International Journal of Software Engineering and Knowledge Engineering
Vol. 0, No. 0 (1994) 000-000
© World Scientific Publishing Company

A FRAMEWORK FOR COMPARING
REQUIREMENTS TRACING EXPERIMENTS

JANE HUFFMAN HAYES
Department of Computer Science, University of Kentucky, 773 Anderson Hall
Lexington, KY, 40506, USA Country

and

ALEX DEKHTYAR

Department of Computer Science, University of Kentucky, 773 Anderson Hall
Lezington, KY, 40506, USA

Received (received date)
Revised (revised date)
Accepted (accepted date)

The building of traceability matrices by those other than the original developers is an ar-
duous, error prone, prolonged, and labor intensive task. Thus, after the fact requirements
tracing is a process where the right kind of automation can definitely assist an analyst.
Recently, a number of researchers have studied the application of various methods, often
based on information retrieval, to after the fact tracing. The studies are diverse enough
to warrant a means for comparing them easily as well as for determining areas that
require further investigation. To that end, we present here an experimental framework
for evaluating requirements tracing and traceability studies. Common methods, met-
rics and measures are described. Recent experimental requirements tracing journal and
conference papers are catalogued using the framework. We compare these studies and
identify areas for future research. Finally, we provide suggestions for how the field of
tracing and traceability research may move to a more mature level.

Keywords: requirements tracing, traceability, experiment, framework, metrics, informa-
tion retrieval, IV& V, case study

1. Introduction

Requirements tracing is defined as “the ability to describe and follow the life of
a requirement, in both a forward and backward direction, through the whole sys-
tems life cycle [30].” Requirements tracing is important to the software engineering
field for a number of reasons: traceability matrices (a) assist us in assuring that all
requirements have been implemented, (b) participate in mapping test cases to re-
quirements, (c) are used by management for ”what if” scenarios, (d) assist us when
we maintain software or reuse software, and (e) form a part of the safety case for
safety-critical software requiring certification. Unfortunately, traceability matrices
are often not built, or not to the level of detail required, during the development
effort. As a result, they must be built after the fact by non-developers. Tools and



2 International Journal of Software Engineering and Knowledge Engineering

techniques to assist with the automation of this time consuming, highly error prone,
unpleasant task are needed.

On a positive note, in the last three to five years, there have been an increased
number of research papers in the area of requirements tracing. Specifically, many of
these papers [3, 29, 24, 23] apply information retrieval (IR) methods to the require-
ments tracing problem in a variety of settings. In particular, Information Retrieval
methods are used to compare the texts of a pair of requirements from two documents
in the project document hierarchy for the purpose of determining their similarity.
This work uses well-accepted IR measures of recall and precision to evaluate the
effectiveness of their techniques. Recall is the percentage of actual matches that
are found and precision is the percentage of correct matches as a ratio to the total
number of candidate links returned [23]. Beyond the use of these two measures, the
papers in this field have little in common. Some papers introduce secondary mea-
sures of effectiveness or quality [24]. Some papers take an experimental approach to
their evaluation, others take a less formal approach. As more and more traceability
studies become available, the need for a clearly outlined experimental framework
that allows side-by-side comparison is emerging.

Fenton, Pfleeger, and Glass [17] point out that far too often software engineer-
ing researchers rely on intuition and not empirical research and data. Basili, Shull,
and Lanubile [8] examine a number of papers related to software engineering ex-
perimental frameworks. They note: “the important common characteristic of all
these frameworks is that they document the key choices made during experimental
design, along with their rationales.” Further, the frameworks allow the comparison
of studies and “allow the primary question of an experiment to shift from ’Is a par-
ticular process effective?’ to "What are the factors that make a particular process
effective or ineffective?’ [8].

The need for such a framework in software engineering experimentation has

”

been acknowledged. Similarly, the importance of applying such a framework to
experiments of defect-detection techniques has also been demonstrated [28]. There
is a need for a framework or structure for empirical studies on requirements tracing.
To that end, this paper discusses experiments that examine techniques for tracing
artifacts such as requirements. The main contribution of this paper is two-fold:

Framework for requirements tracing experiments. We propose a framework
for developing, conducting and analyzing experiments on requirements trace-
ability. This framework allows description of various existing and emerging
research on requirements tracing and traceability.

Description of existing research in terms of the proposed framework. We
provide descriptions of [3, 29, 4, 23] in terms of our framework. Such descrip-
tions allow us to compare two or more works side-by-side, and determine
which areas of requirements traceability research have not been adequately
addressed, and design future experiments to cover them.

The rest of the paper is organized as follows. Section 2 presents related work in



A Framework For Comparing Requirements Tracing Erperiments 3

the area of requirements tracing, traceability and experimentation. In Section 3 we
briefly describe our model of the requirements tracing process and how IR methods
are applied to it. A framework for the many factors to be considered in require-
ments tracing experiments and proposed requirements tracing measures is presented
in Section 4. Section 5 examines recent experiments that evaluate requirements
tracing techniques. These experiments provide hypotheses, experimental designs,
and sometimes objects of experimentation (such as techniques, models, project ar-
tifacts) that can be reused. We emphasize an experiment that we conducted at
the University of Kentucky. Finally, conclusions and future work are discussed in
Section 6.

2. Related Work

2.1. Requirements tracing

We have been tackling the requirements tracing problem for many decades. In
1978, Pierce [32] designed a requirements tracing tool as a way to build and maintain
a requirements database and facilitate requirements analysis and system verifica-
tion and validation for a large Navy undersea acoustic sensor system. Hayes [21]
discusses a front end for a requirements tracing tool called the Software Automated
Verification and Validation and Analysis System (SAVVAS) Front End processor
(SFEP). This was written in Pascal and interfaced with the SAVVAS requirements
tracing tool that was based on an Ingres relational database. SFEP allows the
extraction of requirement text as well as the assignment of requirement keywords
through the use of specified linkwords such as “shall”; “must”, “will”, etc. These
tools are largely based on keyword matching and threshold setting for that match-
ing. Several years later, the tools were ported to hypercard technology on Macs, and
then to Microsoft Access and Visual Basic running on PCs. This work is described
by Mundie and Hallsworth in [31]. These tools have since been further enhanced
and are still in use as part of the Independent Verification and Validation (IV&V)
efforts for the Mission Planning system of the Tomahawk Cruise Missile as well as
for several NASA Code S science projects.

Abrahams and Barkley, Ramesh, and Watkins and Neal [1, 33, 39] discuss the
importance of requirements tracing from a developer’s perspective and explain basic
concepts such as forward, backward, vertical, and horizontal tracing. Casotto [13]
examined run-time tracing of the design activity. Her approach uses requirement
cards organized into linear hierarchical stacks and supports retracing. Tsumaki
and Morisawa [38] discuss requirements tracing using UML. Specifically they look
at tracing artifacts such as use-cases, class diagrams, and sequence diagrams from
the business model to the analysis model and to the design model (and back) [38].

There have also been significant advances in the area of requirements elicitation,
analysis, and tracing. Work has been based on lexical analysis, such as extraction
and analysis of phoneme occurrences to categorize and analyze requirements and



4 International Journal of Software Engineering and Knowledge Engineering

other artifacts [34]. Bohner’s work on software change impact analysis using a
graphing technique may be useful in performing tracing of changed requirements
[10]. Anezin and Brouse advance backward tracing and multimedia requirements
tracing in [2, 12].

Gotel and Finkelstein [18] examined the usefulness of contribution structures in a
3-year long industrial study. Contribution structures allow personnel-related trace-
ability, focusing on the human sources of requirements. Their study found that
contribution structures ”identified the right people to help rectify matters where
problems of misunderstanding surfaced, to consider requirements change and to
handle staff turn-over.” Social roles and relations were also more easily discerned.
Zisman et al. [41] define traceability relations based on requirements-to-object-
model and inter-requirements traceability rules. Their prototype tool allows the
generation of relations between commercial requirements specifications (features
for a family of products - specified in natural language) and functional require-
ments specifications (behavior for a family of products - specified in use cases) and
the requirements object model (UML). A case study of 110 classes and 277 oper-
ations showed that recall of 76% and precision of 31% to 100% can be achieved,
depending on the rule examined. This work was continued in Spanoudakis et al
[37]. The presented technique generates traceability relations by using a rule-base.
Some advancements reported include: ability to determine the type of links found
(“requires execution of,” “requires feature in”), and the ability to handle sections of
textual use cases and analysis models (defined in XML). After building a prototype
and running some preliminary experiments, they were able to achieve recall of up
to 95

Cleland-Huang et al. [14] propose an event-based traceability technique for sup-
porting impact analysis of performance requirements. Data is propagated specula-
tively into performance models that are then re-executed to determine impacts from
the proposed change. Ramesh et al examine reference models for traceability. They
establish two specific models, a low-end model of traceability and a high-end model
of traceability for more sophisticated users [33]. They found that a typical low end
user created traceability links to model requirement dependencies, to examine how
requirements had been allocated to system components, to verify that requirements
had been satisfied, and to assist with change control. A typical high-end user, on
the other hand, uses traceability for full coverage of the life cycle, includes the user
and the customer in this process, captures discussion issues, decision, and rationale,
and captures traces across product and process dimensions [33].

2.2. Information Retrieval in Requirements Analysis

In general, the software tools described above address the overall problem of
requirements management during the lifecycle of a software project. Their require-
ments tracing components typically rely, one way or another, on manual keyword
assignment - a long and arduous process. With time, practitioners realized the po-
tential benefits of, and the researchers started working on, methods for automating



A Framework For Comparing Requirements Tracing Erperiments 5

the requirements tracing process. Of the many methods examined, Information
Retrieval techniques appear to offer much promise for this automation.

Two research groups worked on requirements-to-code tracebility. Antoniol, Can-
fora, De Lucia and Merlo [3] considered two IR methods: probabilistic IR and vector
retrieval (tf-idf). They have studied the traceability of requirements to code for two
datasets. In their testing, they retrieved the top i matches for each requirement for
1 =1,2,... and computed precision and recall for each i. Using improved processes,
they were able to achieve 100% recall at 13.8% precision for one of the datasets. In
general, they have achieved encouraging results for both tf-idf and probabilistic IR
methods. Following [3], Marcus and Maletic [29] applied the latent semantic index-
ing (LSI) technique to the same problem. In their work they used the same datasets
and the same retrieval tests as [3]. They have shown that LSI methods show con-
sistent improvement in precision and recall and were able to achieve combinations
of 93.5% recall and 54% precision for one of the datasets.

While [3] and [29] studied requirements-to-code traceability, in [23] we have
addressed the problem of tracing requirements between different documents in the
project document hierarchy. In the preliminary study [23], we have implemented
three methods: tf-idf, tf-idf with key phrases and tf-idf with simple thesaurus. We
reported on their success in identifying links between two requirements documents.
In our study, retrieval with simple thesaurus outperformed other methods on our
test dataset, producing recall of 85% with precision of 40%. [24] continues the
research started in [23]. We extended the baseline tf-idf and thesaurus retrieval
methods with analyst relevance feedback processing capability [24].

While [23] concentrated solely on the problem of candidate link generation, [24]
looked at the entire process of requirements tracing from the perspective of the
performing analyst. There, we proposed a number of non-functional requirements
for software tools designed to assist analysts in tracing requirements, determined
means for evaluating these requirements, and described a study that showed that
our prototype tool RETRO (REquirements TRacing On-target) matches the ob-
jective components of the proposed requirements* The key difference between the
experimental designs of [23] and [24] was that in the latter paper we used feedback
processing techniques to emulate analyst interaction with the tool and looked at
the improvement in the metrics over the iterations of the process. To better un-
derstand the structural changes in the links of candidate lists returned by RETRO
at different iterations of the process, we have introduced a number of secondary
metrics that measure separation between the true links and the false-positives in
those lists. Our experiments have shown that together with the improvement in
the primary metrics (recall and precision), we are achieving better separation, i.e.,
true links “rise” to the top of candidate link lists while false-positives “sink” to the
bottom.

*The requirements proposed in [24] have two components: objective, that can be evaluated by
studying the software outputs, and subjective, that can only be evaluated by studying the work
of human analysts with the tool and their reactions to the outputs. The latter study is currently
in development stages.



6 International Journal of Software Engineering and Knowledge Engineering

2.2.1. Information retrieval measures

Information Retrieval uses two key traditional measures: precision and recall
(see, for example, [6]) to evaluate the performance of different methods. These
measures are discussed in more detail in Section 3.2. These measures are applicable
to the treceability analysis in general regardless of whether a specific tracing
task is performed using an automated method or manually: precision tells us the
percentage of correct links in the final list of links while recall specifies the overall
percentage of correct links discovered.

The scope of this paper is broader than the study of individual measures of
performance of tracing methods. Rather, we discuss an overall framework for con-
ducting tracing studies. This framework allows us to compare different tracing
experiments not only based on these quantitative measures, but also on a broad
range of qualitative features, from the purpose and size of the study, to the study
conclusions. We should note, however, that the quantitative measures of perfor-
mance do play an important role in the proposed framework. Precision and recall
are accepted as the key measures in the Information Retrieval community. In [25]
we have studied the question of applicability of precision and recall to tracing ex-
periments in detail, and discussed a number of secondary measures, that improve
the understanding of the results of tracing experiments. As such, in this paper, we
do not concentrate on specific ways to measure the performance of tracing experi-
ments. Our case studies [3, 29, 23], and other related research [37, 41], use precision

and recall. In [24, 25], we show some new measures, selectivity, lag and DiffAR, to

be useful when analyzing and comparing tracing experiments.

2.3. Ezxperimentation

In 1986, Basili, Selby, and Hutchens described a framework that allowed the
categorization, description, and understanding of software engineering research ex-
periments [7]. According to Bourque and Abran [11], this framework was never
used by Basili et al or other researchers, hence they called for a field test of the
framework. As a result of a researcher’s workshop on empirical studies, Lanubile
[27] proposed a framework similar to that of [7], but provided different attributes
for each of the classification dimensions. For example, focus of the study could be
on a single, specific object of study or on multiple, generic objects [27, 8]. Lott
and Rombach [28] present a framework for repeating and comparing software en-
gineering experiments. Their characterization scheme was specifically designed to
compare defect-detection techniques, but can be used in a more general way also.
Their framework adds detail in the area of the Experimental Plan. For example,
under data collection and validation procedures, researchers must specify how on-
line and off-line collection procedures were used (forms, videotapes, counts of runs)
as well as validation approaches (independent sources, interviews, etc.) [28]. This
paper is organized similarly to Lott and Rombach [28]. Fenton, Pfleeger, and Glass
examine five questions related to software engineering research and experimentation



A Framework For Comparing Requirements Tracing Ezrperiments 7

n [17]. Specifically, they ask researchers to examine whether their work is based on
empirical research and data, whether the experiment is designed properly, whether
toy situations are studied, whether appropriate measures are used, and whether or
not the study is conducted for a long enough period of time. Hayes applied the
Basili et al framework [7] to real-world projects that also double as experimental
studies [22].

3. Information Retrieval for Requirements Tracing

In this section, we briefly describe the requirements tracing process from the
point of view of the performing analyst. While the experimental framework that
we describe in Section 4 is independent of the specific methodology that is used in
the requirements tracing process, Section 5 applies the framework to research that
used IR methods. Thus, for the sake of completeness, we include a brief outline of
how IR methods are used to support the requirements tracing process and give a
short survey of specific techniques used in [3, 29, 24, 23].

3.1. The Process of Requirements Tracing

Ideally, the requirements traceability matrix for any pair of documents within
the project document hierarchy should be a by-product of the development effort.
That is, any time developers work on a lower level requirements document based on a
higher level document, the traceability information should be generated and inserted
in the document at the time of introduction of individual lower level requirements.

In practice, however, very few development teams follow this approach. Thus,
requirements tracing becomes a part of the Independent Validation and Verification
(IV& V) or V& V process, performed by analysts who were not part of the original
development team (and often work for a different company).

In their work on specific requirements tracing tasks, IV& V analysts rely solely
on the project artifacts provided to them by the development team. First and
formemost, these are the actual requirements documents, typically a higher level
document that needs to be traced and a lower level document to which it needs
to be traced. IV & V analysts may also use other artifacts, both textual (such as
project dictionaries and code) and non-textual (such as UML diagrams, use case
diagrams, etc.).

In a nutshell, the requirements tracing process can be described as follows (we
describe the process for a trace of a high level to a low level document, but tracing
can be applied to peer artifacts also). The analyst needs to generate a list of candi-
date links for each high level requirement. This list includes low level requirements
which should be examined closely to determine if they satisfy, at least in part, the
high level requirement in question. For each pair of high and low level requirements
from such a list, the analyst must then make a binary “link” /“no link” decision. The
process thus gets separated into two major stages: (a) generation of the candidate
link lists and (b) evaluation of the candidate links from the generated lists.



8 International Journal of Software Engineering and Knowledge Engineering

Generation of candidate link lists. Prior to the use of IR methods for can-
didate link generation, the main techniques included (i) manual study of the doc-
uments in hardcopy, (ii) manual study of the documents in softcopy, (iii) use of
traditional office software (text editors, spreadsheets), and (iv) use of special pur-
pose requirements management software. The most naive approach in each case is
to consider all possible pairs of high and low level requirements. This is very costly,
however. Given that, typically, the number of matching low level requirements per
a high level requirement is much smaller than the total number of low level re-
quirements, it is also quite wasteful. Traditional methods used to avoid exhaustive
search consist of (a) assignment of keywords to each individual high and low level
requirement and (b) insertion into the list of candidate links all pairs of high-low
requirements that have at least one common assigned keyword.

In all four possible procedures mentioned above (i through iv), the assignment of
keywords to requirements is a manual process. At the same time, keyword matching
is done manually in the first two; is performed using text editor search facilities in
the third; and, typically, is performed completely automatically in the fourth.

Evaluation of candiate links. FEach pair of requirements deemed “suspicious”
during candidate link list generation needs to be examined more closely. Upon
this examination, the analyst pronounces his/her final “link” or “no link” verdict.
We note, that in order for the results of the IV& V inspection to be trustworthy,
this part of the process must always be performed manually. Requirements
management software might make this process more convenient for the user by
providing a comfortable, informative interface. In the end, though, it is the human
judgment that is used to make the final determination.

The actual process of examination of a given candidate link differs from ana-
lyst to analyst, project to project, and candidate link to candidate link. Generally
speaking, the analyst studies the text of both requirements as well as any accom-
panying non-textual components, determines respective positions of high and low
level requirements in the document, and makes the judgment call on whether the
low level requirement had been (purposefully or indavertantly) written to satisfy
the high level requirement. As mentioned above, the analyst may choose to consult
some additional projct artifacts before arriving at this judgment.

3.2. Enter Information Retrieval

We observe that in the above, somewhat simplified, description of the “pre-
TIR” requirements tracing process, the bottleneck lies in generation of the candidate
links list. As stated above, the final judgement about the appropriateness of each
considered candidate link must remain with the human analyst. Therefore, the
total time spent on requirements tracing is in direct proportion to the total number
of candidate links in the generated list.

While keyword-matching support provided by requirements management soft-
ware, such as SuperTracePlus [21, 31], results in significant improvement of the



A Framework For Comparing Requirements Tracing Erperiments 9

process, it still leaves the initial examination of requirements and keyword assign-
ment to the analysts. Among the drawbacks of such a process is the proneness to
typical human errors, such as inconsistent assignement of keywords (e.g., “fault” in
one place, “error” in another), missed keywords (due to lack of attention and/or
simple tiredness), and lapses in judgment (such as incorrect choice of keywords due
to misunderstanding of the meaning of the requirement).

Information Retrieval methods, battle-tested in the past 20-25 years and popu-
larized by the emergence of web search engines as the keystones to world wide web
surfing, provide reliable and scalable mechanisms for keyword-matching between
different documents in their simple form. In the general context of requirements
tracing, individual requirements take on the roles of IR “documents” and “queries”
or “information needs.” In the standard setting of forward tracing (from a high level
document to a lower level document), low level requirements become the documents
or document collection, while high level requirements take on the role of queries.

The key advantage of IR, methods over manual keyword assignment is efficiency —
IR algorithms automate selection of keywords, determination of their relative impor-
tance to each requirement, and computation of similarity/degree of match between
the text of high and low level requirements. At the same time, while IR methods
are not subject to typical human errors such as missed keywords, they are limited
by their input — the text of the requirement. Unlike humans, IR, methods cannot
simply leap to judgment that the requirement ¢ ‘The software shall not allow
the user to enter incorrect dates" might be associated with keyphrases “er-
ror handling” or “input processing,” because these terms are not present in the text
of the requirement!

In the rest of this section we survey Information Retrieval methods and tech-
niques which have been applied to the tracing problems in recent years as well as
discuss in more detail the metrics used to evaluate the success of IR methods.

Vector Space Information Retrieval (VSIR) (used in [3, 23, 24]). One of
the oldest, simplest, well-known, well-studied, and robust approaches to determining
whether a specific document is relevant to a given query consists in (a) representing
each document and each query as a vector of keyword weights and (b) computing
the similarity between the vectors as the cosine of the angle between them in the N-
dimensional space (where N is the total number of keywords found in the document
collection) [6]. This method is also known as tf-idf, called so for the way by which
the vectors of keyword weights are computed. Tf stands for “term frequency”
the (normalized) frequency of the term in a given document or query, while idf
stands for inverse document frequency, computed as idf (k;) = log(n%_), where n; is
the number of documents in which keyword k; occurs?

tIn all fairness, more complex methods involving the use of term ontologies and thesauri may allow
such conclusions, but still, such conclusions are pre-programmed by the data available to them.

fTerm frequency expresses the idea that the more frequent the word is in a document, the more
important it is for the document, while inverse document frequency represents the discrimina-
tory power of a word — words that occur in fewer documents distinguish between relevant and



10 International Journal of Software Engineering and Knowledge Engineering

Probabilistic Information Retrieval (PIR) (used in [3].) This method uses
simplified vector representation of the documents and queries: each keyword weight
is either equal to 1 (keyword is found in the document) or 0 (keyword is not
found). The probabilistic IR method, also known as Binary Independence Retrieval
(BIR)[35, 15], estimates the probability that document d is relevant to some query
q given their binary vectors (representing keyword occurrence). We refer the reader
to [15] for the complete derivation of the formulae used in this method.

Latent Semantic Indexing (LSI) (used in [29]). Latent semantic indexing
technique, first proposed in [16], uses Single-Value Decomposition (SVD) of the
document-by-keyword matrix (formed out of the tf-idf vectors of keyword weights)
to reduce the number of dimensions over which the similarity computation is taking
place. Formally, if A is an M x N document-by-term weight matrix, its SVD is
written as A = T'SD', where T and D’ are two matrices with orthogonal rows and
columns respectively and S is a diagonal matrix of eigenvalues of A. By trimming
the list of eigenvalues from rank(A) to a smaller number k, we obtain an approx-
imate decomposition A, = T'S;D’, where S, is the diagonal matrix of size k x k
with k largest eigenvalues of A on the diagonal. For comparing documents to each
other, and processing queries, we can now use matrix DSZD’ which reduces the
dimensionality of the document vectors from N to k. In practical applications, LSI
performed well, and showed its robustness. At the same time, the SVD process is
quite time-consuming, resulting in LSI being a rather slow method, typically re-
served for applications with reasonably small domains or applications where quality
outweighs efficiency.

Use of Thesaurus (used in [23, 24]). Standard tf-idf method produces non-
zero relevance weight iff at least one pair of keywords match in two documents. Be-
cause individual requirements are quite terse, and because requirements at different
levels are written by different people, it is not uncommon for the texts of matching
requirements not to have terms in common. For example, the high level require-
ment ¢ ‘the software shall correctly process incoming data in XML format’’
and low level requirement ¢ ‘run Apache parser on input file temp_info.xml.
The DTD file is input.dtd (see Appendix)." have no common terms. Yet,
the low level requirement clearly links to the high level requirement.

To alleviate this problem, we enhanced tf-idf method with some simple the-
saurus information [23, 24]. Our thesaurus is a set of triples (v, a,w), where v
and w are terms or term phrases and « is the degree to which the two terms
match each other. For example, to let the link between the two requirements
above be discovered automatically, we can construct the following thesaurus entry:
(incoming data,0.9,input). Formulae used in constructing document and query
vectors enhanced with simple thesaurus information, as well as in determining their
similarity, can be found in [24].

nonrelevant documents better.



A Framework For Comparing Requirements Tracing Ezperiments 11

Metrics and measures. Two standard metrics used to evaluate IR methods in
a complementary way, precision and recall, measure the accuracy of the answer set
generated by an IR method on a given query. Let the size of the entire document
collection be M, and let R documents be actually relevant to some query q. Suppose
our IR method returns n documents, out of which r are the relevant documents.
Then, precision of the experiment is defined as precision = -, while the recall is
recall = . These two metrics are used in all papers applying IR for requirements
tracing.

In [24], we introduce some new measures designed to help us evaluate the qual-
ity of lists of candidate links generated by the iterative feedback processor. These
measures are able to capture structural changes in the lists of candidate links even
when the precision and recall do not change significantly. The two measures con-
sidered there were Lag - the mean number of false positives above a true link in
the candidate link lists and DiffAR - the difference in the average relevance of true
links and the average relevance of false positive links. These measures support our
findings in [24] that the quality of the answer set keeps improving throughout the
feedback iterations.

4. A Framework for Requirements Tracing Experiments

The contribution of the framework of this section is to help achieve the goal of
an infrastructure for experimental software engineering experiments that evaluate
requirements tracing techniques. The framework builds on work that appeared
in [22]. It is depicted in Table 1. Some additions, modifications and/or changed
interpretations have been made to tailor the framework to requirements tracing
and traceability experiments. Hypothesis was added as a category after Lott and
Rombach [28]. We replaced the selections under the experimental design category
with a subset of those used by Lott and Rombach [28]. Importance has been divided
into domain importance and object importance. We added a results category under
the interpretation phase and we recognize two levels of results. The framework
encompasses definition of the experimental study, planning of the study, realization
of the study, and interpretation of the study, just as in [7].

4.1. Definition

Definition refers to the project definition phase, the time when a researcher
decides the scope and objective of the project. There are eight parts to the definition
phase:

(1) motivation (5) perspective
(2) purpose (6) domain

(3) object (7) scope

(4) hypothesis (8) importance

Motivation. There may be many motivations for an experiment on requirements
tracing techniques. Researchers may be seeking to, for example,



12 International Journal of Software Engineering and Knowledge Engineering

Phase I: Definition

|| Phase II: Planning

|[ Phase [II: Realization

Phase |V:Interpretation

(1) Motivation

(1) Experimental

Understand
Improve
Assess
Validate
Manage
Assure
Engineer
Confirm
Enhance
Learn

Design

(1) Preparation

Pilot study

Design

Independent vars.

- tracing technique

- traceability data
representation

- traceability data
mgmt

- type of artifact

- size of artifact

(2) Purpose

- quality of artifact

(1) Interpretation
context

Artifact development:

Parsing reqts.
Building answer sets
Building thesauri

Converting into
input format

Statistical
Framework
Study purpose
Field of research

(2) Results

Hypothesis
Evaluation:

(2) Execution

Null hyp. rejected
Null hyp. confirmed

Project execution
Data collection
Data validation

Evaluate Dependent vars.
Test - recall
Implement - precision
Predict - elapsed time
Characterize Randomization

Manipulation of
(3) Object ind}%pendent
Product variables
Model
Process (2) Measurement
Metric Metric definition:
Theory GQM

FCM

Acquisition of
additional
knowledge:

Additional knowledge

(3) Extrapolation

(3) Analysis

Quantitative vs.

(4) Hypothesis

Metric validation

Null Hypothesis

Data collection:

qualitative

Preliminary data

Alternative Automatability analysis
Hypothesis Form design
(5) Perspective Ob?(:lc[iixt;s:rs P,IOtS and
Researcher qlwlubje(‘tive ’ histograms
Developer ) T Model

L ode
Maintainer Scale: assumptions
Customer or User Nomimal Ssump )
Project Manager Ordinal Primary data
(6) Domain Interval analysis
Project Ratio
Product Model
Engineers (3) Product application
(7) Scope Documentation
Single Project Code
Multi-Project Databases

Replicated Project
Blocked
Subject-project

Other artifacts

(8) Importance:
- Domain
- Object of study

Safety-critical
Mission-critical
Quality of life

Convenience

Sample
representativeness

(4) Impact

Visibility
Replication
Application

Table 1: Summary of our experimental framework.




A Framework For Comparing Requirements Tracing Ezperiments 13

e understand why certain elements are never traced to any other elements;

e confirm results that were seen on a previous experiment (of their own or by
other researchers);

e assess a specific measure (e.g., recall) for a particular requirements tracing

technique.

Purpose. The purpose of an experiment may be to:

e test a tool or specific implementation of an algorithm, e.g., test SuperTrace-
Plus [21, 31];

e cvaluate the effectiveness of a model or technique, e.g., evaluate the effective-
ness of LST when applied to the requirements tracing problem.

Other examples include, but are not limited to:

e understand a process or problem better;
e jmprove an existing tool or technique;

e assess the compliance of a tool or technique with a process, guideline, or
criterion;

e validate the results of a previous experiment.

Object. The object of study will generally be a product or model, although some
experiments will examine the requirements tracing process or the usefulness of a
posited metric.

Hypothesis. The hypothesis (or hypotheses) should be stated in such a way as to
be verifiable. The premise of the researcher, usually that “our new requirements
tracing technique is better than someone else’s technique as shown by higher recall
and precision,” will be stated as the alternative hypothesis. The null hypothesis will
be that no difference between the requirements tracing techniques exists.

b2

Perspective. Though most experiments are from the perspective of the researcher,
they may be from many other perspectives such as developer, maintainer, customer
or user, or manager.

Domain. The domains that typically comprise experiments are

e individual engineers who will be using the requirements tracing techniques,
or

e projects or programs (product) on which the techniques will be applied.



14 International Journal of Software Engineering and Knowledge Engineering

Scope. Basili et al [7] classify experimental study scopes by looking at the size
of the domains considered, as does this experimental framework. The following
categories of experiments are considered:

e Blocked subject-project experiments examine one or more objects across a set
of teams and a set of programs.

e Replicated project experiments look at objects across a set of teams and a
single program.

e Multi-project variation experiments examine objects across a single team and
a set of programs.

e Single project experiments look at objects on a single team and a single pro-
gram.

Importance. We distinguish two levels of importance: domain importance and ob-
ject of study importance. The former level assesses the importance of the domain
of the experimental study, while the latter looks at the importance of the research
being conducted (object of study). In both cases, the importance is being evaluated
on the following scale:

e safety-critical (potential loss of human life)

e mission-critical,
o quality of life, or
e convenience.

For example, an experiment that evaluates a traceability model using requirements
artifacts from an instrumentation and control system of a nuclear power plant will
have safety-critical domain importance and quality of life object importance. In
another example, an experiment evaluating IV&V analyst response to specific GUI
features of a requirements tracing software tool using made-up data will have quality
of life object importance and convenience domain importance.

4.2. Planning

The experiment planning phase consists of three parts:

(1) experimental design (2) measurement (3) product

Experimental Design. FExperimental design has been addressed in detail in nu-
merous works [7, 28, 8, 27] (just to mention a few). Here we concentrate on details
of particular interest when performing requirements tracing experiments. A few
definitions are required before proceeding. External validity refers to the general-
izability of results. Internal validity refers to the believability of the relationship



A Framework For Comparing Requirements Tracing Ezperiments 15

between the hypothesized causes and the experimental results. The independent
variable is the factor that the researcher hypotheses will cause the results of the ex-
periment. Experiments will be designed in such a way as to maximize internal and
external validity, while evaluating the hypotheses. Designs range from incomplete
block, complete block, to fractional factorial and full factorial. Treatment of these
is beyond the scope of this paper. The interested reader should consult one of the
many useful sources of information [7, 28, 8, 27, 26, 40].

In requirements tracing experimentation, the requirements tracing technique is
the primary independent variable that determines the external validity of the class
of experiments [28]. The representation used for the traceability data and the
management of such data are also options. Other possible independent variables
include the type and size of programs or project artifacts that are being traced, as
well as the quality of these artifacts. Let us examine each of these in turn.

Requirements tracing technique. This will typically be an algorithm, tool, or
process. Examples include vector space model, grep tool, commercially available
requirements tracing tool, manual tracing process. Researchers will, on occasion,
examine a more detailed application of a technique. For example, a researcher may
examine the application of a threshold of 80% to the tracing results from a latent
semantic indexing model.

Type and size of project artifacts. As presented in [24], scalability is the
measure of the size of a dataset used for experimentation. Specifically, scalability
is the extent to which the requirements tracing tool is able to achieve accuracy for
"small” tracesets as well as "large” tracesets. A traceset typically consists of two
artifacts that can be divided into lower level elements along with an answerset (a
mapping between the two artifacts that has been validated). Hayes et al [24] define
a "small” traceset to constitute 3000 combinatorial links or less. For example,
a traceset consisting of 20 high level requirements and 50 low level requirements
would have 20 x 50 = 1000 combinatorial links. Any traceset with more than 3000
combinatorial links is considered large. The average size of a requirement (typically
measured as number of words) is of interest, but is rarely specified in research papers.
The type of artifact is also of interest. Researchers have examined the tracing of
code to user’s manual pages (documentation), the tracing of one document level to
another, etc. The type of element should also be specified — textual, source code,
tabular, etc.

Quality of artifacts. Just as the number and type of defects in code or artifacts
that are used to evaluate defect detection techniques are important, so is the quality
of artifacts used for tracing experiments. If tracing experiments are only executed
on artifacts that trace perfectly to each other (e.g., each high level requirement has
at least one satisfying low level requirement, and vice versa), then the ability of a
tracing technique to detect orphan low level requirements or unsatisfied high level



16 International Journal of Software Engineering and Knowledge Engineering

ones cannot be validated. Besides ensuring that the dataset has at least some high
level requirements with no matches in the low level and has some orphan low level
requirements, the heterogeneity of the data must also be ensured. That is to say
that there should be, if possible, some requirements that match a significant number
of requirements as well as those that match just a few.

Dependent variables. In requirements tracing experiments, typical dependent
variables are recall, precision, and elapsed time for tracing. As mentioned in Sec-
tion 2.2, some other measures are also used on occasion as dependent variables.
Randomization examines the assignment of subjects to the different levels of the
independent variables [28]. Manipulation strategy refers to the combination of in-
dependent variables that have been studied [28]. For example, if the independent
variables are technique (two are examined) and project (two are examined), a full
factorial design would require that all levels of
both are crossed = technique x project = 2 x 2 or 4 trials.

Measurement. For this component of the planning stage, we have to specify the
following components:

e definition of metrics (using, for example, goal-question-metric [9])

e validation of metrics,

e collection of metrics (automatable or not)

e objectivity of metrics,

e scale of metrics (nominal/classificatory, ordinal, interval, or ratio) [7].

Product. The planning product section covers documentation, code, databases,
and other artifacts. In some experimental studies, products are actually developed.
For example, a software engineering experiment might have one team of developers
build a system to a specification using an experimental development approach while
another team uses a control approach. In traceability experiments, the products are
usually the items that are being traced while a model or process is being evaluated.

4.3. Realization

The realization phase is the time when the experiment is conducted. There are
three parts to the realization phase:

(1) preparation (2) execution (3) analysis (optional)

Preparation. Preparation often includes a pilot study [7]. For example, a small
dataset (perhaps 10 x 10) may be used to get initial results for a new tracing
technique. In tracing experiments, preparation may include preparation of project
artifacts such as



A Framework For Comparing Requirements Tracing Ezperiments 17

e parsing requirements from documents,

building answer sets,

building or extracting thesauri,
e converting data in appropriate input format,

e etc...

Execution. Execution covers data collection and validation. Generally, tracing
experiments collect similarity measures between parent and child elements. These
are compared to the answerset. The number of correct links found, the number
of incorrect links returned, the number of links missed, and the number of links
returned for each element are used to calculate recall and precision.

Analysis. The analysis component includes preliminary data analysis, plots and
histograms, model assumptions, primary data analysis, and model application.
Tracing experiments typically depict recall and precision as lineplots, sometimes
plotting recall and precision, and sometimes cutpoints.

4.4. Interpretation

Interpretation refers to the time when the researcher derives a result from the
experimental study. There are four parts to the interpretation phase:

(1) interpretation context (3) extrapolation
(2) results (4) impact

Interpretation context. Interpretation context is the environment/circumstances
that must be considered when interpreting the results of an experiment. The pos-
sible contexts are (i) statistical, (ii) framework, (iii) study purpose, or (iv) field of
research.

For example, if interpretation context is statistical then the power of the statis-
tical technique must be considered [28]. If a power table reports that the combi-
nation of technique, significance value, and number of observations yields a power
of 90%, then the technique will not detect significant differences that are less than
1-0.9=10%. [28].

Results. We separate results of the studies into two categories: hypothesis evalua-
tion and acquisition of additional knowledge.

We expect the primary result of any study to be either confirmation or rejection
of the null hypothesis. While it is true that in most published studies the result is the
rejection of the null hypothesis in favor of the alternative, we expect that in a large
number of cases such results come with caveats. For example, if a paper studies the
application of two or more IR methods to the requirements tracing problem, null



18 International Journal of Software Engineering and Knowledge Engineering

and alternative hypotheses are stated for each individual method, and confirmed or
rejected independently. A result of such study then may be rejection of some null
hypotheses and confirmation of some others.

In addition to evaluating hypotheses, research studies might lead to acquisition
of some new knowledge, either from insight gained due to specific charactersitics
of object of study, peculiarities in measurements that required extra analysis, or
simply a noted feature of any of the framework components. For example, Hayes
et al. note [23] that the performance of IR methods varies depending on whether
or not the same technical lingo had been used in both documents being traced.
Another example of such extra knowledge gained is an observation made in [23]
that human analysts working with the results of software may throw away some
true links, but almost never find links missing from the software suggestions.

Extrapolation. Extrapolation deals with sample representativeness. In most cases,
the issue of concern for tracing experiments is the representativeness of the projects
and artifacts examined with the tracing technique. This was discussed in experi-
mental design above.

Impact. Impact pertains to the level of effect that a study has on a field of research
and/or industry. The level of impact will vary depending on the activities that occur
after the experiment. Possible impacts include, but are not restricted to

e replication of the experiment by others,

e replication of another study,

e application of the results in industry,

e wvisible publishing/presenting of the results.

and can occur in any combination. Some impacts can be reported in the study
itself, some others, such as being replicated in another study, may occur some time
after the publication.

Some level of replication has been seen in the tracing experiments. For exam-
ple, Marcus and Maletic [29] used the same project artifacts as Antoniol et al [3].
Results have been applied by a number of the projects that participated in tracing
experiments. Publication of results is occurring in this area in top conferences and
journals.

5. A Categorization of Requirements Tracing Experiments

The framework from Table 1 is used to categorize recent experiments that ex-
amined requirements tracing techniques. The keywords from the framework are
italicized. We conclude the section with an in-depth look at an experiment that we
conducted at the University of Kentucky.



A Framework For Comparing Requirements Tracing Ezperiments 19

5.1. Antoniol and Canfora and Casazza and De Lucia and Merlo (2002)

Antoniol et al performed an experiment that compared two requirements tracing
techniques for two case studies [3].

Motivation. The motivation was to improve traceability link recovery between
code and documents.

Purpose, Object, Hypothesis, and Perspective. Antoniol et al [3] conducted
a study whose purpose was to evaluate two information retrieval models (the object
is a model) from the perspective of a researcher. The null and alternative hypotheses
were not formally specified, but by implication they were:

Null hypothesis: The results of using Vector Space Information Retrieval Model
and Probabilistic Information Retrieval Model to trace two case studies, as
measured by recall and precision, will not vary from the results of using grep
on the same two case studies.

Alternative hypothesis: The Vector Space Information Retrieval Model (VSIR)
and Probabilistic Information Retrieval Model (PIR) will achieve better re-
sults, as indicated by higher recall and/or higher precision, when applied to
two case studies than will the grep tool.

The two models evaluated by Antoniol et al [3] are:
e Probabilistic Information Retrieval Model (PIR) - see Section 2.
e Vector Space Information Retrieval Model (VSIR) - see Section 2.

The tool used as a baseline comparison is grep. Grep is a unix utility that assists
a user in performing textual searches interactively.

Domain, Scope, Importance, and Experimental Design. The scope was
blocked subject-project where two projects (from the program domain) of conve-
nience importance were traced. The next element, object of study importance, was
quality of life. The independent variables were traceability model (the two models
described above) and artifact projects. The two projects that were examined are
described below.

Library of Efficient Data types and Algorithms (LEDA): LEDA is a freely
available C++ library of foundation classes developed and distributed by Max-
Planck-Institut fiir Informatik, Saarbriicken, Germany. The code and docu-
mentation of release 3.4, consisting of 95 KLOC, 208 classes, and 88 manual
pages, was analyzed [3, 5].



20 International Journal of Software Engineering and Knowledge Engineering

Antoniol et al

Project: | LEDA | Albergate

Model: PIR PIR
VSIR | VSIR

Baseline: | grep grep

Marcus and Maletic

Project: | LEDA | Albergate

Model: LSI LSI

Baseline: | PIR PIR
VSIR | VSIR

Table 2: Experimental design for Antioniol et al[3] and Marcus and Maletic[29].

Antoniol et al

LEDA [Pr, Rec]

Albergate [Pr, Rec|

PIR

[38.94%, 82.65%)]

[34.16%, 70.68%]
13.8%, 100%]

VSIR

[17.06%, 72.44%]

[
[43.33%, 50%]
[13.8%,100%]

Marcus and Maletic

LEDA [Pr, Rec] | Albergate [Pr, Rec| Hayes et al.
LSI [11.79%, 100%) [16.38%, 100%)] MODIS [Pr, Rec]
[53.98%, 83.33%)] | [21.12%, 85.96%)] VSIR 11.4%, 25.4%
PIR | [38.94%,82.65%] | [34.16%, 70.68%) VSIR+Thes. | [40.6%,85.4%
[13.8%. 100%) Analyst+STP | [46.15%, 43.9%
VSIR | [17.06%, 72.44%] | 43.33%,50%) STP 38.8%, 63.41%
[13.8%, 100%]

Table 3: Comparison of results for Antioniol et al[3] and Marcus and Maletic[29]
and Hayes et al.[23].

Albergate: Albergate is a software system, developed in Java, designed to imple-
ment all the operations required to administer and manage a small/medium
size hotel (room reservation, bill calculation, etc.). It was developed from
scratch by a team of final year students at the University of Verona (Italy) on
the basis of 16 functional requirements written in Italian (as well as all other
system documentation). Albergate consists of 95 classes and about 20 KLOC
and exploits a relational database. Antoniol et al focused on the 60 classes

implementing the user interface of the software system [3].

The dependent variables were recall and precision. Table 2 depicts Antoniol et
al’s experimental design. The first column of the table describes the information for
the LEDA project or dataset, the second column pertains to the Albergate dataset.

There was no randomization.

projects — full factorial design.

Measurement and Product.

Both tracing models were applied to both of the

The recall and precision metrics are formally de-

fined, validated metrics from the information retrieval field. The metrics were col-
lected in an automated fashion and are ratio. The products were documentation

and code.



A Framework For Comparing Requirements Tracing Ezperiments 21

Preparation, Execution, and Analysis. No pilot study was discussed. The
artifacts were described by the authors as follows:

“the LEDA manual pages contain a high number of identifiers that also
appear in the source code. Actually, the LEDA team generated man-
ual pages with scripts that extract comments from the source files. A
markup language was used to identify the comment fragments to be
extracted. Function names, parameter names, and data type names
contained in these comments appear in the manual pages, thus making
the traceability link recovery task easier. [3]”

For Albergate, source code classes were traced to functional requirements with
the focus being on the 60 classes implementing the user interface of the software
system [3]. The data collected was number of correct links found, the number
of incorrect links returned, the number of links missed, and the number of links
returned. Recall and precision were plotted. Table 3 shows exemplary results
obtained in the experiments. The results are presented in a form of a pair of
numbers: first number is precision and second number is recall. The study compared
the results to using grep, however [3] provides the statistics on grep returning empty
results rather than precision-recall numbers.

Interpretation. The interpretation context is the field of tracing research. The
hypothesis result was that the null hypothesis was rejected in support of the alterna-
tive hypothesis. Other knowledge acquired included the discovery that “smoothing
gives very low nonzero probabilities to unseen words; as a result, sometimes, a query
is killed by the weight of word unseen in the training material [3].” The samples
used are representative of the artifacts that are traced in practice in industry. This
work did not replicate any prior experiments.

5.2. Marcus and Maletic (2003)

Marcus and Maletic [29] performed an experiment that applied one requirements
tracing technique to the same two case studies used by Antoniol et al [3].

Motivation. The motivation was to improve traceability link recovery between
code and documents.

Purpose, Object, Hypothesis, and Perspective. Marcus and Maletic [29]
conducted a study whose purpose was to evaluate an information retrieval model
(the object is a model) from the perspective of a researcher. The hypotheses used
in the work, though not explicitly stated,

Null hypothesis: When applying LSI and PIR and VSIR, there is no difference
in the precision and recall.



22 International Journal of Software Engineering and Knowledge Engineering

Alternative hypothesis: LSI will perform at least as well as PIR and VSIR in
terms of precision and recall.

The model evaluated is:

e Latent Semantic Indexing (LSI) - see Section 2.

Domain, Scope, Importance, and Experimental Design. The scope was
blocked subject-project where two projects (from the program domain) of conve-
nience importance were traced. The next element, object of study importance, was
quality of life. The experimental design is depicted in Table 2. The independent
variables were model (LSI) and artifact projects. The first column of the table
describes the information for the LEDA project or dataset, the second column per-
tains to the Albergate dataset. The two projects that were examined were described
above in Section 5.1. The dependent variables were recall and precision. There was
no randomization. Both projects were examined with the LSI technique.

Measurement and Product. The recall and precision metrics are formally de-
fined, validated metrics from the information retrieval field. The metrics were col-
lected in an automated fashion and are ratio. The products were documentation
and code.

Preparation, Execution, and Analysis. No pilot study was discussed. The
artifacts were described. The man pages of LEDA and Albergate were discussed
in Section 5.1. The data collected was number of correct links found, the number
of incorrect links returned, the number of links missed, and the number of links
returned. Recall and precision were plotted. Table 3 shows exemplary results
obtained in the experiments. The results are presented in a form of a pair of
numbers: first number is precision and second number is recall. The study compared
the results to those of [3].

Interpretation. The interpretation context is the field of tracing research. The
alternative hypothesis was supported and the null hypothesis was rejected. Other
knowledge acquired was that recall could be improved by using structural informa-
tion of the C/C++ code. Often, classes were implemented in more than one file.
Retrieving only one of them resulted in high precision but low recall [29]. The sam-
ples used are representative of the artifacts that are traced in practice in industry.
This work used the same samples as Antoniol et al [3] but with a different technique.

5.3. Antoniol, Caprile, Potrich, and Tonella (1999)

Antoniol, Caprile et al [4] performed an experiment that examined a process
for recovering “as is” design from code, comparing recovered design with the actual
design and helping the user to deal with inconsistency [4].



A Framework For Comparing Requirements Tracing Ezperiments 23

Motivation: The motivation was to improve traceability recovery between code
and “as is” design.

Purpose, Objective, Hypothesis, and Perspective: Antoniol, Capril et al [4]
conducted a study whose purpose was to evaluate a process (object is process)
from the perspective of a researcher. The null and alternative hypotheses were not
formally specified, but by implication they were:

Null hypothesis: A tracing process consisting of distance computation and max-
imum match algorithm will not assist with design recovery as shown on an
industrial telecommunications project.

Alternative hypothesis: A process consisting of distance computation and max-
imum match algorithm will assist with design recovery as shown on an indus-
trial telecommunications system.

The process evaluated consisted of a number of steps: code and Object Model Tech-
nique (OMT) [36] design is translated to Abstract Object Language (AOL) using a
tool; AOL is parsed to produce an Abstract Syntax Tree (AST) by a tool; a relations
traceability check is performed; a dictionary traceability check that computes edit
distance between attribute names is performed; a maximum matching algorithm
and maximum likelihood classifier is applied; and results are displayed visually [4].

Domain, Scope, Importance, and Experimental Design: The scope was
single project where one project of mission critical importance was traced. The
next element, object of study importance, was quality of life. The independent
variables were traceability process and artifact project. The project evaluated was
an industrial telecommunications system and consisted of 29 C++ components,
about 308 KLOC, for which object oriented object models and code was available
[4]. The dependent variables were recall, precision, and average similarity. There
was no randomization. The single project was examined with the tracing process.

Measurement and Product. The recall and precision metrics are formally de-
fined, validated metrics from the information retrieval field. Average similarity is
calculated by using the edit distance of attribute names found in the code and de-
sign. It is 0 when two strings have no characteristic in common and 1 when they
coincide, hence it is a real value between 0 and 1 [4]. The metrics were collected in
an automated fashion and are ratio. The products were design and code.

Preparation, Execution, and Analysis. No pilot study was discussed. The
artifacts were described. Internal object models from a commercial computer-aided
software engineering (CASE) tool are converted into AOL using a tool developed
by Antoniol, Caprile, et al [4]. The internal models include class models, class
relationships (such as aggregation and association). The other artifact traced was



24 International Journal of Software Engineering and Knowledge Engineering

the C++ code corresponding to the internal object models. The data collected
was average similarity, deleted classes (unmatched classes when performing the
traceability check), true positives (number of correct links found), false positives
(number of incorrect links returned), false negatives (number of links not returned
that should have been), true negatives (number of links not returned that do not
exist, i.e., true traceability errors in the artifact). Tables of average similarities and
deleted classes as well as precision and recall were provided. Misclassification error
was plotted. Code identifiers correctly segmented by design dictionary were plotted.

Recall and precision were plotted.

Interpretation. The interpretation context is the field of tracing research. The
hypothesis result was that the null hypothesis was rejected in favor of the alternative
hypothesis. Other knowledge acquired included discovery that the “words used by
the designer to build identifiers also make up the dictionary used in the code, but
with some extensions. [4]” The samples used are representative of the artifacts that
are traced in practice in industry. It appears that the process is still being applied
by the telecommunications system project.

5.4. Hayes, Dekhtyar, and Osborne (2003)

Hayes, Dekhtyar, and Osborne performed an experiment that compared four
requirements tracing techniques for one case study [23].

Motivation. The motivation was to improve traceability link recovery between
hierarchical levels of textual requirements documents.

Purpose, Object, Hypotheses, and Perspective. Hayes, Dekhtyar, and Os-
borne [23] conducted a study whose purpose was to evaluate two information re-
trieval algorithms (the object is an algorithm) from the perspective of a researcher.
The null and alternative hypotheses were not formally specified, but by implication
they were:

Null hypothesis: The results of using VSIR and VSIR enhanced with a simple
thesaurus algorithms to trace a case study, as measured by recall, precision,
and performance, will not vary from the results of an analyst manually per-
forming a trace of the same case study or of the analyst using the SuperTra-
cePlus tool[21, 31] on the same case study.

Alternative hypothesis: The results of using VSIR and VSIR enhanced with
a simple thesaurus algorithms to trace a case study, as measured by recall,
precision, and performance, will be better than the results of an analyst man-
ually performing a trace of the same case study or of the analyst using the
SuperTracePlus tool[21, 31] on the same case study.



A Framework For Comparing Requirements Tracing Ezperiments 25

The methods, on which the algorithms evaluated by Hayes, Dekhtyar, and Os-
borne [23] are based, are

e Vector Space Information Retrieval (VSIR) see Section 2.
e VSIR with simple thesaurus (VSIR+Thesaurus) see Section 2.
The baseline comparisons are described below:

Analyst performing Manual Trace (AMT): The analyst used interactive searches
in order to associate high level requirements and low level requirements.

SuperTracePlus (STP): This refers to results obtained from the requirements
tracing module of SuperTracePlus (STP). STP, developed by Science Applica-
tions International Corporation (SAIC), uses keyphrase matching to generate
candidate links. It is written in VBasic and Microsoft Access macros. The
analyst may specify matching thresholds, e.g. 33%, 50%, etc. For example, if
a high level requirement has four keyphrases and a low level requirement has
two of these same keyphrases, a matching threshold of 50% would ensure that
the low level requirement is returned in the candidate link list.

Analyst using SuperTracePlus (A&STP): The analyst examined the results
returned by STP and made judgments on what constituted correct links or
not and whether they needed to look for any more links.

Domain, Scope, Importance, and Experimental Design. The scope was
single project where one project (from the program domain) of quality of life impor-
tance was traced. The next element, object of study importance, was quality of life.
The independent variables were traceability algorithm (VSIR, VSIR+Thesaurus)
and artifact project. The project that was examined was a NASA science instru-
ment project, a moderate resolution imaging spectroradiometer (MODIS), with 19
high level requirements from [20] and 50 low level requirements from [19]. A typical
requirement is one to two sentences in length. A sample requirement is:

¢¢[The software] shall unpack all radiance data from 12-bits

in the MODIS_pkt to Unpacked MODIS radiance when the packet
contains radiance data, using the format documented in SBRS CDRL
305’ 7[19].

The dependent variables were recall, precision, and performance. There was no
randomization. The single project was examined with the tracing algorithms.

Measurement and Product. The recall and precision metrics are formally de-
fined, validated metrics from the information retrieval field. Performance was mea-
sured in hours. The former two metrics were collected in an automated fashion and
are ratio. The latter metric was manually tracked and is ratio. The products were
two levels of documentation.



26 International Journal of Software Engineering and Knowledge Engineering

Preparation, Execution, and Analysis. No pilot study was discussed. The
artifacts were not described, but an example was given above. The data collected
was number of correct links found, the number of incorrect links returned, the
number of links missed, the number of links returned, and time to perform the trace
(in hours). Recall, precision, and performance were compared in a tabular format.
Table 3 shows the results obtained in the experiments. The results are presented in
a form of a pair of numbers: first number is precision and second number is recall.
The numbers are provided for VSIR and VSIR+Thesaurus as well as for the baseline
cases: SuperTracePlus and Human Analyst+SuperTracePlus. In general, baseline
methods can be seen to outperform VSIR, however VSIR+Thesaurus outperforms
the baseline methods. In addition, VSIR and VSIR+Thesaurus algorithms were
much faster, as is to be expected.

Interpretation. The interpretation context is the field of tracing research. The
study confirmed the null hypothesis for VSIR algorithm and rejected it in favor
of the alternative hypothesis for VSIR+Thesaurus. Among the other knowledge
acquired during the study was the observation that the poor performance of the
VSIR method was due to significant difference in technical lingo used in the high
and low level requirements documents. The samples used are representative of the
artifacts that are traced in practice in industry. This work did not replicate any prior
experiments. After the study had been completed, a prototype software package
called RETRO (REquirements TRacing On-target) was built [24], incorporating
the algorithms tested. Also, the IR method toolbox of RETRO has been integrated
with STP used by SAIC.

5.5. Comparison of the Studies

We have summarized the descriptions of the four studies [3, 29, 4, 23] in Table
4. From the broadest perspective possible, one can see from the table that this
is an emerging field of research. Most studies are performed from the researcher’s
perspective, the objects of study are algorithms and models. The domain is almost
always a program. Hypotheses are never explicitly stated, although they can always
be determined. We will first examine the studies in detail, examining similarities
and differences. We then identify areas that should be examined by future studies.
Finally, we suggest some directions for our field in order to move beyond emerging
research into more "mature” research.

It is clear from the table that all the studies examined shared common motiva-
tion and purpose. The objects of study differed for the studies, though there were
basically only two categories addressed: tools (models or algorithms) and processes.
The implicit hypotheses of the three studies [3, 29, 23] addressed the same idea, that
specific IR methods (VSIR, PIR, LSI) may offer hope for improving requirements
tracing. The studies all shared the same perspective of researcher. The domain dif-
fered for the studies, though project and program are very similar. The scope of the
studies was evenly divided between single projects and blocked subject-project. The



A Framework For Comparing Requirements Tracing Ezperiments 27

domain importance covered all but one of the possible choices yet object importance
was quality of life for all studies.

As with domain, the independent variables varied, but not significantly. Three
of the four studies examined traceability models or algorithms. The dependent
variables were very similar for all studies with the exceptions being the addition
of average similarity and performance for two of the studies. The product was
the same for two of the studies. Preparation involved preparation of artifacts for
all four studies, though the artifacts varied from open source artifacts to industry
proprietary code and models. Interpretation context, results, and extrapolation
were the same for all four studies. Impact ranged from studies that replicated other
studies to studies whose results and tools are being utilized by industry now.

From the above, several observations can be made. First, by viewing the exper-
iments in the framework, several patterns become evident. For example, the phrase
” No pilot study was discussed” occurs repeatedly. Perhaps traceability researchers
should consider performing small pilot studies prior to undertaking larger experi-
ments. The phrase ”The artifacts were described” also occurs frequently. This is
a step in the right direction, but it would be more useful to other researchers if
examples of the artifacts were shown in the paper and/or the artifacts were made
available on-line. Second, it appears that other purposes might be considered when
planning studies. For example, researchers might test specific tracing tools, improve
existing algorithms, etc. Third, other objects might be studied. For example, a com-
prehensive study of metrics and their use/meaning/usefulness w.r.t. evaluation of
tracing processes might be warranted, especially considering that new metrics[24]
have been proposed recently. From the examination of the hypotheses, it appears
that VSIR and PIR should be considered as baseline tracing methods for compar-
ison purposes. It does not appear that methods such as grep need be examined
further. Manual tracing methods cannot be dismissed though, as we require these
for the human judgment task of the tracing process.

It appears that other perspectives should be considered in future traceability
studies, such as project manager, developer, or customer. Studies should be un-
dertaken that have safety-critical domain importance. Products of the studies are
already diverse, but should explore other areas too such as non-textual artifacts.
We should strive for all of our studies to be replicated and for the technologies under
study to be adopted by industry.

As pointed out above, it appears that this field of research is emerging. To un-
derstand how we might move forward, let us consider the characteristics of a more
mature field of software engineering, such as reading techniques. There, experimen-
tal studies are performed from numerous perspectives, such as project manager or
maintainer. Studies have moved beyond baseline method comparisons to compar-
ison of field-tested, proven techniques. In particular, the methods have been field
tested and proven and have often been implemented in ”productized” tools used in
industry. Many studies have been replicated. Industry has adopted many of the
studied techniques and tools. A community of researchers studying these techniques



28 International Journal of Software Engineering and Knowledge Engineering

has been formed and is successfully collaborating with practitioners in the field.

Based on this brief analysis, the work that is before us in the requirements
tracing and traceability research area is clear. We need to move beyond baseline
methods such as VSIR. We need larger, standardized, more robust datasets (with
answersets) available for study. We need to study the human factors associated
with the tracing process (study from different perspectives, study different objects,
study with different motivations and purposes). Finally, we need industry to be
more actively involved with tracing/traceability research to facilitate large scale
studies of the human factors in tracing.

6. Conclusions and Future Work

In this paper we presented a framework for characterizing experiments that
examine requirements tracing techniques. The framework should assist researchers
in developing and conducting additional experiments of this type. It also facilitates
the comparison of results from similar experiments. We used the framework to
describe and compare four recent experimental studies. We used the framework to
identify areas for future research as well as for future experimentation. We also
identified suggestions for moving tracing research from an emerging field to a more
mature field.

We have been actively pursuing these suggestions in our own work. We have
developed a prototype tool that is being used by industry. We have experimented
on a number of new, larger programs. We have developed additional measures. We
plan to enhance the prototype tool that we have developed in order to productize
it, and we plan to conduct human factors studies.

To encourage the replication of the experiment performed at the University
of Kentucky, the dataset used along with the answer set has been posted on the
Software Engineering Experimentation Web (SEEWeb) hosted by George Mason
University at http://ise.gmu.edu:8080/ofut/jsp/seeweb/index.jsp. Though the ex-
periments presented here all achieved fairly consistent results in terms of recall and
precision, replication of experiments can only serve to strengthen the results.

7. Acknowledgements

Our work is funded by NASA under grant NAG5-11732. Our thanks to Ken
McGill, Tim Menzies, Stephanie Ferguson, Mike Chapman and the Metrics Data
Program, and the MODIS project for maintaining their website that provides such
useful data. We also thank our current and former students James Osborne, Senthil
Sundaram, Ganapathy Chidambaram and Sarah Howard for their participation in
the requirements tracing research. Without them, this work would not be possi-
ble. We also thank Massimiliano di Penta and Jonathan Maletic for enlightening
discussions about their research and ours.

1. M. Abrahams and J. Barkley. Rtl verification strategies. In PIEEE WESCON/98,
1998.



A Framework For Comparing Requirements Tracing Ezrperiments 29
| Phase I: Definition
| | ANT02[3] | MMO03[29] | ANT99[4] | HAY03[23]
Motivation improve traceability
Purpose evaluate
Object models process algorithms
Null Hypothesis VSIR, PIR — LST — same Edit distance, VSIR, -
same as grep as VSIR, PIR | Max. matching alg., | VSIR+Thesaurus
magx. likelihood — — same as human,
don’t help tracing STP
Alt. Hypothesis VSIR, PIR — LST - Edit distance, VSIR, -
better than better than Max. matching alg., | VSIR+Thesaurus
grep VSIR, PIR max. likelihood better than
help tracing human, STP
Perspective researcher
Domain program project | program
Scope blocked subject-project single project
Dom. Importance convenience mission-critical | quality of life
Obj. Importance quality of life
| Phase II: Planning
| | ANTO2 | MMO03 | ANT99 | HAY03

Ind. Variables

traceability model

| traceability process

artifact projects

traceability algs.

Dep. Variables

recall
precision

avg. similarity performance
Product Documentation Design Two levels of
and code and code documentation
| Phase IlI: Realization
| | ANTO2 | MMO03 | ANT99 | HAY03
Preparation LEDA, Albergate CASE object MODIS textual
man pages, code models, code requirments
| Phase IV: Interpretation
| | ANTO2 | MMO03 | ANT99 | HAY03

Context

tracing/traceability research field

Results

null hypothesis rejected in favor of alternative

null hyp. confirmed
for VSIR, rejected for
VSIR+Thesaurus

Extrapolation

industry representative

Impact

not replication,
was replicated

partial
replication
of ANT02

not replication
industry now using process

Table 4: Comparison of the four studies described in this paper.




30 International Journal of Software Engineering and Knowledge Engineering

2.

3.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Anezin. Process and methods for requirements tracing (software development life
cycle), 1994.

G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering trace-
ability links between code and documentation. IEEE Transactions on Software En-
gineering, 28(10):970-983, 2002.

G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability for object
oriented systems. Annals of Software Engineering, 9:35 58, 1999.

. Algorithmic Solutions Software GmbH (AS). Leda research. http://www.mpi-

sb.mpg.de/LEDA /leda.html.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
Addison-Wesley, 1999.

V. Basili, R. Selby, and D. Hutchens. Experimentation in software engineering. I[EEFE
Transactions on Software Engineering, 12(47):733 743, 1986.

V. Basili, F. Shull, and F. Lanubile. Building knowledge through families of soft-
ware studies: An experience report. I[EEE Transactions on Software Engineering,
25(4):456 473, 1999.

V.R. Basili and H.D. Rombach. The tame project: Towards improvement-oriented
software environments. IEEFE Transactions on Software Engineering, 14(6):758-
773, 1988.

S. Bohner. A graph traceability approach for software change impact analysis, 1995.
P. Bourque and A. Abran. An experimental framework for software engineering re-
search. In Proceedings of the Forum On Software Engineering Standards Issues
1996, 1996.

P. Brouse. A process for use of multimedia information in requirements identification
and traceability, 1992.

A. Casotto. Run-time requirement tracing. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-aided Design, 1993.

J. Cleland-Huang, C.K. Chang, G. Sethi, K. Javvaji, H. Hu, and J. Xia. Automating
speculative queries through event-based requirements traceability. In Proceedings of
the IEEE Joint International Requirements Engineering Conference (RE '02),
pages 289 296, 2002.

F. Crestani, M. Lalmas, C. J. van Rijsbergen, and Iain Campbell. Is this document
relevant? ... probably”: A survey of probabilistic models in information retrieval. ACM
Computing Surveys, 30(4):528 552, 1998.

S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. In-
dexing by latent semantic analysis. Journal of the Society for Information Science,
41(6):391 407, 1990.

N. Fenton, S. Pfleeger, and R. Glass. Requirements tracing. IEEFE Software, July
1994, 1994.

Orlena Gotel and Anthony Finkelstein. Extended requirements traceability: Results of
an industrial case study. In Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering (RE’97), page 169. IEEE Computer Society, 1997.
GSFC SBRS. Level 1a and geolocation processing software requirements specification.
GSFC SBRS. MODIS science data processing software requirements specification vesion
2.

J. Huffman Hayes. Risk reduction through requirements tracing. In Conference Pro-
ceedings of Software Quality Week 1990, 1990.

J. Huffman Hayes. Energizing software engineering education through real-world
projects as experimental studies. In Proceedings of the Conference on Software
Engineering Education and Training, CSEET, 2002.

J. Huffman Hayes, A. Dekhtyar, and J. Osbourne. Improving requirements tracing via



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A Framework For Comparing Requirements Tracing Ezperiments 31

information retrieval. In International Conference on Requirements Engineering,
Monterey, California, pages 151-161, 2003.

J. Huffman Hayes, A. Dekhtyar, S. Sundaram, and S. Howard. Helping analysts trace
requirements: An objective look. In International Conference on Requirements En-
gineering (RE’2004), 2004.

Jane Hayes, Alex Dekhtyar, and Senthil Sundaram. Measuring the effectiveness of
retrieval techniques in software engineering. Technical Report TR 422-04, University
of Kentucky, October 2004.

N. Juristo and A. Moreno. Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, 2001.

F. Lanubile. Empirical evaluation of software maintenance technologies. FEmpirical
Software Engineering: An International Journal, 2(2):95-106, 1997.

C. M. Lott and H. D. Rombach. Repeatable software engineering experiments for
comparing defect-detection techniques. Empirical Software Engineering: An Inter-
national Journal, 1(3):241-277, 1996.

A. Marcus and J. Maletic. Recovering documentation-to-source code traceability links
using latent semantic indexing. In Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, pages 125-135, 2003.

J. Matthias. Requirements tracing. Communications of the ACM, 41(12), 1998.

T. Mundie and F. Hallsworth. Requirements analysis using supertrace pc. In Proceed-
ings of the American Society of Mechanical Engineers (ASME) for the Computers
in Engineering Symposium at the Energy & Environmental Expo 1995, 1995.

R. Pierce. A requirements tracing tool. In Proceedings of the Software Quality
Assurance Workshop on Functional and Performance Issues, 1978.

B. Ramesh. Factors influencing requirements traceability practice. Communications
of the ACM, 41(12):37-44, 1998.

B. Ramesh and M. Jarke. Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering, 27(1):58 93, 2001.

S. E. Robertson. The probabilistic character of relevance. Information Processing &
Management, 13(4):247 251, 1977.

J. Rumbaugh, M. Blah, Premerlani W, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause. Rule-based generation of
requirements traceability relations. Journal of Systems and Software, 72(2):105 127,
2004.

T. Tsumaki and Y. Morisawa. A framework of requirements tracing using uml. In
Proceedings of the Seventh Asia-Pacific Software Engineering Conference 2000,
pages 206-213, 2000.

R. Watkins and M. Neal. Why and how of requirements tracing. IEEE Software,
11(4):104 106, 1994.

C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A. Wesslon. Ezperi-
mentation in Software Engineering - An Introduction. Kluwer Academic Publishers,
2000.

A. Zisman, G. Spanoudakis, E. Perez-Minana, and P. Krause. Towards a traceability
approach for product family requirements. In Proceedings of the 3rd ICSE Workshop
on Software Product Lines: Economics, Architectures and Implications, 2002.



