
 1

Uncertainty as the Source of Knowledge Transfer
Opportunity

Alex Dekhtyar Jane Hayes Judy Goldsmith

Department of Computer Science Department of Computer Science
 Cal Poly, San Luis Obispo, University of Kentucky
 CA, U.S.A. Lexington, KY 40506-0495 U.S.A.
 (805) 756-2387 (859) 257-3171, 257-4245
 dekhtyar@csc.calpoly.edu {hayes,goldsmith}@cs.uky.edu

ABSTRACT
Uncertainty creeps into the software development process in many
ways, shapes and forms. In the early stages of software
development, key sources of uncertainty are the human
stakeholders who help formulate the requirements of the software
product. An added layer of uncertainty is inherent as requirements
analysts have to deal with subjective, and often conflicting,
estimates that humans make, estimates that may significantly affect
both the software development process and the eventual software
product. Our position is two-fold. We stipulate that in situations
where analysts (and later developers) have to deal with human
evaluations of uncertainty, special methods and procedures should
be used to elicit this information, reconcile this information, and,
most importantly, use this information for decision-making. We
also note that significant developments are unfolding in the field of
Artificial Intelligence in two areas related to dealing with
uncertainty: eliciting data from domain experts, and using
uncertain data for inference and planning. We believe that
mitigation (and proper use) of uncertainty in the early stages of
software development calls for collaboration between the fields of
Software Engineering and Artificial Intelligence.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Elicitation methods,
Languages, Methodologies, Tools. D.2.2 [Design Tools and
Techniques]. D.2.9 [Management]: Life cycle, Software process
models.

General Terms
Management, Documentation, Performance, Design, Reliability,
Human Factors.

Keywords
Uncertainty, planning, software engineering, artificial
intelligence, software process, software product

1. INTRODUCTION
Uncertainty exists (and often persists) in virtually every human
endeavor. Software development is no exception. On the one
hand, psychological research of the past 50 years [3,15,16]
suggests that humans are notoriously poor and inconsistent
estimators of uncertainties associated with their activities. But
there are, at times, severe penalties associated with a human’s
inability to correctly estimate the certainty of events, draw correct
inferences, and construct long-term plans that take uncertainty
into account.

The software engineering process, regardless of lifecycle,
programming language, or domain, involves significant human
decision-making. Often, the process of building software starts
with a collaboration of parties with expertise in completely
different areas: software engineers, requirements analysts, domain
experts, customers, end users, knowledge engineers, etc. A
software engineer may know how to construct specifications and
build software, while the customer may have zero knowledge in
that area. But the customer may know their domain very well and
may know what type of software is needed. In such situations,
uncertainty stems from a number of sources, including:

• misunderstandings between software engineers and
domain experts;

• shortcomings in or inability to estimate the parameters
of post-deployment software operation in advance;

• conflicting opinions of domain experts; and

• conflicting priorities of stakeholders such as managers,
and workers, etc.

Uncertainty exists both in the software development process
(How long will it take? How much will it cost? What is the most
efficient process to develop this software? What is the right
choice of programming environment/language?) and in the
software itself (How much security, critical error-handling, and
recovery needs to be implemented? What is the right trade-off
between efficiency and security, or between efficiency and
functionality? What features of the software will be used most
heavily?). Probability theory, as well as other formalisms for
dealing with uncertain information (fuzzy logic/set theory, belief
theory), provide guidelines for handling uncertain information,
once uncertainties have been established and properly quantified.
However, in many applications involving human participation, the
process of establishing uncertainties and quantifying them
presents the greatest challenge [13,14,15,16]. When we start a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWLU ‘07, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 2

software project, we may be able to identify exactly where
uncertainty appears (cost, time, workloads, etc.). We must rely,
however, on subjective human opinion (and experts who may not
agree on anything) to estimate these uncertainties. In certain
situations, even discovering what is uncertain is a challenge.
When a brand new type of software is built, the lack of computer-
related expertise of the customer may prevent the customer from
even realizing what is feasible and what is not.

The good news is that these issues are not unique to software
development. Elicitation of uncertain information and
quantification of qualitative uncertainties are topics currently
receiving much attention from the artificial intelligence
researchers [18,13,8,9], as well as psychologists [3,16,17],
economists, and decision scientists [15]. In the rest of this paper,
we briefly discuss two things: the software development scenarios
that lead to human-generated uncertainties and the possibilities for
applying artificial intelligence (AI) research to such scenarios.

2. UNCERTAINTY IN EARLY STAGES OF
SOFTWARE DEVELOPMENT
We posit that there are three research areas of importance when
handling human evaluations of uncertainty: elicitation of
uncertainty information, reconciliation of such information, and
application of such information to decision-making. Further, we
posit that AI research can provide techniques for the elicitation of
uncertainty information from domain experts and for using
uncertain data for inference and planning.

To illustrate our ideas, we present two scenarios to show how
uncertainty might appear in the software engineering process
and/or product. We also suggest ways how existing AI work
might assist in dealing with the uncertainty.

Scenario 1. Uncertainty in final product. Consider the
following software development scenario. A team of developers is
contracted to develop and deploy software for a portable
communications computer used by NASA on manned space
missions. A small communications computer is strapped on the
astronaut’s space suit.

The software is responsible for the quality of the communications,
as well as their reliability and robustness. The software can be
designed to be very robust, running several processes in parallel in
case one fails, so that there is never a loss of the communications
lines. However, this comes at a penalty of a delay in the
transmission and reception of messages. Based on this
knowledge, the requirements engineer begins to solicit
requirements from the appropriate NASA stakeholders.

Three stakeholders represent NASA in this process: the NASA
mission control coordinator, the space mission commander, and
the mission specialist: the astronaut who will eventually be the
end-user of the software and the hardware. The mission
coordinator wants to maximize the reliability and would prefer to
run three or four processes in parallel to ensure that
communications are never lost. Based on his experience with
previous missions, he estimates that there is a high probability that
a single-process system will result in the loss of important
communications. The mission commander feels that getting
information after a delay makes that information almost useless
and estimates that the chance of missing a very important

communication is small enough that it does not outweigh the need
for immediacy in communication. The mission specialist has a
middle-of-the road view. She thinks that in the long term, the
probability of deteriorated communications is high enough to
warrant some level of redundancy, but she also thinks that any
significant transmission delay would hamper her work during the
spacewalk and, thus, wants a compromise solution.

In this scenario, the development team has to decide on the
eventual set of requirements, and address directly the key
controversy: how much redundancy is going to be implemented,
and how the redundancy mechanism will operate in the software.
The key challenge lies in the fact that the expert assessments of
failure chances and risks associated with communications failure
are different, possibly even contradictory. The analysis of the
situation turns into a two-step process.

1. Reconcile the conflicts in the assessment of failure
chances between experts, derive final assessments.

2. Use obtained assessments in a risk-analysis procedure
(e.g., probabilistic inference) to determine the desired
level of redundancy.

Scenario 2. Uncertainty about process. A software
development team receives a project which comes with a
predefined budget, deadlines, and a well-defined overall task. The
project manager has to work within given parameters and needs to
find the best way to task different members of the team. She
knows the strengths and weaknesses of the team members. Some
are better at formal tasks, such as requirements engineering, some
are better designers, and some are better developers. Some work
faster, but their code may be error-prone. Some produce code that
passes all tests, but takes more time to deliver it to the testers.
Some, like the abovementioned testers, have a very limited scope
of responsibility. In the absence of work, these team members
represent a loss of person-hours devoted to the project. What is
the best way for the project manager to proceed?

In this scenario, the uncertainty is associated with the selection of
the correct process for software development. If the project
manager were willing to express her knowledge about the quality
and speed of the employees’ work in terms of probabilities (e.g.,
“there is about a 75% chance that Steve will finish implementing
this functionality within 3 weeks” or “there is an 80% chance that
Mary’s code will contain no severe defects”, “If Mary’s code
contains no severe defects, Paul can finish testing it within one
week with probability 85%”)), and if she were willing to quantify
the utility (i.e., the expected benefit of assigning different tasks to
different people), then stochastic planning mechanisms[1,2], such
as planning with Markov Decision Processes [13,5], can be used
to obtain a policy. Policies are functions from states to actions.
From a policy, the project manager will obtain not just a single
sequence of suggested assignments (Mary elicits requirements,
Paul does design, Steve programs GUI, Mary programs backend,
Paul tests), but will receive suggestions that depend on the results
of previous actions (Mary elicits requirements; if she does it in
three weeks, Paul does design, otherwise, Steve does it). A
policy will cover all eventualities.

With these scenarios in mind, we move to a discussion of what
can be done to address these types of uncertainty.

 3

3. WHAT CAN BE DONE
Two issues arise from the scenarios in the previous section. We
address each in turn.

Issue 1. Elicitation of Uncertain Information. In each scenario
(and in many other scenarios involving humans), the first step
toward the solution is obtaining reasonable, trustworthy, and
consistent estimates of the certainty/uncertainty of events. In the
examples above, we suggested elicitation of probabilistic
estimates about the events. Other measures of uncertainty (fuzzy
measures, measures of belief) could be elicited, depending on the
nature of uncertainty in the problem and the expertise of
programmers; our expertise is in probabilistic methods.

Uncertainty elicitation can be broken into two sub-problems.

1. Elicitation of probabilities from individual experts, and

2. consolidation of elicited probabilities, including
resolution of conflicts.

Research has shown that different categories of people have
different levels of comfort with the measures of uncertainty.
Development of good procedures for eliciting probabilities (and in
some cases, eliciting many probabilities) is an emerging topic in
AI research. Various methods [14,18,9] have been proposed and
studied on different populations of users. There has not been, to
our knowledge, any research involving similar studies with
domain experts representing customers of large software projects.

Similarly, resolution of conflicts in probability assessments has
been a topic of study in recent years. Several complimentary
methods were proposed recently [6,11,12]. Some methods rely on
statistical procedures which determine the most likely
probabilities/ranges [6]. Some methods use extra information to
assign “weights” to the opinions of each expert and compute the
final assessment as the weighted average [11]. Some methods
represent uncertainty in terms of probability intervals or other
imprecise measures [4].

Issue 2. Use of Elicited Uncertain Information. In the scenarios
discussed in Section 2, we mentioned two different types of
procedures that could use the probabilistic assessments. In the
first scenario, risk assessment could be conducted in a reasonably
straightforward manner by combining the probabilities of events
with the utilities of various situations. Bayesian networks [19]
and Bayesian inference can be used, if probability assessments are
conditional (e.g., the probability of communications failure
depends on: (a) the charge in the communications computer
battery, (b) solar activity, and (c) the amount of time the computer
spends in vacuum. The latter depends on (d) the nature of work
(space walk) and (e) the astronaut completing the walk.).

In other situations, such as the one described in the second
scenario, simple inference is not enough. The goal of the project
manager is not to predict the most probable state (e.g., the most
probable way in which the software will be used), but rather to
plan [2,7] what actions to take to achieve a goal or acquiring
utility, in an ongoing scenario, or both. As mentioned above, a
policy computed by a program that handles uncertainty (such as
SPUDD [5]) provides advice for every possible state of the
product development process in the foreseeable future.

4. THE CHALLENGE TO THE SOFTWARE
ENGINEERING COMMUNITY
Software engineers are not alone in their attempts to deal with
uncertainty, but the ball is in their court in terms of taking actions.
While the problems of reasoning with uncertainty are often
computationally hard [7,10] in general cases, many useful
heuristics have been suggested and implemented that make
inference and planning feasible for reasonably large problems.
What remains to be seen is how this can be used by software
engineers and incorporated into the software development
process. We suggest that empirical studies be undertaken for
determining

(a) the best means of eliciting probabilities from customers
of software development projects (or domain experts),
and

(b) the applicability and the cost benefit of using
probabilistic reasoning in software development
projects.

These studies should be undertaken by software engineering and
artificial intelligence researchers working in concert. Together,
the researchers can address the important problem of dealing with
uncertainty in software process and software products.

5. ACKNOWLEDGMENTS
Our work is partially funded by NASA under grant NAG5-
11732 and by the National Science Foundation under grant
ITR-0325063.

6. REFERENCES

[1] Jim Blythe. 1999. Decision-Theoretic Planning, AI

Magazine, Vol. 20, No. 2, pp. 37-54.
[2] Craig Boutilier, Thomas Dean, Steve Hanks. 1999. Decision-

Theoretic Planning: Structural Assumptions and
Computational Leverage, Journal of AI Research, Vol. 11,
pp. 1-94.

[3] L. Cosmides and J. Tooby. 1996. Are humans good intuitive
statisticians after all: Rethinking some conclusions from the
literature on judgment under uncertainty. Cognition, Vol.
58, pp. 1-73

[4] Luis M. de Campos, Juan F. Huete, Serafín Moral. 1994.
Uncertainty Management Using Probability Intervals, in
Proc. IPMU 1994, pp. 190-199.

[5] Jesse Hoey, Robert St-Aubin, Alan Hu, Craig Boutilier.
1999. SPUDD: Stochastic Planning using Decision
Diagrams, in Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (UAI’99), pp. 279-288.

[6] Gabriele Kern-Isberner, Wilhelm Rödder. 2004. Belief
revision and information fusion on optimum entropy. Int. J.
Intell. Syst. Vol. 19(9), pp. 837-857

[7] M. Littman, J. Goldsomith, M. Mundhenk. 1998. The

Computational Complexity of Probabilistic Plan Existence
and Evaluation, The Journal of AI Research, Volume 9,
pages 1--36, 1998.

 4

[8] Krol Kevin Mathias, Casey Lengacher, Derek Williams,

Austin Cornett, Alex Dekhtyar, Judy Goldsmith. 2006.
Factored MDP Elicitation and Plan Display, demo, in Proc.
AAAI’06 Conference, July 2006, Boston, MA.

[9] Krol Kevin Mathias, Cynthia Isenhour, Alex Dekhtyar, Judy
Goldsmith, Beth Goldstein. (2006). When Domains Require
Modeling Adaptations, in Proc., 4th Bayesian Modelling
Applications Workshop at UAI06, July 2006, Boston, MA.

[10] Martin Mundhenk, Judy Goldsmith, Christopher Lusena and
Eric Allender. 2000. Complexity Results for Finite-horizon
Markov Decision Process Problems, Journal of the ACM,
Vol. 47. No. 4, pp. 681-720.

[11] Pedrito Maynard-Zhang, Daniel J. Lehmann. 2003.
Representing and Aggregating Conflicting Beliefs. J. Artif.
Intell. Res. (JAIR), Vol.19, pp. 155-203.

[12] Stefano Monti and Giuseppe Carenini. 2000. Dealing with
the expert inconsistency in probability elicitation, IEEE
Transactions on Knowledge and Data Engineering, Vol. 12,
No. 4, pp. 499—508.

[13] Matin L. Puterman. 1994. Markov Decision Processes, John
Wiley & Sons, New York.

[14] Silja Renooij, Cilia Witteman. 1999. Talking probabilitites:
communicating probabilistic information with words and
numbers, International Journal of Approximate Reasoning,
Vol 22, No. 3, pp. 195-215.

[15] C. Spetzler, C-A. Staël von Hostein. 1975. Probability
encoding in decision analysis, Management Science, Vol. 22,
pp. 340-358.

[16] A. Tversky, D. Kahneman. 1974. Judgment under
uncertainty: Heuristics and biases, Science, Vol. 185, pp.
1124-1131.

[17] A. Tversky, D. Kahneman. 1982. Judgment under
uncertainty: Heuristics and biases, in D. Kahneman, P.
Slovic, A.Tversky (Eds.) Judgement under uncertainty:
Heuristics and Biases, Chapter 11, pp. 3-20, Cambridge
University Press

[18] Haiquin Wang and Marek J. Druzdzel, 2000. User Interface
Tools for Navigation in Conditional Probability Tables and
Elicitation of Probabilities in Bayesian Networks, in Proc.
16th Conference on Uncertainty in Artificial Intelligence, pp.
617—625.

[19] Judea Pearl, 1988, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan
Kaufmann Publishers, San Mateo, California, ISBN
0934613737.

