in ICST, 2013, pp.
202–211.

[29] L. Yu, Y. Lei, M. N. Borazjany, R. Kacker, and D. R. Kuhn, “An
Efficient Algorithm for Constraint Handling in Combinatorial Test
Generation,” in ICST, 2013, pp. 242–251.

[30] T. Yu, X. Qu, M. Acharya, and G. Rothermel, “Oracle-based Regression
Test Selection,” in ICST, 2013, pp. 292–301.

[31] M. J. Arafeen and H. Do, “Test Case Prioritization Using Requirements-
Based Clustering,” in ICST, 2013, pp. 312–321.

342

