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Abstract— Researchers in software testing are often faced 
with the following problem of empirical validation: does a new 
testing technique actually help analysts find more faults than 
some baseline method? Researchers evaluate their contribution 
using statistics to refute the null hypothesis that their technique is 
no better at finding faults than the state of the art. The decision 
as to which statistical methods are appropriate is best left to an 
expert statistician, but the reality is that software testing 
researchers often don't have this luxury. We developed an 
algorithm, MeansTest, to help automate some aspects of 
statistical analysis. We implemented MeansTest in the statistical 
software environment R, encouraging reuse and decreasing the 
need to write and test statistical analysis code. Our experiment 
showed that MeansTest has significantly higher F-measures than 
several other common hypothesis tests. We applied MeansTest to 
systematically validate the work presented at the 2013 IEEE 
Sixth International Conference on Software Testing, Verification, 
and Validation (ICST'13). We found six papers that potentially 
misstated the significance of their results. MeansTest provides a 
free and easy-to-use possibility for researchers to check whether 
their chosen statistical methods and the results obtained are 
plausible. It is available for download at coest.org. 

Keywords—software testing; statistical analysis; empirical 
validation 

I. INTRODUCTION 
Research in software testing often lends itself to empirical 

validation; researchers show that some new way of discovering 
faults finds more faults or takes less time than the state of the 
art. Publications often describe such results as being 
significant. While significance is an overloaded term, in the 
context of empirical validation, we'd like to think that 
significance refers to statistical significance: that a difference 
between two means or variances is not likely due to chance. 
Significance in this context is demonstrated through formal 
hypothesis testing. 

Researchers who ascribe to this notion of significance must 
also contend with threats to statistical conclusion validity. 
Researchers sometimes incorrectly fail to reject the null 
hypothesis due to choosing inappropriate statistical test. Worse, 
they almost never go back and analyze the statistical power of 
their experiment to determine whether their sample size was 
appropriate. Less often, they interpret a p-value as a probability 
when in fact the assumptions of the underlying statistical test 
have not been met. While the former problem can be solved by 
using powerful tests, powerful tests make assumptions that run 

the risk of suffering the latter problem. This impasse has led 
researchers in software testing to rely on classical, possibly 
rather conservative tests from the Wilcoxon family because 
they "do not wish to make assumptions on the distribution." [1] 
We present relatively recent advances in nonparametric 
statistics that provide powerful alternatives to the classical 
tests. 

In this paper, we make several contributions to address 
these issues. We introduce an algorithm, called MeansTest, to 
introduce the software testing research world to new statistical 
tests such as Brunner-Munzel. This process has the potential to 
automatically analyze experimental results. To our knowledge, 
there is no other approach readily available that goes through 
the workflow to analyze the data under study for properties 
such as normality, equal variance, and power, and then use that 
information to decide which test to apply, and then apply that 
test. We have encapsulated those aspects of a professional 
statistician’s approach that can reasonably be automated; while 
it is obvious that common sense and experience of a trained 
statistician can’t be replaced by an automated procedure, we 
also found that some crucial steps can indeed be left to 
software. The simulation of our algorithm demonstrates its 
usefulness. Nevertheless, the idea of automated test selection 
will always have an air of controversy and we recommend to 
the user to employ our automatism wisely, and with common 
sense. However, readers shall keep in mind that the only viable 
alternatives would be relying on unrealistic model 
assumptions, or restricting oneself to overly conservative tests 
and thus failing to detect important effects. We introduce a 
unique way to validate the statistical technique that blends 
statistics with classification-based validation seen in fields such 
as software fault classification. We use our statistical technique 
to examine prior art at the 2013 IEEE Sixth International 
Conference on Software Testing, Verification, and Validation 
(ICST'13) [2] for statistical significance. 

This paper is organized as follows. Section II examines 
related work in empirical validation. Section III discusses the 
challenges that researchers face in performing valid statistical 
analysis. In Sections IV and V, we analyze the effectiveness of 
MeansTest. Sections VI and VIII state the results of our meta-
analysis of ICST'13. In Section VIII, we discuss our planned 
future work. 
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II. RELATED WORK 
This section presents background information for statistical 

analysis for empirically evaluating software testing research. 

A. Definitions 
To evaluate a hypothesis, researchers in software testing 

typically look at one or more summary statistics. The most 
common statistic is the mean, or average. Researchers will try 
to show that one approach can find more faults on average than 
another approach. 

According to Cohen, effect size is a key measure in 
computing an experiment's power, which is its ability to 
correctly reject the null hypothesis [3]. Often, researchers will 
run small, initial experiments to see if their ideas hold any 
merit. While they may find a positive result, their result might 
not be statistically significant. Post-hoc power analysis is a 
procedure used at the end of such a pilot study to determine the 
sample size required to achieve a statistically significant result. 
The analysis assumes that the effect size the researcher 
observed will remain constant in the larger experiment. 

In this work, we refer to several hypothesis tests for 
comparing means. Well-known hypothesis tests include the t-
tests [4] and the Wilcoxon tests [5]. Less well known is the 
recent Brunner-Munzel test [6]. The t-tests are considered 
parametric tests because they assume parametrized families of 
distributions (normal distribution family or others where a 
particular distribution can typically be described using one or 
two parameters). The Wilcoxon and Brunner-Munzel tests are 
considered nonparametric because they do not assume that the 
data originates from any particular distribution family. 

In particular, the t-tests assume normality: the assumption 
that the data fits a normal distribution, also known as a 
"Gaussian distribution" or "bell-shaped curve." The normal 
distribution is defined to be symmetric, meaning that the mean 
and median are equal. Symmetry does not always hold; 
distributions like the beta distribution can be asymmetric, 
which indicates a significant departure from normality. 
Distributions can also have varying peakedness ranging from 
the completely flat uniform distribution to the especially sharp 
t-distribution. Pearson [7] formally defined these aspects of 
non-normality in terms of skewness (asymmetry) and kurtosis 
(peakedness). Many methods of varying effectiveness exist for 
verifying the normality of data, but we use the Shapiro-Wilk 
test [8] because it formally reasons about the likelihood that a 
given sample's skewness and kurtosis are a significant 
departure from normality. 

Some tests assume that the data takes the form of two 
independent samples. One might imagine a software testing 
experiment where testers are divided into two groups (control 
and treatment group) and testers in the treatment group are 
given a new method of detecting faults. We might then 
formulate a hypothesis that testers in the treatment group find 
more faults than testers in the control group; this would be an 
example of an experiment with two independent samples. 
Other software testing experiments take the form of paired 
sample experiments. In these experiments, each defect 
detection algorithm under study is applied to every program 
under test. The defects found are related (paired) on the 

program being tested. The experiment designer establishes 
whether their experiment is paired or two-sample based on the 
nature of the procedure; it cannot be inferred from the samples. 
The choice of two independent samples vs. paired samples 
determines which hypothesis tests can be applied. 

Some independent samples tests, like the classical Student's 
t-test, also assume that the samples have equal variance. 
Several formal hypothesis tests exist for disproving this 
assumption, such as the classical F-test and the more robust 
Brown-Forsythe test [9]. However, this F-test itself makes 
strong assumptions about normality, so in cases where 
normality is not clearly inferred from the sample data, Brown-
Forsythe can be more appropriate. When the data does not have 
equal variance, Welch's t-test is appropriate because it 
computes a more robust estimate of the variance.  

Finally, it is our experience that the Brunner-Munzel 
implementation in R [10] uniquely assumes that there is 
overlap between the samples. If one were to plot two 
independent samples on a shared number line, the number line 
would indicate overlap if at least one value from one sample 
fell within the min and max values of the other sample. When 
no overlap is present, our experience is that the Brunner-
Munzel test is undefined. Overlap is likely a new assumption to 
researchers, but as the description indicates, overlap is 
straightforward to test. 

B. MeansTest Algorithm 
In our prior work [11], we introduced the first iteration of 

the MeansTest algorithm. We implemented it for the 
experiment design framework, TraceLab [12]. MeansTest 
automated important aspects of the basic logic that expert 
statisticians use when selecting statistics tests that compare 
location parameters, such as the mean and median. MeansTest 
implemented the underlying statistical tests and testing of 
assumptions by invoking the statistics environment R. 
MeansTest reported the p-value, test statistic, and the logical 
path it took through the composite component. Our paper 
separately gave statistician-crafted language describing the 
meaning of each possible path so that researchers could 
correctly report the MeansTest output. 

Figure 1 displays the precedence graph of the revised 
MeansTest algorithm used in this paper. MeansTest operates in 
two modes: paired-sample (aka "one-sample") and two-sample. 
In the paired mode, depending on the properties of the data 
being compared, MeansTest performs either the paired-sample 
t-test or Wilcoxon signed-rank test. In the two-sample mode, 
MeansTest performs one of: a) the t-test, b) Welch's t-test for 
unequal variances, c) Brunner-Munzel, or d) the Mann-
Whitney U test (also known as the Wilcoxon rank-sum test), 
again depending on the shape and overlap of the two 
distributions.  

Since its introduction, we have continued to improve to the 
MeansTest algorithm. We introduced post-hoc power analysis 
to facilitate pilot studies. In this context,  power analysis takes 
experiment results that are not statistically significant and 
determines the minimum sample size required to make them 
significant; this analysis assumes that the observed results are 
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Fig. 1. The MeansTest algorithm, as implemented in TraceLab.  

not an artifact of chance. Also, we now directly display in line 
with the results the descriptive text that a researcher can cite. 

C. Tests for Normality 
Razali and Wah [13] compared several algorithms for 

determining normality of data. Razali and Wah selected the 
four "most common" automated tests for normality: Shapiro-
Wilk, Kolmogorov-Smirnov, Anderson-Darling, and Lilliefors. 
They applied these tests to samples of various sizes drawn 
from 14 probability distributions; they selected these 
distributions "to cover various standardized skewness and 
kurtosis values." They generated samples of sizes 10, 20, 30, 
50, 100, 200, 300, 400, 500, 1000, and 2000. They found that 
the Shapiro-Wilk test was the most efficient overall at 
identifying non-normality. 

The Razali and Wah paper is relevant to MeansTest for two 
reasons. First, they identified the best algorithm to determine 
non-normality; note that MeansTest used Shapiro-Wilk in the 
initial release. Second, they presented an empirical framework 
and data set that could be extended to validate MeansTest. 
Table 1 summarizes the probability distributions that Razali 
and Wah used. As Table 1 shows, the data is balanced evenly 
between symmetric and asymmetric distributions.  It also has 
balanced skewness (seven values are 0) and kurtosis (seven 
absolute values are less than or equal to 1). This balance helps 
eliminate bias threats. 

TABLE I.  RAZALI AND WAH DISTRIBUTIONS 

Distribution Skewness Kurtosis 
uniform(0,1) 0 -1.2 

beta(2,1) -0.5656854249 -0.6 
beta(2,2) 0 -0.8571428571 
beta(3,2) -0.2857142857 -0.6428571429 
beta(6,2) -0.692820323 0.1090909091 

t(7,0) 0 2 
t(5,0) 0 6 

t(10,0) 0 1 
t(300,0) 0 0.0202702703 

Laplace(0,1) 0 3 
chisq(4,0) 1.4142135624 3 

chisq(20,0) 0.632455532 0.6 
Gamma(1,5) 2 6 
Gamma(4,5) 1 1.5 

D. Empirical Software Engineering 
Dit et al. [14] surveyed software maintenance papers from 

the last ten years. Their goal was to reproduce the tools and 
results of these papers in the TraceLab framework, then make 
the components publicly available. They organized the papers 
using the Petersen et al. systematic mapping process [15].  
Their steps include: 1) Defining the research questions; 2) 
Conducting the search; 3) Selecting screening criteria; 4) 
Classifying the technique (in their case: determining the tracers 

335



and preprocessors used); and 5) Extracting the data. We reuse 
this mapping process in our research. 

Basili et al. surveyed empirical software engineering 
papers. They created a framework that describes experiments 
in terms of the definition, design, implementation, and 
interpretation of an experiment. Each part of the framework 
has several attributes, such as scope (single project, replicated 
project, multi-project variation, blocked subject-project), 
perspective, and impact. The authors used this framework to 
systematically survey papers. They identified several problem 
areas: 1) that there is no consistency among practitioners, 2) 
that experiments are hard to precisely define because there is 
no standard metric for gauging software quality, 3) the 
experiment plan should contain ideas for subsequent 
experiments, 4) experiments need to be published in a 
repeatable and extendable way, and 5) results need to be 
qualified by the controlled variables [16]. 

Kampenes et al. [17] systematically reviewed the statistical 
significance of 103 controlled software engineering 
experiments dating between 1993-2002. Their goal was to 
examine the proportion of journal papers that report Cohen's 
effect size. As a secondary measure, they collected the number 
of statistically significant results as reported by the authors. 
The 103 papers contained a total of 429 hypothesis tests. Of 
those, only 212 tests (49%) indicated statistically significant 
results. This proportion serves as a baseline for our meta-
analysis of ICST'13. 

III. THE IMPORTANCE OF STATISTICAL ANALYSIS 
Generally, statistical inference aims to quantify whether 

observed real-data phenomena could be explained by chance 
alone, or whether the observed data are so unusual that a 
convincing explanation requires a model with components 
beyond chance alone [18]. In the case of comparing two 
techniques, each technique results in a data sample. Most 
likely, the samples will differ from each other. However, even 
if both techniques are equivalent, one would expect the 
samples to be different due to chance variation. Statistical 
inference provides the tools to decide whether the two samples 
are different enough to reject the possibility that both methods 
were equally effective. To this end, statistical testing 
procedures yield p-values. A p-value in this context is the 
probability, assuming both methods are indeed equivalent, that 
two resulting data samples would be as (or more) different than 
the two samples that were observed in the experiment. P-values 
are one of the main decision tools in statistical inference. If the 
p-value is small, typically less than 0.05, researchers conclude 
that the assumption “both methods are indeed equivalent” can 
no longer be upheld. 

One of the main problems with p-values is that the 
underlying probability calculation typically relies on several 
model assumptions. Unless these assumptions are carefully 
checked and verified, the seemingly precise “p-value” can be 
worthless and misleading. For example, the unpaired two-
sample t-test can be used to compare two independent samples. 
Observations in each sample are assumed to be normally 
distributed with equal variance. If the samples are truly 
independent and the observations truly follow normal 
distributions and have the same variance, then a reported p-

value of 0.03 can indeed be interpreted as a rejection of the 
hypothesis “both methods are equally effective,” while a p-
value of 0.12 does not provide evidence against this 
hypothesis. However, if the samples are actually paired instead 
of independent, this test will often provide large p-values even 
if both methods are rather different. The same can happen if 
the data is highly skewed and thus violates the normality 
assumption. On the other hand, it can also happen that an 
inappropriately chosen statistical test provides a small p-value 
even though the methods being compared are not 
distinguishable in quality, and the observed differences are in 
fact due to chance. Such a test is as undesirable as the first one. 
In either case, the resulting p-values do not serve as a 
meaningful decision tool, and they do not have the probability 
interpretation mentioned above.  

The solution to this problem is rather straightforward: only 
appropriate inference procedures should be used. The 
MeansTest workflow facilitates this by making sure that all of 
the important assumptions are being examined and that 
appropriate inference procedures are being chosen. As a result, 
the final reported p-value for the comparison of two methods 
still satisfies the probability interpretation given above. Also, 
this p-value can be used to decide whether the hypothesis “both 
techniques are equally effective” shall or shall not be rejected. 

IV. EXPERIMENT DESIGN 
In our experiment, we evaluated the accuracy of the 

MeansTest component. We drew samples at random from the 
Razali and Wah probability distributions. We drew second 
samples at varying distances from the original samples. We 
then applied hypothesis tests to see if they could notice the true 
difference in the population means. 

A. Research question 
As stated earlier, the MeansTest workflow combines 

several hypothesis tests that researchers already use. In light of 
the tendency of researchers to favor the Wilcoxon tests, we 
might ponder whether MeansTest is more effective overall than 
the Wilcoxon tests. We pose this hypothesis more generally in 
the form of RQ0 below. 

RQ0: can MeansTest more accurately detect the true 
significance of differences/lack thereof than other hypothesis 
tests? 

B. Data 
We studied the Razali and Wah probability distributions 

from Table I. 

C. Procedure 
We expanded the Razali and Wah procedure to cover 

statistical significance. Razali and Wah only evaluated the 
likelihood that a test of normality could find a known 
difference in non-normality. We looked at two aspects: the 
likelihood that a hypothesis test would find a significant 
difference when a difference was present, and the likelihood 
that a hypothesis test would not find a significant difference 
when no difference was present. This procedure is more in line 
with the usual fault classification experiments in software 
testing and gives direct evidence toward answering our 
research question. 
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We applied the following hypothesis tests: MeansTest, 
Student's t-test, Welch's t-test, Wilcoxon ranked-sum, and 
Brunner-Munzel. As mentioned earlier, these tests are all 
invoked by MeansTest, so it is worth considering whether 
MeansTest can perform any better than its parts. 

We ran our hypothesis tests on many pairs of samples. 
Each pair consisted of an initial sample and a shifted second 
sample. We drew our initial samples from the Razali and Wah 
distributions using their sample sizes. To draw the second 
samples, we used Cohen's effect size to define the difficulty of 
noticing a difference between two samples. We systematically 
examined 20 effect sizes: ten of the effect sizes were selected 
from zero to one in 0.1 increments, while the other ten had zero 
effect size. This selection created a balance between zero 
differences and non-zero differences, reducing bias. We 
selected the parameters of the second sample's probability 
distribution to yield the desired effect size. For each 
distribution/sample size/effect size triple, we drew 100 pairs of 
initial samples and shifted samples. 

The result of running each hypothesis test on each pair of 
samples was a p-value. We interpreted the p-value at the 95% 
confidence level to determine whether an outcome was 
significant (positive) or not significant (negative). We 
interpreted the correctness of this result depending on the effect 
size. Table 2 concisely demonstrates our classification logic 
given a p-value p and an effect size d. 

TABLE II.  CLASSIFICATION LOGIC 

 Positive Negative 
True p<0.05,d>0 p>0.05,d=0 
False p<0.05,d=0 p>0.05,d>0 

 

We labeled these quantities using TP for True Positive, TN 
for True Negative, FP for False Positive, and FN for False 
Negative. Using these labels, we then computed the F-measure 
of each classification. We use the following definitions to 
compute F-measure [19]: 

 recall = ��/(�� + ��) (1) 

 precision = ��/(�� + ��) (2) 

 � = 2 ∗
recall∗precision

recall�precision
. (3) 

The F-measure of all hypothesis tests increased with 
sample size, but the relative rankings between methods 
remained stable. To eliminate the effect of sample size on F-
measure, we ordinally ranked each value at each sample size; 
the ranks were consistent across sample sizes. This consistency 
allowed us to summarize our results by distribution. 

D. Hypothesis 
We wanted to show that MeansTest had higher rank than 

that of other hypothesis tests. Given a hypothesis test i, 
Equations 4 and 5 formally state the null and alternate 
hypotheses as: 

 �	: Rank(MeansTest) = Rank(
) (4) 

 ��: Rank(MeansTest) > Rank(
). (5) 

We rejected each null hypothesis with 95% confidence. 

V. RESULTS 
In this section, we describe our results, including the 

rankings by distribution, the p-values for the hypothesis tests, 
and the threats to validity. 

A. Rankings 
Table 3 shows the summary of the ranks on an ordinal scale 

of 1-5, using the average for ties. Higher ranks are better. 

TABLE III.  HYPOTHESIS TEST RANKINGS 

Distribution Means
-Test 

Wilcoxon t Welch 
t 

Brunner-
Munzel 

beta(2,1) 5 3 1.5 1.5 4 
beta(2,2) 3 1 4 5 2 
beta(3,2) 3 1 5 4 2 
beta(6,2) 5 3 2 1 4 

chisq(20,0) 4 3 2 1 5 
chisq(4,0) 3.5 3.5 2 1 5 

Gamma(1,5) 4.5 3 2 1 4.5 
Gamma(4,5) 5 2 3 1 4 
Laplace(0,1) 3 5 2 1 4 

t(10,0) 4 3 2 1 5 
t(300,0) 4 1 5 3 2 

t(5,0) 3 4 2 1 5 
t(7,0) 3 4 2 1 5 

uniform(0,1) 3 1 5 4 2 

 

As Table 3 shows, MeansTest demonstrated favorable 
classification behavior over the other tests. While the 
individual tests each had their strong and weak points, 
MeansTest was able to infer the appropriate test sufficiently to 
always place at least third or higher. Contrast that with the 
Wilcoxon rank-sum test and Welch's t-test, which both fared 
poorly with alarming frequency. Brunner-Munzel, the new 
non-parametric test, usually did well. With regard to the added 
entry on normality, the t-tests nicely complemented Brunner-
Munzel's weak points, lending credibility to our idea to pick 
between the tests based on the normality of the data. 

B. Summary statistics 
Table 4, in turn, provides summary statistics for Table 3.  

TABLE IV.  HYPOTHESIS TEST SUMMARY STATISTICS 

Test Worst rank Best rank Mean p-value 
MeansTest 3 5 3.8 - 
Wilcoxon 1 5 2.7 0.013 
Welch's t 1 5 1.9 0.0037 

t 1.5 5 2.8 0.038 
Brunner-
Munzel 

2 5 3.8 0.61 

 

To evaluate our set of hypotheses regarding the ranks, we 
applied paired hypothesis testing to account for the fact that the 
ranks are dependent variables on the distribution being tested. 
Since we are here comparing ranks, only a nonparametric rank 
test is appropriate. Note that ranks have the property that their 
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sum is always constant (consider the row sums in Table 3) – 
therefore violating an always implicitly assumed independence 
assumption in parametric tests. 

Using this information, we applied the Wilcoxon signed-
rank test (as Brunner-Munzel only applies to independent 
samples). As Table 4 highlights, we found that MeansTest had 
a significantly higher rank than Wilcoxon rank-sum and the t-
tests. MeansTest did not have a significantly higher rank than 
Brunner-Munzel. 

C. Threats to Validity 
In terms of threats to statistical conclusion validity, our 

results only have 95% confidence. We declared our hypotheses 
ahead of time so we would not have to worry about inflated 
experiment-wide error from performing multiple comparisons. 
Even if we had decided on all four tests after performing the 
experiment, we should still have at least 80% experiment-wide 
confidence according to the very conservative Bonferroni 
correction. 

In terms of threats to construct validity, these should be 
minimal because we used the statistics framework R to perform 
all of our statistics. In our previous work [11], we tested each 
MeansTest path and confirmed that it returned the same result 
as the expert statisticians using other statistics software. 
Similarly, in our experiment, we used R to generate the 
probability distributions and shift their parameters. 

In terms of threats to internal validity, we used a data set 
that was previously used in an experiment to assess the ability 
of statistics to infer non-normality, which on the surface could 
appear to create a bias towards nonparametric statistics. We 
defused this threat by establishing that the distributions were 
balanced between normal and non-normal skewness and 
kurtosis. Many of the distributions used in the experiment, such 
as the t distribution, were in fact approximately normal. We ran 
each hypothesis test on every data set we generated, so it is not 
possible that MeansTest received "easier" samples than the 
other tests. 

In terms of threats to external validity, we only looked at 
the 14 Razali and Wah distributions. While we generated many 
samples from these distributions, it is true that there are other 
distributions out there such as the negative exponential and 
standard normal distributions. This threat is mitigated by 
Razali and Wah's methodology, in that they selected 
distributions to cover a range of standard skewness and 
kurtosis values. Thus, the skewness and kurtosis of many other 
distributions are implicitly covered by these 14 distributions. 

VI. META-ANALYSIS 
Borrowing from the Dit et al. mapping process, we 

systematically mapped the proceedings of ICST'13 into our 
experiment framework. We applied MeansTest to the 
experiments from those papers that 1) featured empirical 
comparisons of two or more testing methods/tools, and 2) had 
sufficient data in the paper to perform the validation. Based on 
the output from MeansTest, we reported the statistical 
significance of the experiments' results and provided 
recommendations for insignificant results. 

A. Research Questions 
We are curious to know: 

RQ1: How pervasive were Wilcoxon tests at ICST'13? 

RQ2: To what extent are the results at ICST'13 statistically 
significant?  

B. Conducting the search 
We systematically examined prior art from ICST'13. As we 

will show, ICST'13 was of interest because the venue featured 
considerable empirical validation using the Wilcoxon family of 
tests. ICST'13 also had several empirical validation papers 
which did not comment on the statistical significance of their 
results. 

C. Screening criteria 
We wanted to analyze the existing published results of 

papers at ICST'13, so we included papers which consisted of 
empirical studies of testing methods that published their data. 
We excluded other types of papers such as practical experience 
reports and papers with formal proofs. 

D. Classification 
We classified papers at several levels: their track, their 

focus, whether they published raw data, and whether the results 
were statistically significant. We considered a result 
statistically significant if MeansTest reported at least one 
significant result and MeansTest found at least as many 
significant results as the authors claimed; if MeansTest 
disagreed with the authors about the significance of their 
results, we classified that paper overall as not being statistically 
significant. In this way, we did not bias our classification 
against thorough experiments with many hypothesis tests and 
some statistically insignificant results. 

E. Data extraction 
There were four pieces of data we extracted from each 

paper: 1) the paper's hypotheses, 2) the hypothesis testing 
applied (if any), 3) the published results and claims of 
significance, and 4) the MeansTest assessment of the results. 
We extracted these through manual reading and copy/paste of 
tables. Whereas Dit et al. reproduced entire experiments and 
published the TraceLab components implementing them, we 
found that we could sufficiently answer our more modest 
research questions through meta-analysis of the published 
results. 

Figure 2 shows the workflow we created to model 
individual comparisons of means in software testing 
experiments. Based on the paper's hypotheses, we manually 
established the nature of the samples (paired vs. two 
independent samples) as an input to the overall workflow. 
After inputting each sample, we executed the MeansTest 
workflow depicted in Fig. 1, abstracted here as the node 
labeled MeansTest. As an output, MeansTest provided 
information such as the p-value, the hypothesis test used, and 
the sample size required to get a significant result. We 
compared those results with the results the authors provided. 
We used this workflow to present the results below. 
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VII.  META-ANALYSIS RESULTS 
Figure 3 shows the scope of the meta-analysis. There were 

38 papers in the main testing and industry track. Of those, 24 
papers (63%) featured some kind of empirical validation 
comparing a method with one or more baseline methods. Of 
those 24 papers, only eight papers (33%) reported the statistical 
significance of the authors' empirical validation. In response to 
RQ1, we note that six papers (75%) used the Wilcoxon tests 
with no consideration for alternative tests. Only one of these 
papers  [20] printed enough raw data to enable a meta-analysis; 
the remaining 7 papers reported only summary statistics that 
we could not validate with MeansTest. 

We examined the remaining 16 papers with no statistical 
validation for the presence of raw data. Of the 16 papers, 11 
papers (69%) printed enough of their experiment data in the 
proceedings to suffice for a MeansTest meta-analysis. Together 
with the Canfora et al. paper, we analyzed 12 papers with data. 

In response to RQ2, our meta-analysis found that only six 
papers (50%) had reproducible statistically significant results 
at the 95% confidence level. This proportion is consistent with 
the Kampenes et al. systematic review [17]. The remaining six 
papers invariably claimed "significant" results even though the 
experiment was too small to support the statistical significance 
of said results.  These issues in the non-significant experiments 
could likely be remedied with a larger experiment. In the next 
sections, we use the MeansTest power analysis to recommend 
appropriate sample sizes. 

A. Analyses by experiment 
In this section, we briefly summarize the 12 experiments in 

question. We report the properties of the experiment as inferred 
by MeansTest, including normality, the appropriate hypothesis 
test, and MeansTest's p-value for the experiment. In cases 
where the authors' results were not statistically significant, we 

also state MeansTest's power analysis to suggest the 
appropriate course of action in order to get a significant result. 

1) Multi-Objective Cross-Project Defect Prediction 
Canfora et al. [20] introduce a regression model, which 

they call Multiple-Objective Logistic Regression, to predict 
defects across projects. They compare their model with a 
Within-Project Logistic model, a Single-Objective cross-
project Logistic model, and a Clustering-Based Logistic model. 
They study 10 projects. For each project, they compute the cost 
of the model, its recall, and precision. 

They concede that the Within-Project model is better than 
their cross-project model. Using the Wilcoxon signed-rank 
test, they report that the Multiple-Objective Logistic model 
significantly diverges from the Single-Objective Logistic 
model in terms of the cost (p=0.02), but not the precision 
(p=0.4). Finally, they report that the Multiple-Objective 
Logistic model significantly diverges from the Clustering-
Based Logistic model in terms of the cost (p=0.009) but the 
precision is borderline significant (p=0.05). All of the models 
had identical recall. 

This paper is of particular interest to this meta-analysis 
because it features raw data, existing statistical analysis of the 
results, and a statistically borderline p-value of 0.05. Better 
still, this inconclusive p-value was achieved because the 
authors used the least-powerful Wilcoxon test without 
justification. MeansTest was designed to address exactly this 
situation by automatically inferring whether the data is normal 
to lend more power to the analysis when appropriate. 

Table I summarizes our meta-analysis of this paper. Most 
of our results were the same, but in the case of the borderline 
significant p-value, MeansTest concluded that the data was 

Fig. 2. Workflow for ICST 2013 meta-analysis. 

Fig. 3. Scope of ICST 2013 meta-analysis. 
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sufficiently normally distributed to apply the t-test; this enabled 
the difference in precision to become statistically significant. 

TABLE V.  CANFORA ET AL. VS MEANSTEST 

Logistic 
model 

Cost p-value Precision p-value 
Author's MeansTest Author's MeansTest 

Within-
Project 

- 0.15 - 0.06 

Single-
Objective 

0.02 0.02 0.4 1.0 

Clustering-
Based 

0.009 0.01 0.05 0.02 

 

In light of this small victory, one might pause to ponder 
whether the MeansTest p-values, themselves, are significantly 
different from the p-values of Canfora et al. and the broader 
research community. One could recursively apply MeansTest 
to the MeansTest p-values and the authors' p-values to make 
that determination. If the difference were not significant, the 
MeansTest power analysis would recommend the required 
sample size needed to get a significant difference. We leave 
this problem as future work. 

2) Empirical Evaluation of the Statement Deletion 
Mutation Operator 

Deng et al. [21] examined the effectiveness of the statement 
deletion mutation operator. They applied this mutation to 40 
Java classes. For each class, the first author built a test set that 
killed every deletion mutant. They then applied the test set to 
muJava's mutants. They reported that the deletion operator 
used significantly less mutants than muJava to get roughly the 
same level of coverage as a test set generated from killing 
muJava mutants. 

In applying MeansTest, we found that neither of the paired 
data sets were normally distributed. The statement deletion 
operator indeed produced significantly less mutants than 
muJava (Wilcoxon signed-rank, p~10^-8). However, 
MeansTest reported that the deletion operator had a 
significantly worse mutation score than a muJava test set with 
mutation score 1 (Wilcoxon signed-rank, p ~10^-7). 

3) Symbolic Path-Oriented Test Data Generation for 
Floating-Point Programs 

Bagnara et al. [22] introduced a performance optimization 
to the symbolic constraint solver for C code, FPSE. They ran 
their improved code against the stock code and measured the 
running time against 1-12 iterations of the C functions 
dichotomic() and tcas_periodic_task_1Hz(). 
They reported improved execution times, including solving 
some problems that caused the original code to time out. 

MeansTest inferred that the performance data was 
approximately normal under dichotomic(), but not under 
tcas_periodic_task_1Hz(). The performance 
optimization was indeed significantly faster under 
dichotomic() (t-test, p=0.02) but not significantly faster 
under tcas_periodic_task_1Hz() (Wilcoxon signed-
rank, p-value=0.12). According to MeansTest's power analysis, 
the authors would need to run at least 55 iterations to get a 
statistically significant difference in performance. 

4) Generating Effective Integration Test Cases from Unit 
Ones 

Pezzè et al. [23] developed an Eclipse plugin, called 
Fusion, for automatically generating integration test cases from 
the semantics of unit test cases. They compared the number of 
faults and false positives found by their method with two other 
tools: Randoop and Palus. They performed this comparison 
across four programs. They reported that Fusion found 
different faults than Randoop and Palus, but had a 
comparable number of false positives. 

We applied MeansTest 4 times total to compare Fusion 
with the other two methods. MeansTest inferred that the 
differences between the methods were normally distributed. It 
is difficult to formulate a hypothesis for assessing the statistical 
significance of finding "different" faults, but Fusion did not 
find significantly different number of real faults than either 
Randoop or Palus (t-test, p=0.09 and 0.13, respectively). 
Fusion indeed found about the same false positives as Randoop 
and Palus (t-test, p=0.26 and 0.12, respectively). According to 
MeansTest's power analysis, the authors would need to test at 
least 12 programs to notice a difference in real faults, and 26 
programs to notice a difference in false positives. 

5) Improving Test Generation under Rich Contracts by 
Tight Bounds and Incremental SAT Solving 

Abad et al. [24] developed a new test generator, called 
FAJITA. They compared the branch coverage and performance 
of FAJITA with Pex, Kiasan, Randoop, AutoTest, and 
EvoSuite. They ran these tools on 25 methods across 8 classes. 
They reported that FAJITA had the best branch coverage of 
all tools. 

We applied MeansTest 4 times to compare FAJITA's 
branch coverage to that of each of the other tools. We 
configured MeansTest to state the authors' hypothesis as one-
sided. MeansTest inferred that the differences between the 
tools were not normally distributed. FAJITA did have 
significantly greater branch coverage than Pex, Kiasan, 
Randoop, AutoTest,  and EvoSuite (Wilcoxon signed-rank, 
p=0.0008, 0.03, 0.0002, 0.0004, 0.01, respectively). 

6) Search-Based Testing of Relational Schema Integrity 
Constraints Across Multiple Database Management Systems 

Kapfhammer et al. [25] developed an input generator, 
called AVM, to test the constraints on database schemas. They 
compared the constraint coverage of AVM to DBMonster. 
They reported that AVM had better constraint coverage than 
DBMonster. 

MeansTest inferred that the difference between the data 
was not normally distributed. MeansTest concluded that the 
constraint coverage of AVM was significantly better than 
DBMonster (Wilcoxon, p~10^-5). 

7) MFL: Method-Level Fault Localization with Causal 
Inference 

Shu et al. [26] applied spectrum-based fault localization at 
the method level. They compared their technique, MFL, to 
existing SBFL tools Tarantula, Ochiai, PFIC, and one based on 
the F-measure. They ran these tools across 4 programs each 
seeded with about 7 faults and calculated the minimum cost of 
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a developer searching through methods according to the 
suspiciousness ranks to find a bug. The authors reported that 
MFL was cheaper to use than the other measures in 3 out of 4 
programs. 

MeansTest inferred that the difference between the 
minimum costs of the methods was normally distributed. 
MeansTest concluded that the minimum cost of MFL was 
significantly cheaper than Tarantula and PFIC (t-test, p=0.033 
and 0.34, respectively), but not significantly cheaper than 
Ochiai and F-measure (t-test, p=0.07 and 0.06, respectively). 
According to MeansTest's power analysis, the authors would 
need to test at least 11 programs to notice a difference in 
minimum cost in all four tools. 

8) Scaling Model Checking for Test Generation using 
Dynamic Inference 

Yeolekar et al. [27] developed a test generation tool, called 
AutoGen, for satisfying structural coverage criteria.  They 
compared the branch coverage of test cases generated with 
their tool against random testing and another test generator 
called SatAbs. They applied these tools to 10 functions. They 
reported that AutoGen had better coverage than SatAbs and 
random testing. 

AutoGen had significantly higher coverage than random 
(t-test, p~10^-5). The analysis of the difference between 
SatAbs and AutoGen is tricky because although SatAbs had 
higher coverage in some instances, it timed out on most 
functions. If we treat the timeouts as 0% coverage, we see that 
AutoGen had significantly higher coverage than SatAbs, but 
the difference was not normally distributed (Wilcoxon signed-
rank test, p= 0.04). 

9) Transformation Rules for Platform Independent 
Testing: An Empirical Study 

Eriksson et al. [28] introduced UML transformations to 
identify implicit logical predicates ahead of time, before code 
is generated from the models. Their goal was to reduce the 
number of requirements needed to satisfy logic coverage 
criteria such as all-pairs and MCDC. They examine the UML 
of 6 programs and apply their transformations to the programs. 
They then compute the number of new requirements generated 
going from UML to code and show that their method requires 
less new rules. 

MeansTest inferred that the data was not normally 
distributed. The implicit-to-explicit transformations did indeed 
generate significantly less rules going from the UML to code; 
this result applied to both all-pairs and MCDC coverage 
requirements (Wilcoxon, p=0.008). 

10) An Efficient Algorithm for Constraint Handling in 
Combinatorial Test Generation 

Yu et al. [29] introduced their combinatorial test generation 
tool, called ACTS. They compared ACTS to other 
combinatorial test generators: CASA, Ttuples, and PICT. They 
compared the tools' performance in terms of the amount of 
time spent building the test set. They evaluated their tools 
across 16 programs and concluded that "ACTS can perform 
significantly better for systems with more complex 
constraints." 

MeansTest inferred that the performance data was not 
normally distributed. ACTS was significantly faster than 
CASA and TTuples, but not PICT (Wilcoxon, p=0.0001, 
0.004, and 0.37, respectively). MeansTest estimates that the 
authors would need 35 programs to show a statistically 
significant difference in the runtime performance between 
ACTS and PICT. 

11) Oracle-Based Regression Test Selection 
Yu et al. [30] examined the problem of regression test 

selection as part of change impact analysis at ABB. They 
discussed two broad methods of creating test oracles: using 
outputs and tracking the internal state. They introduced an 
algorithm for inferring the test cases needed to test a change, 
based on so-called "internal oracles" that study the effect of 
changes on the internals of a system. They compared the faults 
found by test sets selected by internal oracles with those 
generated by "output oracles" (oracles that only check the 
output) on 9 programs. They found that internal oracles 
discover significantly more faults than output oracles. 

MeansTest inferred that the fault distribution data was 
normally distributed.  The internal oracle tests found 
significantly more faults than the output oracle tests (t-test, 
p=0.002). 

12) Test Case Prioritization Using Requirements-Based 
Clustering 

Arafeen and Do [31] examined the issue of test case 
prioritization: which test cases are most likely to uncover 
faults?  They introduced a new test case clustering technique 
that orders test cases based on the priority of their 
requirements. They introduce several within-cluster ordering 
heuristics as well. They compare the effectiveness of 
prioritizing with clustering against standard McCabe-style 
prioritization metrics on four programs: three versions of iTrust 
and Capstone. They find that clustering outperforms McCabe 
on iTrust, but not on Capstone. 

MeansTest inferred that the relative effectiveness 
percentages were normally distributed. The clustering 
technique significantly outperformed McCabe on the iTrust 
code (t-test, p~10^-14) but not on Capstone (t-test, p=0.18). 
The Capstone program was too small to perform a meaningful 
analysis. 

VIII. DISCUSSION AND FUTURE WORK 
An automated selection process for statistical analysis can 

help researchers draw conclusions about the statistical 
significance of their results in the absence of an expert 
statistician. Our validation showed that this process 
significantly outperformed blind adherence to the Wilcoxon 
nonparametric tests. In light of newer nonparametric 
hypothesis tests such as Brunner-Munzel, the adherence to the 
Wilcoxon tests that prevailed in ICST'13 may be outdated. 
Indeed, we found a specific instance at ICST'13 where our 
process found a significant result that was originally reported 
as being of questionable significance. While very promising, 
our results indicate that our process is still not perfect; it is not 
a substitute for an expert statistician. It is ultimately up to an 
expert to decide which test is most appropriate in a given 
situation.  
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Cross-referencing our meta-analysis with the systematic 
review by Kampenes et al. [17], we see that ICST'13 had 
almost identical statistical significance as journal papers. About 
50% of results were statistically significant in both studies.  
Unfortunately, authors at ICST'13 under-reported the statistical 
significance of their work compared to the Kampenes et al.  
journal papers, with only 33% of empirical validation papers at 
ICST'13 reporting their statistics. We hope that our workflow 
will make it more convenient for authors in the future to report 
statistical significance. 

In our meta-analysis of ICST'13, we stated the minimum 
sample sizes required to achieve statistically significant results. 
Our methodology, well-known to statisticians as power 
analysis, is a welcome addition to the automated statistics 
mode of thought. Many problem domains call for even more 
sophisticated analysis, such as blocked designs and analysis of 
variance, for which we have yet to provide a solution. There 
are several models of analysis of variance, each with their own 
assumptions, so this type of analysis would benefit from an 
automated selection process similar to that of MeansTest and 
remains as future work. 
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