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epted (a

epted date)The building of tra
eability matri
es by those other than the original developers is an ar-duous, error prone, prolonged, and labor intensive task. Thus, after the fa
t requirementstra
ing is a pro
ess where the right kind of automation 
an de�nitely assist an analyst.Re
ently, a number of resear
hers have studied the appli
ation of various methods, oftenbased on information retrieval, to after the fa
t tra
ing. The studies are diverse enoughto warrant a means for 
omparing them easily as well as for determining areas thatrequire further investigation. To that end, we present here an experimental frameworkfor evaluating requirements tra
ing and tra
eability studies. Common methods, met-ri
s and measures are des
ribed. Re
ent experimental requirements tra
ing journal and
onferen
e papers are 
atalogued using the framework. We 
ompare these studies andidentify areas for future resear
h. Finally, we provide suggestions for how the �eld oftra
ing and tra
eability resear
h may move to a more mature level.Keywords: requirements tra
ing, tra
eability, experiment, framework, metri
s, informa-tion retrieval, IV& V, 
ase study1. Introdu
tionRequirements tra
ing is de�ned as \the ability to des
ribe and follow the life ofa requirement, in both a forward and ba
kward dire
tion, through the whole sys-tems life 
y
le [30℄." Requirements tra
ing is important to the software engineering�eld for a number of reasons: tra
eability matri
es (a) assist us in assuring that allrequirements have been implemented, (b) parti
ipate in mapping test 
ases to re-quirements, (
) are used by management for "what if" s
enarios, (d) assist us whenwe maintain software or reuse software, and (e) form a part of the safety 
ase forsafety-
riti
al software requiring 
erti�
ation. Unfortunately, tra
eability matri
esare often not built, or not to the level of detail required, during the developmente�ort. As a result, they must be built after the fa
t by non-developers. Tools and1
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hniques to assist with the automation of this time 
onsuming, highly error prone,unpleasant task are needed.On a positive note, in the last three to �ve years, there have been an in
reasednumber of resear
h papers in the area of requirements tra
ing. Spe
i�
ally, many ofthese papers [3, 29, 24, 23℄ apply information retrieval (IR) methods to the require-ments tra
ing problem in a variety of settings. In parti
ular, Information Retrievalmethods are used to 
ompare the texts of a pair of requirements from two do
umentsin the proje
t do
ument hierar
hy for the purpose of determining their similarity.This work uses well-a

epted IR measures of re
all and pre
ision to evaluate thee�e
tiveness of their te
hniques. Re
all is the per
entage of a
tual mat
hes thatare found and pre
ision is the per
entage of 
orre
t mat
hes as a ratio to the totalnumber of 
andidate links returned [23℄. Beyond the use of these two measures, thepapers in this �eld have little in 
ommon. Some papers introdu
e se
ondary mea-sures of e�e
tiveness or quality [24℄. Some papers take an experimental approa
h totheir evaluation, others take a less formal approa
h. As more and more tra
eabilitystudies be
ome available, the need for a 
learly outlined experimental frameworkthat allows side-by-side 
omparison is emerging.Fenton, P
eeger, and Glass [17℄ point out that far too often software engineer-ing resear
hers rely on intuition and not empiri
al resear
h and data. Basili, Shull,and Lanubile [8℄ examine a number of papers related to software engineering ex-perimental frameworks. They note: \the important 
ommon 
hara
teristi
 of allthese frameworks is that they do
ument the key 
hoi
es made during experimentaldesign, along with their rationales." Further, the frameworks allow the 
omparisonof studies and \allow the primary question of an experiment to shift from 'Is a par-ti
ular pro
ess e�e
tive?' to 'What are the fa
tors that make a parti
ular pro
esse�e
tive or ine�e
tive?' [8℄."The need for su
h a framework in software engineering experimentation hasbeen a
knowledged. Similarly, the importan
e of applying su
h a framework toexperiments of defe
t-dete
tion te
hniques has also been demonstrated [28℄. Thereis a need for a framework or stru
ture for empiri
al studies on requirements tra
ing.To that end, this paper dis
usses experiments that examine te
hniques for tra
ingartifa
ts su
h as requirements. The main 
ontribution of this paper is two-fold:Framework for requirements tra
ing experiments. We propose a frameworkfor developing, 
ondu
ting and analyzing experiments on requirements tra
e-ability. This framework allows des
ription of various existing and emergingresear
h on requirements tra
ing and tra
eability.Des
ription of existing resear
h in terms of the proposed framework. Weprovide des
riptions of [3, 29, 4, 23℄ in terms of our framework. Su
h des
rip-tions allow us to 
ompare two or more works side-by-side, and determinewhi
h areas of requirements tra
eability resear
h have not been adequatelyaddressed, and design future experiments to 
over them.The rest of the paper is organized as follows. Se
tion 2 presents related work in
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ing Experiments 3the area of requirements tra
ing, tra
eability and experimentation. In Se
tion 3 webrie
y des
ribe our model of the requirements tra
ing pro
ess and how IR methodsare applied to it. A framework for the many fa
tors to be 
onsidered in require-ments tra
ing experiments and proposed requirements tra
ing measures is presentedin Se
tion 4. Se
tion 5 examines re
ent experiments that evaluate requirementstra
ing te
hniques. These experiments provide hypotheses, experimental designs,and sometimes obje
ts of experimentation (su
h as te
hniques, models, proje
t ar-tifa
ts) that 
an be reused. We emphasize an experiment that we 
ondu
ted atthe University of Kentu
ky. Finally, 
on
lusions and future work are dis
ussed inSe
tion 6.2. Related Work2.1. Requirements tra
ingWe have been ta
kling the requirements tra
ing problem for many de
ades. In1978, Pier
e [32℄ designed a requirements tra
ing tool as a way to build and maintaina requirements database and fa
ilitate requirements analysis and system veri�
a-tion and validation for a large Navy undersea a
ousti
 sensor system. Hayes [21℄dis
usses a front end for a requirements tra
ing tool 
alled the Software AutomatedVeri�
ation and Validation and Analysis System (SAVVAS) Front End pro
essor(SFEP). This was written in Pas
al and interfa
ed with the SAVVAS requirementstra
ing tool that was based on an Ingres relational database. SFEP allows theextra
tion of requirement text as well as the assignment of requirement keywordsthrough the use of spe
i�ed linkwords su
h as \shall", \must", \will", et
. Thesetools are largely based on keyword mat
hing and threshold setting for that mat
h-ing. Several years later, the tools were ported to hyper
ard te
hnology on Ma
s, andthen to Mi
rosoft A

ess and Visual Basi
 running on PCs. This work is des
ribedby Mundie and Hallsworth in [31℄. These tools have sin
e been further enhan
edand are still in use as part of the Independent Veri�
ation and Validation (IV&V)e�orts for the Mission Planning system of the Tomahawk Cruise Missile as well asfor several NASA Code S s
ien
e proje
ts.Abrahams and Barkley, Ramesh, and Watkins and Neal [1, 33, 39℄ dis
uss theimportan
e of requirements tra
ing from a developer's perspe
tive and explain basi

on
epts su
h as forward, ba
kward, verti
al, and horizontal tra
ing. Casotto [13℄examined run-time tra
ing of the design a
tivity. Her approa
h uses requirement
ards organized into linear hierar
hi
al sta
ks and supports retra
ing. Tsumakiand Morisawa [38℄ dis
uss requirements tra
ing using UML. Spe
i�
ally they lookat tra
ing artifa
ts su
h as use-
ases, 
lass diagrams, and sequen
e diagrams fromthe business model to the analysis model and to the design model (and ba
k) [38℄.There have also been signi�
ant advan
es in the area of requirements eli
itation,analysis, and tra
ing. Work has been based on lexi
al analysis, su
h as extra
tionand analysis of phoneme o

urren
es to 
ategorize and analyze requirements and
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ts [34℄. Bohner's work on software 
hange impa
t analysis using agraphing te
hnique may be useful in performing tra
ing of 
hanged requirements[10℄. Anezin and Brouse advan
e ba
kward tra
ing and multimedia requirementstra
ing in [2, 12℄.Gotel and Finkelstein [18℄ examined the usefulness of 
ontribution stru
tures in a3-year long industrial study. Contribution stru
tures allow personnel-related tra
e-ability, fo
using on the human sour
es of requirements. Their study found that
ontribution stru
tures "identi�ed the right people to help re
tify matters whereproblems of misunderstanding surfa
ed, to 
onsider requirements 
hange and tohandle sta� turn-over." So
ial roles and relations were also more easily dis
erned.Zisman et al. [41℄ de�ne tra
eability relations based on requirements-to-obje
t-model and inter-requirements tra
eability rules. Their prototype tool allows thegeneration of relations between 
ommer
ial requirements spe
i�
ations (featuresfor a family of produ
ts - spe
i�ed in natural language) and fun
tional require-ments spe
i�
ations (behavior for a family of produ
ts - spe
i�ed in use 
ases) andthe requirements obje
t model (UML). A 
ase study of 110 
lasses and 277 oper-ations showed that re
all of 76% and pre
ision of 31% to 100% 
an be a
hieved,depending on the rule examined. This work was 
ontinued in Spanoudakis et al[37℄. The presented te
hnique generates tra
eability relations by using a rule-base.Some advan
ements reported in
lude: ability to determine the type of links found(\requires exe
ution of," \requires feature in"), and the ability to handle se
tions oftextual use 
ases and analysis models (de�ned in XML). After building a prototypeand running some preliminary experiments, they were able to a
hieve re
all of upto 95Cleland-Huang et al. [14℄ propose an event-based tra
eability te
hnique for sup-porting impa
t analysis of performan
e requirements. Data is propagated spe
ula-tively into performan
e models that are then re-exe
uted to determine impa
ts fromthe proposed 
hange. Ramesh et al examine referen
e models for tra
eability. Theyestablish two spe
i�
 models, a low-end model of tra
eability and a high-end modelof tra
eability for more sophisti
ated users [33℄. They found that a typi
al low enduser 
reated tra
eability links to model requirement dependen
ies, to examine howrequirements had been allo
ated to system 
omponents, to verify that requirementshad been satis�ed, and to assist with 
hange 
ontrol. A typi
al high-end user, onthe other hand, uses tra
eability for full 
overage of the life 
y
le, in
ludes the userand the 
ustomer in this pro
ess, 
aptures dis
ussion issues, de
ision, and rationale,and 
aptures tra
es a
ross produ
t and pro
ess dimensions [33℄.2.2. Information Retrieval in Requirements AnalysisIn general, the software tools des
ribed above address the overall problem ofrequirements management during the life
y
le of a software proje
t. Their require-ments tra
ing 
omponents typi
ally rely, one way or another, on manual keywordassignment - a long and arduous pro
ess. With time, pra
titioners realized the po-tential bene�ts of, and the resear
hers started working on, methods for automating



A Framework For Comparing Requirements Tra
ing Experiments 5the requirements tra
ing pro
ess. Of the many methods examined, InformationRetrieval te
hniques appear to o�er mu
h promise for this automation.Two resear
h groups worked on requirements-to-
ode tra
ebility. Antoniol, Can-fora, De Lu
ia and Merlo [3℄ 
onsidered two IR methods: probabilisti
 IR and ve
torretrieval (tf-idf). They have studied the tra
eability of requirements to 
ode for twodatasets. In their testing, they retrieved the top i mat
hes for ea
h requirement fori = 1; 2; : : : and 
omputed pre
ision and re
all for ea
h i. Using improved pro
esses,they were able to a
hieve 100% re
all at 13.8% pre
ision for one of the datasets. Ingeneral, they have a
hieved en
ouraging results for both tf-idf and probabilisti
 IRmethods. Following [3℄, Mar
us and Maleti
 [29℄ applied the latent semanti
 index-ing (LSI) te
hnique to the same problem. In their work they used the same datasetsand the same retrieval tests as [3℄. They have shown that LSI methods show 
on-sistent improvement in pre
ision and re
all and were able to a
hieve 
ombinationsof 93.5% re
all and 54% pre
ision for one of the datasets.While [3℄ and [29℄ studied requirements-to-
ode tra
eability, in [23℄ we haveaddressed the problem of tra
ing requirements between di�erent do
uments in theproje
t do
ument hierar
hy. In the preliminary study [23℄, we have implementedthree methods: tf-idf, tf-idf with key phrases and tf-idf with simple thesaurus. Wereported on their su

ess in identifying links between two requirements do
uments.In our study, retrieval with simple thesaurus outperformed other methods on ourtest dataset, produ
ing re
all of 85% with pre
ision of 40%. [24℄ 
ontinues theresear
h started in [23℄. We extended the baseline tf-idf and thesaurus retrievalmethods with analyst relevan
e feedba
k pro
essing 
apability [24℄.While [23℄ 
on
entrated solely on the problem of 
andidate link generation, [24℄looked at the entire pro
ess of requirements tra
ing from the perspe
tive of theperforming analyst. There, we proposed a number of non-fun
tional requirementsfor software tools designed to assist analysts in tra
ing requirements, determinedmeans for evaluating these requirements, and des
ribed a study that showed thatour prototype tool RETRO (REquirements TRa
ing On-target) mat
hes the ob-je
tive 
omponents of the proposed requirements�. The key di�eren
e between theexperimental designs of [23℄ and [24℄ was that in the latter paper we used feedba
kpro
essing te
hniques to emulate analyst intera
tion with the tool and looked atthe improvement in the metri
s over the iterations of the pro
ess. To better un-derstand the stru
tural 
hanges in the links of 
andidate lists returned by RETROat di�erent iterations of the pro
ess, we have introdu
ed a number of se
ondarymetri
s that measure separation between the true links and the false-positives inthose lists. Our experiments have shown that together with the improvement inthe primary metri
s (re
all and pre
ision), we are a
hieving better separation, i.e.,true links \rise" to the top of 
andidate link lists while false-positives \sink" to thebottom.�The requirements proposed in [24℄ have two 
omponents: obje
tive, that 
an be evaluated bystudying the software outputs, and subje
tive, that 
an only be evaluated by studying the workof human analysts with the tool and their rea
tions to the outputs. The latter study is 
urrentlyin development stages.
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ision and re
all(see, for example, [6℄) to evaluate the performan
e of di�erent methods. Thesemeasures are dis
ussed in more detail in Se
tion 3.2. These measures are appli
ableto the tre
eability analysis in general | regardless of whether a spe
i�
 tra
ingtask is performed using an automated method or manually: pre
ision tells us theper
entage of 
orre
t links in the �nal list of links while re
all spe
i�es the overallper
entage of 
orre
t links dis
overed.The s
ope of this paper is broader than the study of individual measures ofperforman
e of tra
ing methods. Rather, we dis
uss an overall framework for 
on-du
ting tra
ing studies. This framework allows us to 
ompare di�erent tra
ingexperiments not only based on these quantitative measures, but also on a broadrange of qualitative features, from the purpose and size of the study, to the study
on
lusions. We should note, however, that the quantitative measures of perfor-man
e do play an important role in the proposed framework. Pre
ision and re
allare a

epted as the key measures in the Information Retrieval 
ommunity. In [25℄we have studied the question of appli
ability of pre
ision and re
all to tra
ing ex-periments in detail, and dis
ussed a number of se
ondary measures, that improvethe understanding of the results of tra
ing experiments. As su
h, in this paper, wedo not 
on
entrate on spe
i�
 ways to measure the performan
e of tra
ing experi-ments. Our 
ase studies [3, 29, 23℄, and other related resear
h [37, 41℄, use pre
isionand re
all. In [24, 25℄, we show some new measures, sele
tivity, lag and Di�AR, tobe useful when analyzing and 
omparing tra
ing experiments.2.3. ExperimentationIn 1986, Basili, Selby, and Hut
hens des
ribed a framework that allowed the
ategorization, des
ription, and understanding of software engineering resear
h ex-periments [7℄. A

ording to Bourque and Abran [11℄, this framework was neverused by Basili et al or other resear
hers, hen
e they 
alled for a �eld test of theframework. As a result of a resear
her's workshop on empiri
al studies, Lanubile[27℄ proposed a framework similar to that of [7℄, but provided di�erent attributesfor ea
h of the 
lassi�
ation dimensions. For example, fo
us of the study 
ould beon a single, spe
i�
 obje
t of study or on multiple, generi
 obje
ts [27, 8℄. Lottand Romba
h [28℄ present a framework for repeating and 
omparing software en-gineering experiments. Their 
hara
terization s
heme was spe
i�
ally designed to
ompare defe
t-dete
tion te
hniques, but 
an be used in a more general way also.Their framework adds detail in the area of the Experimental Plan. For example,under data 
olle
tion and validation pro
edures, resear
hers must spe
ify how on-line and o�-line 
olle
tion pro
edures were used (forms, videotapes, 
ounts of runs)as well as validation approa
hes (independent sour
es, interviews, et
.) [28℄. Thispaper is organized similarly to Lott and Romba
h [28℄. Fenton, P
eeger, and Glassexamine �ve questions related to software engineering resear
h and experimentation
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ing Experiments 7in [17℄. Spe
i�
ally, they ask resear
hers to examine whether their work is based onempiri
al resear
h and data, whether the experiment is designed properly, whethertoy situations are studied, whether appropriate measures are used, and whether ornot the study is 
ondu
ted for a long enough period of time. Hayes applied theBasili et al framework [7℄ to real-world proje
ts that also double as experimentalstudies [22℄.3. Information Retrieval for Requirements Tra
ingIn this se
tion, we brie
y des
ribe the requirements tra
ing pro
ess from thepoint of view of the performing analyst. While the experimental framework thatwe des
ribe in Se
tion 4 is independent of the spe
i�
 methodology that is used inthe requirements tra
ing pro
ess, Se
tion 5 applies the framework to resear
h thatused IR methods. Thus, for the sake of 
ompleteness, we in
lude a brief outline ofhow IR methods are used to support the requirements tra
ing pro
ess and give ashort survey of spe
i�
 te
hniques used in [3, 29, 24, 23℄.3.1. The Pro
ess of Requirements Tra
ingIdeally, the requirements tra
eability matrix for any pair of do
uments withinthe proje
t do
ument hierar
hy should be a by-produ
t of the development e�ort.That is, any time developers work on a lower level requirements do
ument based on ahigher level do
ument, the tra
eability information should be generated and insertedin the do
ument at the time of introdu
tion of individual lower level requirements.In pra
ti
e, however, very few development teams follow this approa
h. Thus,requirements tra
ing be
omes a part of the Independent Validation and Veri�
ation(IV& V) or V& V pro
ess, performed by analysts who were not part of the originaldevelopment team (and often work for a di�erent 
ompany).In their work on spe
i�
 requirements tra
ing tasks, IV& V analysts rely solelyon the proje
t artifa
ts provided to them by the development team. First andformemost, these are the a
tual requirements do
uments, typi
ally a higher leveldo
ument that needs to be tra
ed and a lower level do
ument to whi
h it needsto be tra
ed. IV & V analysts may also use other artifa
ts, both textual (su
h asproje
t di
tionaries and 
ode) and non-textual (su
h as UML diagrams, use 
asediagrams, et
.).In a nutshell, the requirements tra
ing pro
ess 
an be des
ribed as follows (wedes
ribe the pro
ess for a tra
e of a high level to a low level do
ument, but tra
ing
an be applied to peer artifa
ts also). The analyst needs to generate a list of 
andi-date links for ea
h high level requirement. This list in
ludes low level requirementswhi
h should be examined 
losely to determine if they satisfy, at least in part, thehigh level requirement in question. For ea
h pair of high and low level requirementsfrom su
h a list, the analyst must then make a binary \link"/\no link" de
ision. Thepro
ess thus gets separated into two major stages: (a) generation of the 
andidatelink lists and (b) evaluation of the 
andidate links from the generated lists.
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andidate link lists. Prior to the use of IR methods for 
an-didate link generation, the main te
hniques in
luded (i) manual study of the do
-uments in hard
opy, (ii) manual study of the do
uments in soft
opy, (iii) use oftraditional oÆ
e software (text editors, spreadsheets), and (iv) use of spe
ial pur-pose requirements management software. The most naive approa
h in ea
h 
ase isto 
onsider all possible pairs of high and low level requirements. This is very 
ostly,however. Given that, typi
ally, the number of mat
hing low level requirements pera high level requirement is mu
h smaller than the total number of low level re-quirements, it is also quite wasteful. Traditional methods used to avoid exhaustivesear
h 
onsist of (a) assignment of keywords to ea
h individual high and low levelrequirement and (b) insertion into the list of 
andidate links all pairs of high-lowrequirements that have at least one 
ommon assigned keyword.In all four possible pro
edures mentioned above (i through iv), the assignment ofkeywords to requirements is a manual pro
ess. At the same time, keyword mat
hingis done manually in the �rst two; is performed using text editor sear
h fa
ilities inthe third; and, typi
ally, is performed 
ompletely automati
ally in the fourth.Evaluation of 
andiate links. Ea
h pair of requirements deemed \suspi
ious"during 
andidate link list generation needs to be examined more 
losely. Uponthis examination, the analyst pronoun
es his/her �nal \link" or \no link" verdi
t.We note, that in order for the results of the IV& V inspe
tion to be trustworthy,this part of the pro
ess must always be performed manually. Requirementsmanagement software might make this pro
ess more 
onvenient for the user byproviding a 
omfortable, informative interfa
e. In the end, though, it is the humanjudgment that is used to make the �nal determination.The a
tual pro
ess of examination of a given 
andidate link di�ers from ana-lyst to analyst, proje
t to proje
t, and 
andidate link to 
andidate link. Generallyspeaking, the analyst studies the text of both requirements as well as any a

om-panying non-textual 
omponents, determines respe
tive positions of high and lowlevel requirements in the do
ument, and makes the judgment 
all on whether thelow level requirement had been (purposefully or indavertantly) written to satisfythe high level requirement. As mentioned above, the analyst may 
hoose to 
onsultsome additional proj
t artifa
ts before arriving at this judgment.3.2. Enter Information RetrievalWe observe that in the above, somewhat simpli�ed, des
ription of the \pre-IR" requirements tra
ing pro
ess, the bottlene
k lies in generation of the 
andidatelinks list. As stated above, the �nal judgement about the appropriateness of ea
h
onsidered 
andidate link must remain with the human analyst. Therefore, thetotal time spent on requirements tra
ing is in dire
t proportion to the total numberof 
andidate links in the generated list.While keyword-mat
hing support provided by requirements management soft-ware, su
h as SuperTra
ePlus [21, 31℄, results in signi�
ant improvement of the
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ing Experiments 9pro
ess, it still leaves the initial examination of requirements and keyword assign-ment to the analysts. Among the drawba
ks of su
h a pro
ess is the proneness totypi
al human errors, su
h as in
onsistent assignement of keywords (e.g., \fault" inone pla
e, \error" in another), missed keywords (due to la
k of attention and/orsimple tiredness), and lapses in judgment (su
h as in
orre
t 
hoi
e of keywords dueto misunderstanding of the meaning of the requirement).Information Retrieval methods, battle-tested in the past 20{25 years and popu-larized by the emergen
e of web sear
h engines as the keystones to world wide websur�ng, provide reliable and s
alable me
hanisms for keyword-mat
hing betweendi�erent do
uments in their simple form. In the general 
ontext of requirementstra
ing, individual requirements take on the roles of IR \do
uments" and \queries"or \information needs." In the standard setting of forward tra
ing (from a high leveldo
ument to a lower level do
ument), low level requirements be
ome the do
umentsor do
ument 
olle
tion, while high level requirements take on the role of queries.The key advantage of IR methods over manual keyword assignment is eÆ
ien
y {IR algorithms automate sele
tion of keywords, determination of their relative impor-tan
e to ea
h requirement, and 
omputation of similarity/degree of mat
h betweenthe text of high and low level requirements. At the same time, while IR methodsare not subje
t to typi
al human errors su
h as missed keywords, they are limitedby their input { the text of the requirement. Unlike humans, IR methods 
annotsimply leap to judgment that the requirement ``The software shall not allowthe user to enter in
orre
t dates" might be asso
iated with keyphrases \er-ror handling" or \input pro
essing," be
ause these terms are not present in the textof the requirementy.In the rest of this se
tion we survey Information Retrieval methods and te
h-niques whi
h have been applied to the tra
ing problems in re
ent years as well asdis
uss in more detail the metri
s used to evaluate the su

ess of IR methods.Ve
tor Spa
e Information Retrieval (VSIR) (used in [3, 23, 24℄). One ofthe oldest, simplest, well-known, well-studied, and robust approa
hes to determiningwhether a spe
i�
 do
ument is relevant to a given query 
onsists in (a) representingea
h do
ument and ea
h query as a ve
tor of keyword weights and (b) 
omputingthe similarity between the ve
tors as the 
osine of the angle between them in the N -dimensional spa
e (where N is the total number of keywords found in the do
ument
olle
tion) [6℄. This method is also known as tf-idf, 
alled so for the way by whi
hthe ve
tors of keyword weights are 
omputed. Tf stands for \term frequen
y" {the (normalized) frequen
y of the term in a given do
ument or query, while idfstands for inverse do
ument frequen
y, 
omputed as idf(ki) = log( 1ni ), where ni isthe number of do
uments in whi
h keyword ki o

ursz.yIn all fairness, more 
omplex methods involving the use of term ontologies and thesauri may allowsu
h 
on
lusions, but still, su
h 
on
lusions are pre-programmed by the data available to them.zTerm frequen
y expresses the idea that the more frequent the word is in a do
ument, the moreimportant it is for the do
ument, while inverse do
ument frequen
y represents the dis
rimina-tory power of a word { words that o

ur in fewer do
uments distinguish between relevant and
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 Information Retrieval (PIR) (used in [3℄.) This method usessimpli�ed ve
tor representation of the do
uments and queries: ea
h keyword weightis either equal to 1 (keyword is found in the do
ument) or 0 (keyword is notfound). The probabilisti
 IR method, also known as Binary Independen
e Retrieval(BIR)[35, 15℄, estimates the probability that do
ument d is relevant to some queryq given their binary ve
tors (representing keyword o

urren
e). We refer the readerto [15℄ for the 
omplete derivation of the formulae used in this method.Latent Semanti
 Indexing (LSI) (used in [29℄). Latent semanti
 indexingte
hnique, �rst proposed in [16℄, uses Single-Value De
omposition (SVD) of thedo
ument-by-keyword matrix (formed out of the tf-idf ve
tors of keyword weights)to redu
e the number of dimensions over whi
h the similarity 
omputation is takingpla
e. Formally, if A is an M � N do
ument-by-term weight matrix, its SVD iswritten as A = TSD0, where T and D0 are two matri
es with orthogonal rows and
olumns respe
tively and S is a diagonal matrix of eigenvalues of A. By trimmingthe list of eigenvalues from rank(A) to a smaller number k, we obtain an approx-imate de
omposition Ak = TSkD0, where Sk is the diagonal matrix of size k � kwith k largest eigenvalues of A on the diagonal. For 
omparing do
uments to ea
hother, and pro
essing queries, we 
an now use matrix DS2kD0 whi
h redu
es thedimensionality of the do
ument ve
tors from N to k. In pra
ti
al appli
ations, LSIperformed well, and showed its robustness. At the same time, the SVD pro
ess isquite time-
onsuming, resulting in LSI being a rather slow method, typi
ally re-served for appli
ations with reasonably small domains or appli
ations where qualityoutweighs eÆ
ien
y.Use of Thesaurus (used in [23, 24℄). Standard tf-idf method produ
es non-zero relevan
e weight i� at least one pair of keywords mat
h in two do
uments. Be-
ause individual requirements are quite terse, and be
ause requirements at di�erentlevels are written by di�erent people, it is not un
ommon for the texts of mat
hingrequirements not to have terms in 
ommon. For example, the high level require-ment``the software shall 
orre
tly pro
ess in
oming data in XML format''and low level requirement ``run Apa
he parser on input file temp info.xml.The DTD file is input.dtd (see Appendix)." have no 
ommon terms. Yet,the low level requirement 
learly links to the high level requirement.To alleviate this problem, we enhan
ed tf-idf method with some simple the-saurus information [23, 24℄. Our thesaurus is a set of triples (v; �; w), where vand w are terms or term phrases and � is the degree to whi
h the two termsmat
h ea
h other. For example, to let the link between the two requirementsabove be dis
overed automati
ally, we 
an 
onstru
t the following thesaurus entry:(in
oming data; 0:9; input). Formulae used in 
onstru
ting do
ument and queryve
tors enhan
ed with simple thesaurus information, as well as in determining theirsimilarity, 
an be found in [24℄.nonrelevant do
uments better.



A Framework For Comparing Requirements Tra
ing Experiments 11Metri
s and measures. Two standard metri
s used to evaluate IR methods ina 
omplementary way, pre
ision and re
all, measure the a

ura
y of the answer setgenerated by an IR method on a given query. Let the size of the entire do
ument
olle
tion beM , and let R do
uments be a
tually relevant to some query q. Supposeour IR method returns n do
uments, out of whi
h r are the relevant do
uments.Then, pre
ision of the experiment is de�ned as pre
ision = rm , while the re
all isre
all = rR . These two metri
s are used in all papers applying IR for requirementstra
ing.In [24℄, we introdu
e some new measures designed to help us evaluate the qual-ity of lists of 
andidate links generated by the iterative feedba
k pro
essor. Thesemeasures are able to 
apture stru
tural 
hanges in the lists of 
andidate links evenwhen the pre
ision and re
all do not 
hange signi�
antly. The two measures 
on-sidered there were Lag - the mean number of false positives above a true link inthe 
andidate link lists and Di�AR - the di�eren
e in the average relevan
e of truelinks and the average relevan
e of false positive links. These measures support our�ndings in [24℄ that the quality of the answer set keeps improving throughout thefeedba
k iterations.4. A Framework for Requirements Tra
ing ExperimentsThe 
ontribution of the framework of this se
tion is to help a
hieve the goal ofan infrastru
ture for experimental software engineering experiments that evaluaterequirements tra
ing te
hniques. The framework builds on work that appearedin [22℄. It is depi
ted in Table 1. Some additions, modi�
ations and/or 
hangedinterpretations have been made to tailor the framework to requirements tra
ingand tra
eability experiments. Hypothesis was added as a 
ategory after Lott andRomba
h [28℄. We repla
ed the sele
tions under the experimental design 
ategorywith a subset of those used by Lott and Romba
h [28℄. Importan
e has been dividedinto domain importan
e and obje
t importan
e. We added a results 
ategory underthe interpretation phase and we re
ognize two levels of results. The frameworken
ompasses de�nition of the experimental study, planning of the study, realizationof the study, and interpretation of the study, just as in [7℄.4.1. De�nitionDe�nition refers to the proje
t de�nition phase, the time when a resear
herde
ides the s
ope and obje
tive of the proje
t. There are eight parts to the de�nitionphase: (1) motivation (5) perspe
tive(2) purpose (6) domain(3) obje
t (7) s
ope(4) hypothesis (8) importan
eMotivation. There may be many motivations for an experiment on requirementstra
ing te
hniques. Resear
hers may be seeking to, for example,



12 International Journal of Software Engineering and Knowledge EngineeringPhase I: De�nition(1) MotivationUnderstandImproveAssessValidateManageAssureEngineerCon�rmEnhan
eLearn(2) PurposeEvaluateTestImplementPredi
tChara
terize(3) Obje
tProdu
tModelPro
essMetri
Theory(4) HypothesisNull HypothesisAlternativeHypothesis(5) Perspe
tiveResear
herDeveloperMaintainerCustomer or UserProje
t Manager(6) DomainProje
tProdu
tEngineers(7) S
opeSingle Proje
tMulti-Proje
tRepli
ated Proje
tBlo
kedSubje
t-proje
t(8) Importan
e:- Domain- Obje
t of studySafety-
riti
alMission-
riti
alQuality of lifeConvenien
e

Phase II: Planning(1) ExperimentalDesignDesignIndependent vars.- tra
ing te
hnique- tra
eability datarepresentation- tra
eability datamgmt- type of artifa
t- size of artifa
t- quality of artifa
tDependent vars.- re
all- pre
ision- elapsed timeRandomizationManipulation ofindependentvariables(2) MeasurementMetri
 de�nition:GQMFCMMetri
 validationData 
olle
tion:AutomatabilityForm designand testObje
tive vs.subje
tiveS
ale:NominalOrdinalIntervalRatio(3) Produ
tDo
umentationCodeDatabasesOther artifa
ts

Phase III: Realization(1) PreparationPilot studyArtifa
t development:Parsing reqts.Building answer setsBuilding thesauriConverting intoinput format(2) Exe
utionProje
t exe
utionData 
olle
tionData validation
(3) AnalysisQuantitative vs.qualitativePreliminary dataanalysisPlots andhistogramsModelassumptionsPrimary dataanalysisModelappli
ation

Phase IV:Interpretation(1) Interpretation
ontextStatisti
alFrameworkStudy purposeField of resear
h(2) ResultsHypothesisEvaluation:Null hyp. reje
tedNull hyp. 
on�rmedA
quisition ofadditionalknowledge:Additional knowledge(3) ExtrapolationSamplerepresentativeness
(4) Impa
tVisibilityRepli
ationAppli
ation

Table 1: Summary of our experimental framework.



A Framework For Comparing Requirements Tra
ing Experiments 13� understand why 
ertain elements are never tra
ed to any other elements;� 
on�rm results that were seen on a previous experiment (of their own or byother resear
hers);� assess a spe
i�
 measure (e.g., re
all) for a parti
ular requirements tra
ingte
hnique.Purpose. The purpose of an experiment may be to:� test a tool or spe
i�
 implementation of an algorithm, e.g., test SuperTra
e-Plus [21, 31℄;� evaluate the e�e
tiveness of a model or te
hnique, e.g., evaluate the e�e
tive-ness of LSI when applied to the requirements tra
ing problem.Other examples in
lude, but are not limited to:� understand a pro
ess or problem better;� improve an existing tool or te
hnique;� assess the 
omplian
e of a tool or te
hnique with a pro
ess, guideline, or
riterion;� validate the results of a previous experiment.Obje
t. The obje
t of study will generally be a produ
t or model, although someexperiments will examine the requirements tra
ing pro
ess or the usefulness of aposited metri
.Hypothesis. The hypothesis (or hypotheses) should be stated in su
h a way as tobe veri�able. The premise of the resear
her, usually that \our new requirementstra
ing te
hnique is better than someone else's te
hnique as shown by higher re
alland pre
ision," will be stated as the alternative hypothesis. The null hypothesis willbe that no di�eren
e between the requirements tra
ing te
hniques exists.Perspe
tive. Though most experiments are from the perspe
tive of the resear
her,they may be from many other perspe
tives su
h as developer, maintainer, 
ustomeror user, or manager.Domain. The domains that typi
ally 
omprise experiments are� individual engineers who will be using the requirements tra
ing te
hniques,or� proje
ts or programs (produ
t) on whi
h the te
hniques will be applied.
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ope. Basili et al [7℄ 
lassify experimental study s
opes by looking at the sizeof the domains 
onsidered, as does this experimental framework. The following
ategories of experiments are 
onsidered:� Blo
ked subje
t-proje
t experiments examine one or more obje
ts a
ross a setof teams and a set of programs.� Repli
ated proje
t experiments look at obje
ts a
ross a set of teams and asingle program.� Multi-proje
t variation experiments examine obje
ts a
ross a single team anda set of programs.� Single proje
t experiments look at obje
ts on a single team and a single pro-gram.Importan
e. We distinguish two levels of importan
e: domain importan
e and ob-je
t of study importan
e. The former level assesses the importan
e of the domainof the experimental study, while the latter looks at the importan
e of the resear
hbeing 
ondu
ted (obje
t of study). In both 
ases, the importan
e is being evaluatedon the following s
ale:� safety-
riti
al (potential loss of human life),� mission-
riti
al,� quality of life, or� 
onvenien
e.For example, an experiment that evaluates a tra
eability model using requirementsartifa
ts from an instrumentation and 
ontrol system of a nu
lear power plant willhave safety-
riti
al domain importan
e and quality of life obje
t importan
e. Inanother example, an experiment evaluating IV&V analyst response to spe
i�
 GUIfeatures of a requirements tra
ing software tool using made-up data will have qualityof life obje
t importan
e and 
onvenien
e domain importan
e.4.2. PlanningThe experiment planning phase 
onsists of three parts:(1) experimental design (2) measurement (3) produ
tExperimental Design. Experimental design has been addressed in detail in nu-merous works [7, 28, 8, 27℄ (just to mention a few). Here we 
on
entrate on detailsof parti
ular interest when performing requirements tra
ing experiments. A fewde�nitions are required before pro
eeding. External validity refers to the general-izability of results. Internal validity refers to the believability of the relationship
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ing Experiments 15between the hypothesized 
auses and the experimental results. The independentvariable is the fa
tor that the resear
her hypotheses will 
ause the results of the ex-periment. Experiments will be designed in su
h a way as to maximize internal andexternal validity, while evaluating the hypotheses. Designs range from in
ompleteblo
k, 
omplete blo
k, to fra
tional fa
torial and full fa
torial. Treatment of theseis beyond the s
ope of this paper. The interested reader should 
onsult one of themany useful sour
es of information [7, 28, 8, 27, 26, 40℄.In requirements tra
ing experimentation, the requirements tra
ing te
hnique isthe primary independent variable that determines the external validity of the 
lassof experiments [28℄. The representation used for the tra
eability data and themanagement of su
h data are also options. Other possible independent variablesin
lude the type and size of programs or proje
t artifa
ts that are being tra
ed, aswell as the quality of these artifa
ts. Let us examine ea
h of these in turn.Requirements tra
ing te
hnique. This will typi
ally be an algorithm, tool, orpro
ess. Examples in
lude ve
tor spa
e model, grep tool, 
ommer
ially availablerequirements tra
ing tool, manual tra
ing pro
ess. Resear
hers will, on o

asion,examine a more detailed appli
ation of a te
hnique. For example, a resear
her mayexamine the appli
ation of a threshold of 80% to the tra
ing results from a latentsemanti
 indexing model.Type and size of proje
t artifa
ts. As presented in [24℄, s
alability is themeasure of the size of a dataset used for experimentation. Spe
i�
ally, s
alabilityis the extent to whi
h the requirements tra
ing tool is able to a
hieve a

ura
y for"small" tra
esets as well as "large" tra
esets. A tra
eset typi
ally 
onsists of twoartifa
ts that 
an be divided into lower level elements along with an answerset (amapping between the two artifa
ts that has been validated). Hayes et al [24℄ de�nea "small" tra
eset to 
onstitute 3000 
ombinatorial links or less. For example,a tra
eset 
onsisting of 20 high level requirements and 50 low level requirementswould have 20 x 50 = 1000 
ombinatorial links. Any tra
eset with more than 3000
ombinatorial links is 
onsidered large. The average size of a requirement (typi
allymeasured as number of words) is of interest, but is rarely spe
i�ed in resear
h papers.The type of artifa
t is also of interest. Resear
hers have examined the tra
ing of
ode to user's manual pages (do
umentation), the tra
ing of one do
ument level toanother, et
. The type of element should also be spe
i�ed { textual, sour
e 
ode,tabular, et
.Quality of artifa
ts. Just as the number and type of defe
ts in 
ode or artifa
tsthat are used to evaluate defe
t dete
tion te
hniques are important, so is the qualityof artifa
ts used for tra
ing experiments. If tra
ing experiments are only exe
utedon artifa
ts that tra
e perfe
tly to ea
h other (e.g., ea
h high level requirement hasat least one satisfying low level requirement, and vi
e versa), then the ability of atra
ing te
hnique to dete
t orphan low level requirements or unsatis�ed high level
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annot be validated. Besides ensuring that the dataset has at least some highlevel requirements with no mat
hes in the low level and has some orphan low levelrequirements, the heterogeneity of the data must also be ensured. That is to saythat there should be, if possible, some requirements that mat
h a signi�
ant numberof requirements as well as those that mat
h just a few.Dependent variables. In requirements tra
ing experiments, typi
al dependentvariables are re
all, pre
ision, and elapsed time for tra
ing. As mentioned in Se
-tion 2.2, some other measures are also used on o

asion as dependent variables.Randomization examines the assignment of subje
ts to the di�erent levels of theindependent variables [28℄. Manipulation strategy refers to the 
ombination of in-dependent variables that have been studied [28℄. For example, if the independentvariables are te
hnique (two are examined) and proje
t (two are examined), a fullfa
torial design would require that all levels ofboth are 
rossed = te
hnique x proje
t = 2 x 2 or 4 trials.Measurement. For this 
omponent of the planning stage, we have to spe
ify thefollowing 
omponents:� de�nition of metri
s (using, for example, goal-question-metri
 [9℄),� validation of metri
s,� 
olle
tion of metri
s (automatable or not),� obje
tivity of metri
s,� s
ale of metri
s (nominal/
lassi�
atory, ordinal, interval, or ratio) [7℄.Produ
t. The planning produ
t se
tion 
overs do
umentation, 
ode, databases,and other artifa
ts. In some experimental studies, produ
ts are a
tually developed.For example, a software engineering experiment might have one team of developersbuild a system to a spe
i�
ation using an experimental development approa
h whileanother team uses a 
ontrol approa
h. In tra
eability experiments, the produ
ts areusually the items that are being tra
ed while a model or pro
ess is being evaluated.4.3. RealizationThe realization phase is the time when the experiment is 
ondu
ted. There arethree parts to the realization phase:(1) preparation (2) exe
ution (3) analysis (optional)Preparation. Preparation often in
ludes a pilot study [7℄. For example, a smalldataset (perhaps 10 x 10) may be used to get initial results for a new tra
ingte
hnique. In tra
ing experiments, preparation may in
lude preparation of proje
tartifa
ts su
h as
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ing Experiments 17� parsing requirements from do
uments,� building answer sets,� building or extra
ting thesauri,� 
onverting data in appropriate input format,� et
. . .Exe
ution. Exe
ution 
overs data 
olle
tion and validation. Generally, tra
ingexperiments 
olle
t similarity measures between parent and 
hild elements. Theseare 
ompared to the answerset. The number of 
orre
t links found, the numberof in
orre
t links returned, the number of links missed, and the number of linksreturned for ea
h element are used to 
al
ulate re
all and pre
ision.Analysis. The analysis 
omponent in
ludes preliminary data analysis, plots andhistograms, model assumptions, primary data analysis, and model appli
ation.Tra
ing experiments typi
ally depi
t re
all and pre
ision as lineplots, sometimesplotting re
all and pre
ision, and sometimes 
utpoints.4.4. InterpretationInterpretation refers to the time when the resear
her derives a result from theexperimental study. There are four parts to the interpretation phase:(1) interpretation 
ontext (3) extrapolation(2) results (4) impa
tInterpretation 
ontext. Interpretation 
ontext is the environment/
ir
umstan
esthat must be 
onsidered when interpreting the results of an experiment. The pos-sible 
ontexts are (i) statisti
al, (ii) framework, (iii) study purpose, or (iv) �eld ofresear
h.For example, if interpretation 
ontext is statisti
al then the power of the statis-ti
al te
hnique must be 
onsidered [28℄. If a power table reports that the 
ombi-nation of te
hnique, signi�
an
e value, and number of observations yields a powerof 90%, then the te
hnique will not dete
t signi�
ant di�eren
es that are less than1� 0:9 = 10%. [28℄.Results. We separate results of the studies into two 
ategories: hypothesis evalua-tion and a
quisition of additional knowledge.We expe
t the primary result of any study to be either 
on�rmation or reje
tionof the null hypothesis. While it is true that in most published studies the result is thereje
tion of the null hypothesis in favor of the alternative, we expe
t that in a largenumber of 
ases su
h results 
ome with 
aveats. For example, if a paper studies theappli
ation of two or more IR methods to the requirements tra
ing problem, null
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h individual method, and 
on�rmed orreje
ted independently. A result of su
h study then may be reje
tion of some nullhypotheses and 
on�rmation of some others.In addition to evaluating hypotheses, resear
h studies might lead to a
quisitionof some new knowledge, either from insight gained due to spe
i�
 
hara
tersiti
sof obje
t of study, pe
uliarities in measurements that required extra analysis, orsimply a noted feature of any of the framework 
omponents. For example, Hayeset al. note [23℄ that the performan
e of IR methods varies depending on whetheror not the same te
hni
al lingo had been used in both do
uments being tra
ed.Another example of su
h extra knowledge gained is an observation made in [23℄that human analysts working with the results of software may throw away sometrue links, but almost never �nd links missing from the software suggestions.Extrapolation. Extrapolation deals with sample representativeness. In most 
ases,the issue of 
on
ern for tra
ing experiments is the representativeness of the proje
tsand artifa
ts examined with the tra
ing te
hnique. This was dis
ussed in experi-mental design above.Impa
t. Impa
t pertains to the level of e�e
t that a study has on a �eld of resear
hand/or industry. The level of impa
t will vary depending on the a
tivities that o

urafter the experiment. Possible impa
ts in
lude, but are not restri
ted to� repli
ation of the experiment by others,� repli
ation of another study,� appli
ation of the results in industry,� visible publishing/presenting of the results.and 
an o

ur in any 
ombination. Some impa
ts 
an be reported in the studyitself, some others, su
h as being repli
ated in another study, may o

ur some timeafter the publi
ation.Some level of repli
ation has been seen in the tra
ing experiments. For exam-ple, Mar
us and Maleti
 [29℄ used the same proje
t artifa
ts as Antoniol et al [3℄.Results have been applied by a number of the proje
ts that parti
ipated in tra
ingexperiments. Publi
ation of results is o

urring in this area in top 
onferen
es andjournals.5. A Categorization of Requirements Tra
ing ExperimentsThe framework from Table 1 is used to 
ategorize re
ent experiments that ex-amined requirements tra
ing te
hniques. The keywords from the framework areitali
ized. We 
on
lude the se
tion with an in-depth look at an experiment that we
ondu
ted at the University of Kentu
ky.



A Framework For Comparing Requirements Tra
ing Experiments 195.1. Antoniol and Canfora and Casazza and De Lu
ia and Merlo (2002)Antoniol et al performed an experiment that 
ompared two requirements tra
ingte
hniques for two 
ase studies [3℄.Motivation. The motivation was to improve tra
eability link re
overy between
ode and do
uments.Purpose, Obje
t, Hypothesis, and Perspe
tive. Antoniol et al [3℄ 
ondu
teda study whose purpose was to evaluate two information retrieval models (the obje
tis a model) from the perspe
tive of a resear
her. The null and alternative hypotheseswere not formally spe
i�ed, but by impli
ation they were:Null hypothesis: The results of using Ve
tor Spa
e Information Retrieval Modeland Probabilisti
 Information Retrieval Model to tra
e two 
ase studies, asmeasured by re
all and pre
ision, will not vary from the results of using grepon the same two 
ase studies.Alternative hypothesis: The Ve
tor Spa
e Information Retrieval Model (VSIR)and Probabilisti
 Information Retrieval Model (PIR) will a
hieve better re-sults, as indi
ated by higher re
all and/or higher pre
ision, when applied totwo 
ase studies than will the grep tool.The two models evaluated by Antoniol et al [3℄ are:� Probabilisti
 Information Retrieval Model (PIR) - see Se
tion 2.� Ve
tor Spa
e Information Retrieval Model (VSIR) - see Se
tion 2.The tool used as a baseline 
omparison is grep. Grep is a unix utility that assistsa user in performing textual sear
hes intera
tively.Domain, S
ope, Importan
e, and Experimental Design. The s
ope wasblo
ked subje
t-proje
t where two proje
ts (from the program domain) of 
onve-nien
e importan
e were tra
ed. The next element, obje
t of study importan
e, wasquality of life. The independent variables were tra
eability model (the two modelsdes
ribed above) and artifa
t proje
ts. The two proje
ts that were examined aredes
ribed below.Library of EÆ
ient Data types and Algorithms (LEDA): LEDA is a freelyavailable C++ library of foundation 
lasses developed and distributed by Max-Plan
k-Institut f�ur Informatik, Saarbr�u
ken, Germany. The 
ode and do
u-mentation of release 3.4, 
onsisting of 95 KLOC, 208 
lasses, and 88 manualpages, was analyzed [3, 5℄.
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t: LEDA AlbergateModel: PIR PIRVSIR VSIRBaseline: grep grep Mar
us and Maleti
Proje
t: LEDA AlbergateModel: LSI LSIBaseline: PIR PIRVSIR VSIRTable 2: Experimental design for Antioniol et al[3℄ and Mar
us and Maleti
[29℄.Antoniol et alLEDA [Pr, Re
℄ Albergate [Pr, Re
℄PIR [38:94%; 82:65%℄ [34:16%; 70:68%℄[13:8%; 100%℄VSIR [17:06%; 72:44%℄ [43:33%; 50%℄[13:8%; 100%℄Mar
us and Maleti
LEDA [Pr, Re
℄ Albergate [Pr, Re
℄LSI [11:79%; 100%℄ [16:38%; 100%℄[53:98%; 83:33%℄ [21:12%; 85:96%℄PIR [38:94%; 82:65%℄ [34:16%; 70:68%℄[13:8%; 100%℄VSIR [17:06%; 72:44%℄ [43:33%; 50%℄[13:8%; 100%℄
Hayes et al.MODIS [Pr, Re
℄VSIR [11:4%; 25:4%℄VSIR+Thes. [40:6%; 85:4%℄Analyst+STP [46:15%; 43:9%℄STP [38:8%; 63:41%℄Table 3: Comparison of results for Antioniol et al[3℄ and Mar
us and Maleti
[29℄and Hayes et al.[23℄.Albergate: Albergate is a software system, developed in Java, designed to imple-ment all the operations required to administer and manage a small/mediumsize hotel (room reservation, bill 
al
ulation, et
.). It was developed froms
rat
h by a team of �nal year students at the University of Verona (Italy) onthe basis of 16 fun
tional requirements written in Italian (as well as all othersystem do
umentation). Albergate 
onsists of 95 
lasses and about 20 KLOCand exploits a relational database. Antoniol et al fo
used on the 60 
lassesimplementing the user interfa
e of the software system [3℄.The dependent variables were re
all and pre
ision. Table 2 depi
ts Antoniol etal's experimental design. The �rst 
olumn of the table des
ribes the information forthe LEDA proje
t or dataset, the se
ond 
olumn pertains to the Albergate dataset.There was no randomization. Both tra
ing models were applied to both of theproje
ts { full fa
torial design.Measurement and Produ
t. The re
all and pre
ision metri
s are formally de-�ned, validated metri
s from the information retrieval �eld. The metri
s were 
ol-le
ted in an automated fashion and are ratio. The produ
ts were do
umentationand 
ode.
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ing Experiments 21Preparation, Exe
ution, and Analysis. No pilot study was dis
ussed. Theartifa
ts were des
ribed by the authors as follows:\the LEDA manual pages 
ontain a high number of identi�ers that alsoappear in the sour
e 
ode. A
tually, the LEDA team generated man-ual pages with s
ripts that extra
t 
omments from the sour
e �les. Amarkup language was used to identify the 
omment fragments to beextra
ted. Fun
tion names, parameter names, and data type names
ontained in these 
omments appear in the manual pages, thus makingthe tra
eability link re
overy task easier. [3℄"For Albergate, sour
e 
ode 
lasses were tra
ed to fun
tional requirements withthe fo
us being on the 60 
lasses implementing the user interfa
e of the softwaresystem [3℄. The data 
olle
ted was number of 
orre
t links found, the numberof in
orre
t links returned, the number of links missed, and the number of linksreturned. Re
all and pre
ision were plotted. Table 3 shows exemplary resultsobtained in the experiments. The results are presented in a form of a pair ofnumbers: �rst number is pre
ision and se
ond number is re
all. The study 
omparedthe results to using grep, however [3℄ provides the statisti
s on grep returning emptyresults rather than pre
ision-re
all numbers.Interpretation. The interpretation 
ontext is the �eld of tra
ing resear
h. Thehypothesis result was that the null hypothesis was reje
ted in support of the alterna-tive hypothesis. Other knowledge a
quired in
luded the dis
overy that \smoothinggives very low nonzero probabilities to unseen words; as a result, sometimes, a queryis killed by the weight of word unseen in the training material [3℄." The samplesused are representative of the artifa
ts that are tra
ed in pra
ti
e in industry. Thiswork did not repli
ate any prior experiments.5.2. Mar
us and Maleti
 (2003)Mar
us and Maleti
 [29℄ performed an experiment that applied one requirementstra
ing te
hnique to the same two 
ase studies used by Antoniol et al [3℄.Motivation. The motivation was to improve tra
eability link re
overy between
ode and do
uments.Purpose, Obje
t, Hypothesis, and Perspe
tive. Mar
us and Maleti
 [29℄
ondu
ted a study whose purpose was to evaluate an information retrieval model(the obje
t is a model) from the perspe
tive of a resear
her. The hypotheses usedin the work, though not expli
itly stated,Null hypothesis: When applying LSI and PIR and VSIR, there is no di�eren
ein the pre
ision and re
all.
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ision and re
all.The model evaluated is:� Latent Semanti
 Indexing (LSI) - see Se
tion 2.Domain, S
ope, Importan
e, and Experimental Design. The s
ope wasblo
ked subje
t-proje
t where two proje
ts (from the program domain) of 
onve-nien
e importan
e were tra
ed. The next element, obje
t of study importan
e, wasquality of life. The experimental design is depi
ted in Table 2. The independentvariables were model (LSI) and artifa
t proje
ts. The �rst 
olumn of the tabledes
ribes the information for the LEDA proje
t or dataset, the se
ond 
olumn per-tains to the Albergate dataset. The two proje
ts that were examined were des
ribedabove in Se
tion 5.1. The dependent variables were re
all and pre
ision. There wasno randomization. Both proje
ts were examined with the LSI te
hnique.Measurement and Produ
t. The re
all and pre
ision metri
s are formally de-�ned, validated metri
s from the information retrieval �eld. The metri
s were 
ol-le
ted in an automated fashion and are ratio. The produ
ts were do
umentationand 
ode.Preparation, Exe
ution, and Analysis. No pilot study was dis
ussed. Theartifa
ts were des
ribed. The man pages of LEDA and Albergate were dis
ussedin Se
tion 5.1. The data 
olle
ted was number of 
orre
t links found, the numberof in
orre
t links returned, the number of links missed, and the number of linksreturned. Re
all and pre
ision were plotted. Table 3 shows exemplary resultsobtained in the experiments. The results are presented in a form of a pair ofnumbers: �rst number is pre
ision and se
ond number is re
all. The study 
omparedthe results to those of [3℄.Interpretation. The interpretation 
ontext is the �eld of tra
ing resear
h. Thealternative hypothesis was supported and the null hypothesis was reje
ted. Otherknowledge a
quired was that re
all 
ould be improved by using stru
tural informa-tion of the C/C++ 
ode. Often, 
lasses were implemented in more than one �le.Retrieving only one of them resulted in high pre
ision but low re
all [29℄. The sam-ples used are representative of the artifa
ts that are tra
ed in pra
ti
e in industry.This work used the same samples as Antoniol et al [3℄ but with a di�erent te
hnique.5.3. Antoniol, Caprile, Potri
h, and Tonella (1999)Antoniol, Caprile et al [4℄ performed an experiment that examined a pro
essfor re
overing \as is" design from 
ode, 
omparing re
overed design with the a
tualdesign and helping the user to deal with in
onsisten
y [4℄.
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ing Experiments 23Motivation: The motivation was to improve tra
eability re
overy between 
odeand \as is" design.Purpose, Obje
tive, Hypothesis, and Perspe
tive: Antoniol, Capril et al [4℄
ondu
ted a study whose purpose was to evaluate a pro
ess (obje
t is pro
ess)from the perspe
tive of a resear
her. The null and alternative hypotheses were notformally spe
i�ed, but by impli
ation they were:Null hypothesis: A tra
ing pro
ess 
onsisting of distan
e 
omputation and max-imum mat
h algorithm will not assist with design re
overy as shown on anindustrial tele
ommuni
ations proje
t.Alternative hypothesis: A pro
ess 
onsisting of distan
e 
omputation and max-imum mat
h algorithm will assist with design re
overy as shown on an indus-trial tele
ommuni
ations system.The pro
ess evaluated 
onsisted of a number of steps: 
ode and Obje
t Model Te
h-nique (OMT) [36℄ design is translated to Abstra
t Obje
t Language (AOL) using atool; AOL is parsed to produ
e an Abstra
t Syntax Tree (AST) by a tool; a relationstra
eability 
he
k is performed; a di
tionary tra
eability 
he
k that 
omputes editdistan
e between attribute names is performed; a maximum mat
hing algorithmand maximum likelihood 
lassi�er is applied; and results are displayed visually [4℄.Domain, S
ope, Importan
e, and Experimental Design: The s
ope wassingle proje
t where one proje
t of mission 
riti
al importan
e was tra
ed. Thenext element, obje
t of study importan
e, was quality of life. The independentvariables were tra
eability pro
ess and artifa
t proje
t. The proje
t evaluated wasan industrial tele
ommuni
ations system and 
onsisted of 29 C++ 
omponents,about 308 KLOC, for whi
h obje
t oriented obje
t models and 
ode was available[4℄. The dependent variables were re
all, pre
ision, and average similarity. Therewas no randomization. The single proje
t was examined with the tra
ing pro
ess.Measurement and Produ
t. The re
all and pre
ision metri
s are formally de-�ned, validated metri
s from the information retrieval �eld. Average similarity is
al
ulated by using the edit distan
e of attribute names found in the 
ode and de-sign. It is 0 when two strings have no 
hara
teristi
 in 
ommon and 1 when they
oin
ide, hen
e it is a real value between 0 and 1 [4℄. The metri
s were 
olle
ted inan automated fashion and are ratio. The produ
ts were design and 
ode.Preparation, Exe
ution, and Analysis. No pilot study was dis
ussed. Theartifa
ts were des
ribed. Internal obje
t models from a 
ommer
ial 
omputer-aidedsoftware engineering (CASE) tool are 
onverted into AOL using a tool developedby Antoniol, Caprile, et al [4℄. The internal models in
lude 
lass models, 
lassrelationships (su
h as aggregation and asso
iation). The other artifa
t tra
ed was
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ode 
orresponding to the internal obje
t models. The data 
olle
tedwas average similarity, deleted 
lasses (unmat
hed 
lasses when performing thetra
eability 
he
k), true positives (number of 
orre
t links found), false positives(number of in
orre
t links returned), false negatives (number of links not returnedthat should have been), true negatives (number of links not returned that do notexist, i.e., true tra
eability errors in the artifa
t). Tables of average similarities anddeleted 
lasses as well as pre
ision and re
all were provided. Mis
lassi�
ation errorwas plotted. Code identi�ers 
orre
tly segmented by design di
tionary were plotted.Re
all and pre
ision were plotted.Interpretation. The interpretation 
ontext is the �eld of tra
ing resear
h. Thehypothesis result was that the null hypothesis was reje
ted in favor of the alternativehypothesis. Other knowledge a
quired in
luded dis
overy that the \words used bythe designer to build identi�ers also make up the di
tionary used in the 
ode, butwith some extensions. [4℄" The samples used are representative of the artifa
ts thatare tra
ed in pra
ti
e in industry. It appears that the pro
ess is still being appliedby the tele
ommuni
ations system proje
t.5.4. Hayes, Dekhtyar, and Osborne (2003)Hayes, Dekhtyar, and Osborne performed an experiment that 
ompared fourrequirements tra
ing te
hniques for one 
ase study [23℄.Motivation. The motivation was to improve tra
eability link re
overy betweenhierar
hi
al levels of textual requirements do
uments.Purpose, Obje
t, Hypotheses, and Perspe
tive. Hayes, Dekhtyar, and Os-borne [23℄ 
ondu
ted a study whose purpose was to evaluate two information re-trieval algorithms (the obje
t is an algorithm) from the perspe
tive of a resear
her.The null and alternative hypotheses were not formally spe
i�ed, but by impli
ationthey were:Null hypothesis: The results of using VSIR and VSIR enhan
ed with a simplethesaurus algorithms to tra
e a 
ase study, as measured by re
all, pre
ision,and performan
e, will not vary from the results of an analyst manually per-forming a tra
e of the same 
ase study or of the analyst using the SuperTra-
ePlus tool[21, 31℄ on the same 
ase study.Alternative hypothesis: The results of using VSIR and VSIR enhan
ed witha simple thesaurus algorithms to tra
e a 
ase study, as measured by re
all,pre
ision, and performan
e, will be better than the results of an analyst man-ually performing a tra
e of the same 
ase study or of the analyst using theSuperTra
ePlus tool[21, 31℄ on the same 
ase study.
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ing Experiments 25The methods, on whi
h the algorithms evaluated by Hayes, Dekhtyar, and Os-borne [23℄ are based, are� Ve
tor Spa
e Information Retrieval (VSIR) { see Se
tion 2.� VSIR with simple thesaurus (VSIR+Thesaurus) { see Se
tion 2.The baseline 
omparisons are des
ribed below:Analyst performing Manual Tra
e (AMT): The analyst used intera
tive sear
hesin order to asso
iate high level requirements and low level requirements.SuperTra
ePlus (STP): This refers to results obtained from the requirementstra
ing module of SuperTra
ePlus (STP). STP, developed by S
ien
e Appli
a-tions International Corporation (SAIC), uses keyphrase mat
hing to generate
andidate links. It is written in VBasi
 and Mi
rosoft A

ess ma
ros. Theanalyst may spe
ify mat
hing thresholds, e.g. 33%, 50%, et
. For example, ifa high level requirement has four keyphrases and a low level requirement hastwo of these same keyphrases, a mat
hing threshold of 50% would ensure thatthe low level requirement is returned in the 
andidate link list.Analyst using SuperTra
ePlus (A&STP): The analyst examined the resultsreturned by STP and made judgments on what 
onstituted 
orre
t links ornot and whether they needed to look for any more links.Domain, S
ope, Importan
e, and Experimental Design. The s
ope wassingle proje
t where one proje
t (from the program domain) of quality of life impor-tan
e was tra
ed. The next element, obje
t of study importan
e, was quality of life.The independent variables were tra
eability algorithm (VSIR, VSIR+Thesaurus)and artifa
t proje
t. The proje
t that was examined was a NASA s
ien
e instru-ment proje
t, a moderate resolution imaging spe
troradiometer (MODIS), with 19high level requirements from [20℄ and 50 low level requirements from [19℄. A typi
alrequirement is one to two senten
es in length. A sample requirement is:``[The software℄ shall unpa
k all radian
e data from 12-bitsin the MODIS pkt to Unpa
ked MODIS radian
e when the pa
ket
ontains radian
e data, using the format do
umented in SBRS CDRL305''[19℄.The dependent variables were re
all, pre
ision, and performan
e. There was norandomization. The single proje
t was examined with the tra
ing algorithms.Measurement and Produ
t. The re
all and pre
ision metri
s are formally de-�ned, validated metri
s from the information retrieval �eld. Performan
e was mea-sured in hours. The former two metri
s were 
olle
ted in an automated fashion andare ratio. The latter metri
 was manually tra
ked and is ratio. The produ
ts weretwo levels of do
umentation.
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ution, and Analysis. No pilot study was dis
ussed. Theartifa
ts were not des
ribed, but an example was given above. The data 
olle
tedwas number of 
orre
t links found, the number of in
orre
t links returned, thenumber of links missed, the number of links returned, and time to perform the tra
e(in hours). Re
all, pre
ision, and performan
e were 
ompared in a tabular format.Table 3 shows the results obtained in the experiments. The results are presented ina form of a pair of numbers: �rst number is pre
ision and se
ond number is re
all.The numbers are provided for VSIR and VSIR+Thesaurus as well as for the baseline
ases: SuperTra
ePlus and Human Analyst+SuperTra
ePlus. In general, baselinemethods 
an be seen to outperform VSIR, however VSIR+Thesaurus outperformsthe baseline methods. In addition, VSIR and VSIR+Thesaurus algorithms weremu
h faster, as is to be expe
ted.Interpretation. The interpretation 
ontext is the �eld of tra
ing resear
h. Thestudy 
on�rmed the null hypothesis for VSIR algorithm and reje
ted it in favorof the alternative hypothesis for VSIR+Thesaurus. Among the other knowledgea
quired during the study was the observation that the poor performan
e of theVSIR method was due to signi�
ant di�eren
e in te
hni
al lingo used in the highand low level requirements do
uments. The samples used are representative of theartifa
ts that are tra
ed in pra
ti
e in industry. This work did not repli
ate any priorexperiments. After the study had been 
ompleted, a prototype software pa
kage
alled RETRO (REquirements TRa
ing On-target) was built [24℄, in
orporatingthe algorithms tested. Also, the IR method toolbox of RETRO has been integratedwith STP used by SAIC.5.5. Comparison of the StudiesWe have summarized the des
riptions of the four studies [3, 29, 4, 23℄ in Table4. From the broadest perspe
tive possible, one 
an see from the table that thisis an emerging �eld of resear
h. Most studies are performed from the resear
her'sperspe
tive, the obje
ts of study are algorithms and models. The domain is almostalways a program. Hypotheses are never expli
itly stated, although they 
an alwaysbe determined. We will �rst examine the studies in detail, examining similaritiesand di�eren
es. We then identify areas that should be examined by future studies.Finally, we suggest some dire
tions for our �eld in order to move beyond emergingresear
h into more "mature" resear
h.It is 
lear from the table that all the studies examined shared 
ommon motiva-tion and purpose. The obje
ts of study di�ered for the studies, though there werebasi
ally only two 
ategories addressed: tools (models or algorithms) and pro
esses.The impli
it hypotheses of the three studies [3, 29, 23℄ addressed the same idea, thatspe
i�
 IR methods (VSIR, PIR, LSI) may o�er hope for improving requirementstra
ing. The studies all shared the same perspe
tive of resear
her. The domain dif-fered for the studies, though proje
t and program are very similar. The s
ope of thestudies was evenly divided between single proje
ts and blo
ked subje
t-proje
t. The
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ing Experiments 27domain importan
e 
overed all but one of the possible 
hoi
es yet obje
t importan
ewas quality of life for all studies.As with domain, the independent variables varied, but not signi�
antly. Threeof the four studies examined tra
eability models or algorithms. The dependentvariables were very similar for all studies with the ex
eptions being the additionof average similarity and performan
e for two of the studies. The produ
t wasthe same for two of the studies. Preparation involved preparation of artifa
ts forall four studies, though the artifa
ts varied from open sour
e artifa
ts to industryproprietary 
ode and models. Interpretation 
ontext, results, and extrapolationwere the same for all four studies. Impa
t ranged from studies that repli
ated otherstudies to studies whose results and tools are being utilized by industry now.From the above, several observations 
an be made. First, by viewing the exper-iments in the framework, several patterns be
ome evident. For example, the phrase" No pilot study was dis
ussed" o

urs repeatedly. Perhaps tra
eability resear
hersshould 
onsider performing small pilot studies prior to undertaking larger experi-ments. The phrase "The artifa
ts were des
ribed" also o

urs frequently. This isa step in the right dire
tion, but it would be more useful to other resear
hers ifexamples of the artifa
ts were shown in the paper and/or the artifa
ts were madeavailable on-line. Se
ond, it appears that other purposes might be 
onsidered whenplanning studies. For example, resear
hers might test spe
i�
 tra
ing tools, improveexisting algorithms, et
. Third, other obje
ts might be studied. For example, a 
om-prehensive study of metri
s and their use/meaning/usefulness w.r.t. evaluation oftra
ing pro
esses might be warranted, espe
ially 
onsidering that new metri
s[24℄have been proposed re
ently. From the examination of the hypotheses, it appearsthat VSIR and PIR should be 
onsidered as baseline tra
ing methods for 
ompar-ison purposes. It does not appear that methods su
h as grep need be examinedfurther. Manual tra
ing methods 
annot be dismissed though, as we require thesefor the human judgment task of the tra
ing pro
ess.It appears that other perspe
tives should be 
onsidered in future tra
eabilitystudies, su
h as proje
t manager, developer, or 
ustomer. Studies should be un-dertaken that have safety-
riti
al domain importan
e. Produ
ts of the studies arealready diverse, but should explore other areas too su
h as non-textual artifa
ts.We should strive for all of our studies to be repli
ated and for the te
hnologies understudy to be adopted by industry.As pointed out above, it appears that this �eld of resear
h is emerging. To un-derstand how we might move forward, let us 
onsider the 
hara
teristi
s of a moremature �eld of software engineering, su
h as reading te
hniques. There, experimen-tal studies are performed from numerous perspe
tives, su
h as proje
t manager ormaintainer. Studies have moved beyond baseline method 
omparisons to 
ompar-ison of �eld-tested, proven te
hniques. In parti
ular, the methods have been �eldtested and proven and have often been implemented in "produ
tized" tools used inindustry. Many studies have been repli
ated. Industry has adopted many of thestudied te
hniques and tools. A 
ommunity of resear
hers studying these te
hniques
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essfully 
ollaborating with pra
titioners in the �eld.Based on this brief analysis, the work that is before us in the requirementstra
ing and tra
eability resear
h area is 
lear. We need to move beyond baselinemethods su
h as VSIR. We need larger, standardized, more robust datasets (withanswersets) available for study. We need to study the human fa
tors asso
iatedwith the tra
ing pro
ess (study from di�erent perspe
tives, study di�erent obje
ts,study with di�erent motivations and purposes). Finally, we need industry to bemore a
tively involved with tra
ing/tra
eability resear
h to fa
ilitate large s
alestudies of the human fa
tors in tra
ing.6. Con
lusions and Future WorkIn this paper we presented a framework for 
hara
terizing experiments thatexamine requirements tra
ing te
hniques. The framework should assist resear
hersin developing and 
ondu
ting additional experiments of this type. It also fa
ilitatesthe 
omparison of results from similar experiments. We used the framework todes
ribe and 
ompare four re
ent experimental studies. We used the framework toidentify areas for future resear
h as well as for future experimentation. We alsoidenti�ed suggestions for moving tra
ing resear
h from an emerging �eld to a moremature �eld.We have been a
tively pursuing these suggestions in our own work. We havedeveloped a prototype tool that is being used by industry. We have experimentedon a number of new, larger programs. We have developed additional measures. Weplan to enhan
e the prototype tool that we have developed in order to produ
tizeit, and we plan to 
ondu
t human fa
tors studies.To en
ourage the repli
ation of the experiment performed at the Universityof Kentu
ky, the dataset used along with the answer set has been posted on theSoftware Engineering Experimentation Web (SEEWeb) hosted by George MasonUniversity at http://ise.gmu.edu:8080/ofut/jsp/seeweb/index.jsp. Though the ex-periments presented here all a
hieved fairly 
onsistent results in terms of re
all andpre
ision, repli
ation of experiments 
an only serve to strengthen the results.7. A
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ing Experiments 29Phase I: De�nition ANT02[3℄ MM03[29℄ ANT99[4℄ HAY03[23℄Motivation improve tra
eabilityPurpose evaluateObje
t models pro
ess algorithmsNull Hypothesis VSIR, PIR { LSI { same Edit distan
e, VSIR, {same as grep as VSIR, PIR Max. mat
hing alg., VSIR+Thesaurusmax. likelihood { { same as human,don't help tra
ing STPAlt. Hypothesis VSIR, PIR { LSI { Edit distan
e, VSIR, {better than better than Max. mat
hing alg., VSIR+Thesaurusgrep VSIR, PIR max. likelihood { { better thanhelp tra
ing human, STPPerspe
tive resear
herDomain program proje
t programS
ope blo
ked subje
t-proje
t single proje
tDom. Importan
e 
onvenien
e mission-
riti
al quality of lifeObj. Importan
e quality of lifePhase II: Planning ANT02 MM03 ANT99 HAY03Ind. Variables tra
eability model tra
eability pro
ess tra
eability algs.artifa
t proje
tsDep. Variables re
allpre
isionavg. similarity performan
eProdu
t Do
umentation Design Two levels ofand 
ode and 
ode do
umentationPhase III: RealizationANT02 MM03 ANT99 HAY03Preparation LEDA, Albergate CASE obje
t MODIS textualman pages, 
ode models, 
ode requirmentsPhase IV: InterpretationANT02 MM03 ANT99 HAY03Context tra
ing/tra
eability resear
h �eldResults null hyp. 
on�rmednull hypothesis reje
ted in favor of alternative for VSIR, reje
ted forVSIR+ThesaurusExtrapolation industry representativeImpa
t not repli
ation, partial not repli
ationwas repli
ated repli
ation industry now using pro
essof ANT02Table 4: Comparison of the four studies des
ribed in this paper.
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