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ABSTRACT
Software project artifacts such as source code, requirements,
and change logs represent a gold-mine of actionable infor-
mation. As a result, software analytic solutions have been
developed to mine repositories and answer questions such
as “who is the expert?,” “which classes are fault prone?,”
or even “who are the domain experts for these fault-prone
classes?” Analytics often require training and configuring in
order to maximize performance within the context of each
project. A cold-start problem exists when a function is ap-
plied within a project context without first configuring the
analytic functions on project-specific data. This scenario
exists because of the non-trivial effort necessary to instru-
ment a project environment with candidate tools and algo-
rithms and to empirically evaluate alternate configurations.
We address the cold-start problem by comparatively eval-
uating ‘best-of-breed’ and ‘profile-driven’ solutions, both of
which reuse known configurations in new project contexts.
We describe and evaluate our approach against 20 project
datasets for the three analytic areas of artifact connectiv-
ity, fault-prediction, and finding the expert, and show that
the best-of-breed approach outperformed the profile-driven
approach in all three areas; however, while it delivered ac-
ceptable results for artifact connectivity and find the expert,
both techniques underperformed for cold-start fault predic-
tion.

CCS Concepts
•Software and its engineering → Software libraries
and repositories;
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1. INTRODUCTION
Software analytics allows us to answer various interesting

questions about a software project such as “Which parts of
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the code are more prone to defects?,”“Who is the best per-
son to fix this bug?,” or“Do any nocuous ambiguities exist in
the requirements?”. Recent significant advances in Software
Engineering research and practice have delivered a slew of
software analytics solutions that have the ability to answer
such questions by retrieving and analyzing data from diverse
software repositories. Among other things, techniques exist
to compute the complexity of code, identify bug-prone meth-
ods, discover architecturally significant areas of the code, an-
alyze test-case coverage, recommend experts across multiple
phases of the development process, and identify ambiguous
requirements.

Numerous researchers have reported the need to configure
analytics functions within the context of a specific project.
For example, in the area of software traceability, Falessi et
al. [18] combined and evaluated several natural language
processing techniques and concluded that techniques should
be customized for each dataset. Similarly, Lohar et al. [33]
demonstrated that trace accuracy could be increased when a
trace engine is configured according to the project context.
Herbold [26] built fault prediction models for 44 datasets
using various configurations of EM clustering and nearest
neighbor and found that models built within individual pro-
jects outperformed cross-project defect prediction models.

However, the practical cost and effort needed to customize
a configuration in an industrial environment, including in-
strumenting the project with diverse tools and algorithms
and conducting potentially long-running experiments, is of-
ten prohibitively expensive. Furthermore, especially in Green-
field projects, the data needed to configure analytic func-
tions may be unavailable in early stages of the software de-
velopment life-cycle. For example, configuring a trace engine
for a specific project requires a set of source artifacts (such
as requirements), target artifacts (such as source code), as
well as a relatively complete set of trace links established be-
tween them. However, stakeholders may wish to use artifact
connectivity solutions to generate trace links automatically,
long before a sufficiently large set of validated links are avail-
able for training purposes. Similarly, developers may wish
to use fault-prediction models in a Greenfield project, even
before an initial set of reported faults is available.

A Software Analytics cold-start problem therefore ex-
ists when project stakeholders need to execute an analytic
function in a new project environment, without the bene-
fit of customizing the function’s configuration. This differs
from the better known cold-start phenomenon that occurs
in systems that recommend products such as books, music,
or news items to users [43]. Such recommender systems fall



loosely into two categories of content-based and collaborative,
where content-based recommenders focus on textual descrip-
tions of products and collaborative recommenders make rec-
ommendations based on the preference of nearest-neighbors
(or similar users). Collaborative-filtering techniques often
outperform content-based ones; however, they can only be
employed after sufficient users have indicated their prefer-
ences for a product – leading to the cold-start problem [48,
32].

In this paper we address the problem of cold-start analyt-
ics by proposing and furthermore comparatively evaluating
two different cold-start configuration solutions. While simi-
lar approaches have been used in the Recommender System
community to recommend items such as books and music,
to the best of our knowledge they have not previously been
evaluated in the Software Engineering domain for recom-
mending configurations for cold-start projects. Both of our
solutions require the pre-construction of a configuration
profile for each analytic function. Each row in the profile
represents one project, depicts its unique project character-
istics, and documents the best known configuration of the
analytic function for that project. Our two proposed so-
lutions leverage the configuration profile in different ways
to recommend a configuration for a new, previously unseen,
project without the need for project-specific customization.

• Best-of-Breed identifies the best overall performing con-
figuration, across all projects in the profile, and adopts that
default configuration for use in cold-start projects.

• Profile-Driven matches the project characteristics of a
cold-start project against those in the configuration profile.
It then selects the most similar project and adopts that
project’s configuration for the cold-start project.

Our approach includes three major phases as depicted in
Figure 1. The first phase consists of selecting, modeling, and
implementing suitable features for the analytic functions,
while the second involves building a configuration profile.
Finally, the third phase uses the profile to recommend an
actual configuration during a cold-start scenario.

To illustrate and evaluate our approach, we focus on three
different analytic functions: (i) artifact connectivity (AC)
between artifacts types – often referred to as ‘automated
traceability,’ (ii) prediction of fault prone (FP) classes in
Java source code, and finally (iii) recommending experts (XP).
We selected these three functions because they cover both
source code and text-based artifact types, address impor-
tant software engineering tasks, and are well-described in
the literature. Exploring three different functions allows us
to answer some initial questions about generalizability.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the process of selecting, modeling, and im-
plementing features. Section 3 describes our approach for
building the configuration profile and then using it to select
a configuration for a cold-start scenario. Section 4 describes
experiments which were conducted to evaluate the best-of-
breed versus profile-driven configurations. Finally, Sections
5, 6, and 7 present related work, threats to validity, and
conclusions.

2. FEATURES
Analytic functions are constructed from primitive features,

combined and parameterized in ways that aim to optimize
qualities such as performance, accuracy, and usability. For
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Figure 1: An analytic function is trained and evaluated
against a feature model of valid configurations.

example, researchers have explored diverse solutions for achiev-
ing artifact connectivity through dynamically generating trace
links. Approaches have included the well known Vector
Space Model (VSM) [25], Latent Semantic Indexing (LSI)
[42], Latent Direchlet Allocation (LDA), natural language
processing techniques, as well as various combinations. They
may also include diverse pre-processing or post-processing
steps to cleanse or manipulate the data and/or to organize
or collate results. Similar types of choices exist for most
analytic functions.

2.1 Feature Selection
As it is infeasible to include a complete set of viable fea-

tures in our configuration process, we followed a systematic
approach for selecting a diverse and representative set of
features for each of the three analytic functions. First, we
retrieved several recent publications in each relevant area
(i.e., artifact connectivity [18, 24, 12], fault proneness [50,
28, 45], and recommend the expert [41, 13, 4]), and then
identified a selection of seminal and state-of-the-art tech-
niques for each function. Second, we searched for open-
source solutions and/or affordable commercial products that
(1) implemented the selected techniques and (2) could eas-
ily be integrated into our experimental environment. While
we also built several components from scratch, we excluded
features which we estimated would take more than one week
to build and/or integrate.

For the Fault Proneness configurator for example, we in-
cluded a range of fairly traditional coupling and cohesion
(C&C) metrics [27, 6] as well as a set of metrics from net-
work analysis [50]. We utilized two existing tools, CKJM



Figure 2: TraceLab workflow for predicting fault-prone code.

[11] and JHawk [1], to extract C&C metrics from Java code
and then utilized JavaCallGraph and NetworkX to compute
the network analysis metrics. For predicting purposes we se-
lected several different techniques including various logistical
regression models with and without Principal Component
Analysis (PCA) and several well-known classifiers, namely:
Näıve Bayes, Random Forest, J48, and JRip. A diverse set
of features, as shown in Table 5 (Appendix A), were simi-
larly selected for each of the other analytic functions. Our
approach is scalable and allows additional features to easily
be added.

2.2 Feature Modeling
In addition to listing available features, we need to model

their dependencies and constraints so that we can explore
the space of viable configurations. We used a textual nota-
tion, inspired by the TVL (Textual Version Language) [8],
to construct a feature model for each analytic function. The
model specifies the features, their parameters and associated
value ranges, as well as constraints on the use of the feature
including mandatory, optional, and prohibits relations. To
illustrate, we present the feature model developed for the
Fault Proneness function.

root SYS (allOf){
Metrics,MainPredictor

}
Metrics (atLeastOneOf){

CKJM, JHawk, NetworkAnalysis
}
MainPredictor (oneOf){

WekaClassifier, LogisticsModel
}

LogisticsModel (allOf){
LogisticalRegressionAlgorithm, FaultThreshold, TOLVal

}
LogisticalRegressionAlgorithm (oneOf){

LogisticalPCA (Config:FaultThreshold, TOLVal),
ProbitPCA (Config:FaultThreshold, TOLVal),
LogisticalBasic (Config:Threshold, TOLVal)

}
Classifier (oneOf){

J48, NaiveBayes, JRip, RandomForest
}
CKJM (atLeastOneOf){

WMC,DIT,NOC,CBO,RFC,LCOM,Ca,NPF
}
NetworkAnalysis (atLeastOneOf){

DegreeCentrality, InDegreeCentrality, LoadCentrality,
OutDegreeCentrality, ClosenessCentrality, PageRank,
BetweennessCentrality, EigenvectorCentrality

}
JHawk (atLeastOneOf){

FOUT, LCOM2, MAXCC, TCC, WMC, NLOC, NOS, ODF
}
Configurations: {

FaultThreshold {-0.5,0.3:0.1}
TOLVal {10,90:10}

}

This feature model specifies that any solution configured
to identify fault-prone code must contain a group of met-
rics and must contain a MainPredictor. The metrics may
include any combination of the CKJM, JHawk, and/or net-
work analysis metrics included in the listing. The predictor
model may be based on a logistical regression model with
or without Principal Component Analysis, or may be built
using a classifier. For example, if the LogisticalRegression-
Algorithm is chosen to satisfy the ‘one of LogisticsModel’
constraint, then either LogisticalPCA, ProbitPCA, or Lo-
gisticalBasic could be selected. Furthermore, the feature
model specifies ranges of values for the FaultThreshold and
TOLVal used by the LogisticalRegressionAlgorithm.

2.3 Feature Implementation
To explore the performance of various configurations, all

features need to be implemented in executable form. We
chose to implement them as TraceLab components [30] be-
cause several useful components were already available in
the TraceLab libraries [15] and also because TraceLab pro-
vides capabilities for interfacing with external DLLs which
allowed us to seamlessly integrate our own home-built com-
ponents with external tools. For each analytic function, we
thus constructed a TraceLab workflow, capable of accom-
modating all valid combinations of features. For example,
the workflow depicted in Figure 2 for the fault-prone func-
tion reads in datasets including source code and bug lists,
executes a sequence of metric analyzers (java call graph, net-
work analysis metrics, JHawk, and CKJM), and then uses
these metrics to predict potentially fault prone code. It ac-
commodates all combinations of features supported by the
feature model.

3. THE CONFIGURATION PROFILE
The second phase of our process involves constructing a

configuration profile which captures project characteristics
and describes the way the analytic function was configured
for the project.

Building the configuration profile requires a relatively large
and diverse set of project data for each analytic function.



Table 1: Profile Characteristics for Each Configurator

Artifact Connectivity Fault Proneness Find the Expert
Source Artifact Type (Code/Text) Cum. Halstead Length (HLTH) Number of Issues
Target Artifact Type (Code/Text) Max. Cycl. Complex. (MAXCC) No. of Input Lines to Recommender
Number of Source Documents Number of Stmts (NOS) Number of Experts
Number of Target Documents Lack of Cohes. of Methods (LCOM) Number of Topics
Total Number of Terms in Source Response Set for Class (RFC) Sparsity of Profile
Total Number of Terms in Target Fan In (FIN) % of experts with only 1 Topic
Average Size of Source Documents Depth of Inheritance Tree (DIT) % of experts with at least 5 Topic
Average Size of Target Documents Maint. Index (MI) % of experts with at least 10 Topic
Number of Overlapping Terms Total number of Classes (NOC) Topic Type

Total number of Comments (CCOM) Type of Recommendation task

Table 2: Representative Entries Extracted from the “Artifact Connectivity” Configuration Profile

Name MAP Run SRC TGT Source Target Over Configuration
(secs) Type Type Cnt Avg Tot Cnt Avg Tot -lap Similarity Source-Side Target-Side

Size Terms Size Terms Terms Features Features Features
PTC 0.364 71.54 Design Reqs 964 45 4865 242 43 2248 1743 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0
EasyClin 0.752 0.96 Test Classes 63 358 423 47 551 629 183 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1
iTrust 0.349 45.14 UC Code 131 62 1441 227 647 9761 994 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1
WARC 0.693 1.03 Reqs Reqs 42 18 288 89 25 736 200 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0
eANCI 0.470 2.51 UC Code 140 223 2163 55 922 3212 537 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0

Datasets related to Fault Proneness require source code as
well as a list of related faults for each version of the soft-
ware. Find the Expert datasets require records of tasks
performed by different experts - for example, stakeholders
who have contributed requirements knowledge or coders who
have fixed bugs or approved pull requests in open source
projects. Finally, Artifact Connectivity data requires re-
lated pairs of artifact types (e.g., requirements and regu-
latory codes, or use cases and source code) as well as a trace
matrix depicting which pairs of artifacts are related to each
other.

To acquire such data we used publicly available datasets
wherever possible, scouring repositories such as PROMISE
(openscience.us/repo), SIR (sir.unl.edu), and COEST (co-
est.org). We also mined additional datasets of faults fol-
lowing the technique described by Zimmerman et al. [49]
and mined data concerning user tasks directly from open-
source project repositories. Details of specific data sources
are provided in Section 4.

We now describe the two main parts of the configurator,
namely the project profile (shown on the left hand side of
Table 2) and the configuration (shown on the right hand side
of the same table).

3.1 Project Characteristics
Each analytic function has its own configuration profile

and its own unique set of project characteristics. The perti-
nent question is which set of project characteristics should
be included in a configuration profile in order to effectively
differentiate one project from another. This issue is fur-
ther complicated by the fact that different differentiators
are needed for each analytic function. Therefore, project
characteristics differ across each of our three configuration
profiles.

To identify pertinent characteristics for each analytic func-
tion we followed the following three selection strategies: (1)
our own knowledge of the analytic area, (2) clues found in
the literature, and (3) discussions with experts in each of
the fields e.g., we found a general belief that LSI performs

better on large datasets therefore “size may matter” for the
artifact connectivity function. The project characteristics
identified for each analytic function are shown in Table 1.
We implemented and/or integrated a set of tools capable of
extracting project characteristics from each project so that
we could populate the configuration profiles.

3.2 Customizing the configuration
Identifying the best performing configuration for an exist-

ing project dataset requires searching through the space of
valid feature combinations and parameterizations and eval-
uating the quality of each configuration using a fitness func-
tion.

3.2.1 Fitness Functions
There are many plausible fitness functions that could be

used for each analytic function. We decided to select a well-
known and well-accepted metric for each one. For example,
in the case of Artifact Connectivity, fitness could be eval-
uated using a well accepted metric such as Mean Average
Precision (MAP), Receiver Operating Characteristic (ROC)
which measures the area under the curve when true posi-
tives are plotted against false positives, or the F2-Measure
which represents the weighted harmonic mean of recall and
precision [44]. We opted to use MAP which evaluates the
extent to which the complete set of targeted links is placed
at the top of a ranked list of links. Fitness functions could
incorporate multiple objectives – for example evaluating not
only the quality of the links produced, but also the execution
time needed to generate them. For purposes of this paper
we focused on single objective functions: MAP for Artifact
Connectivity, Mean Reciprocal Rank (MRR) for Find the
Expert, and F2-Measure for Fault Proneness. We also used
lowest runtime as a tie-breaker when two configurations re-
turned the same score. We selected MAP because it provides
a quality measure across all recall levels, is widely used in
Information Retrieval settings, and has been frequently used
to evaluate trace retrieval results. We selected MRR because
it is widely used in settings where the user only wants to see



one relevant document retrieved from a ranked list of results.
We selected F2 because it weights recall higher than preci-
sion and is used in settings where it is more important to
not make Type II errors. Formulas and associated references
are provided for each metric in Appendix A.

3.2.2 Search Techniques
We adopted two different strategies for searching through

the space of viable configurations. In the case of the Find
the Expert analytic function, the search-space of features
was sufficiently small to run an exhaustive search through
all combinations of features.

In the case of Fault Proneness and Artifact Connectiv-
ity, the configuration space was too large to reasonably run
an exhaustive search and we therefore used a Genetic Al-
gorithm (GA) to search for the top performing configura-
tion(s). Several researchers have shown this to be effective
for configuring features – especially in the area of artifact
connectivity [33, 40]. The GA is a good match because each
candidate trace configuration can be encoded in a chromo-
some represented as a string of bits where each bit represents
a different feature that is either present (1) or not present
(0) in the configuration. To create an initial population, we
randomly generated chromosomes by turning bits on and off,
and checked them against the feature model for correctness
until an initial population of 50 unique, valid configurations
was produced.

The fitness of each chromosome was then computed by in-
stantiating its configuration and using the fitness function to
evaluate how well it performed its intended task. A stochas-
tic process was used to select the best chromosomes to be
carried forward as parents into the next generation. Our
implementation carried ten chromosomes forward. One of
these was the elite chromosome, i.e., the chromosome with
the highest fitness score from the previous generation. The
remaining nine chromosomes were selected using a standard
practice based on the roulette wheel, which works on the
premise that chromosomes scoring higher fitness values have
a greater chance of survival than weaker ones. The next
generation of chromosomes was then derived using standard
techniques of cross-over (0.1) and mutation (0.5) to gener-
ate offspring chromosomes from the parents. This process
is described in detail in our prior work [33]. For purposes
of our experiment we ran the GA for fifty generations. Fig-
ure 3 plots runtime in milliseconds versus the appropriate
fitness scores achieved for various configurations of the arti-
fact connectivity function applied against a single dataset.
Because the GA converges on faster scores over time, more
data points are shown at higher levels of MAP than at lower
ones. Ties were again resolved by selecting the configuration
with the lowest runtime.

The configuration identified by either exhaustive search
or the genetic algorithm is referred to throughout the re-
mainder of this paper as the customized configuration.
We use it in two places, first within the configuration profile
and secondly to comparatively evaluate the efficacy of the
profile-driven and best-of-breed approaches.

3.3 Cold Start
Both of our cold-start solutions leverage the configuration

profile.

• Best-of-Breed To identify the best-of-breed configura-
tion for each analytic function, each configuration in the
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Figure 3: Runtime versus MAP output by the Genetic Al-
gorithm during a search for the best software Artifact Con-
nectivity configurations.

profile was used to perform the analytics function on each
of the other projects in the profile. Metrics were computed
for each function (i.e., mean MAP, F2-Measure, and MMR).
The configuration returning the highest mean score was con-
sidered the best-of-breed for that analytic function. Using
this approach, all cold-start projects adopt the same config-
uration.

• Profile-Driven The profile-driven approach is dependent
upon correctly matching a cold-start project to its most sim-
ilar ‘neighbor.’ The data of the cold-start project is parsed
in order to extract its project characteristics. The similarity
of the cold-start project CS with an existing project P in
the configuration profile is computed by representing each
project as a vector of characteristics, and then computing
the cosine of the angle between the two vectors as follows:

Similarity =
ΣN

i=1(CSi ×Wi)× (Pi ×Wi)√
ΣN

i=1(CSi ×Wi)2 × ΣN
i=1(Pi ×Wi)2

(1a)

where CSi and Pi represent the scores ascribed to project
CS and P in dimension i, Wi is a weighting assigned to di-
mension i, and N is the total number of dimensions. The
project in the configuration profile exhibiting the highest
similarity score to CS is selected as its nearest-neighbor, and
its configuration used for the CS project. If two projects in
the configuration profile are deemed to exhibit equal simi-
larity to the cold-start project, then the configuration with
the fastest runtime is selected.

4. EVALUATION
In this paper we have proposed two cold-start configu-

ration solutions: best-of-breed and profile-driven. We also
used a third search-based approach to identify the customized-
configuration for each dataset. In this section we describe
a series of experiments that were conducted to evaluate
whether best-of-breed or profile-driven performed best as
a cold-start solution. We also investigate whether the cold-
start solutions returned results which were similar in quality
to those achieved using customized-configurations.

4.1 Experimental Design
We first constructed configuration profiles for each an-

alytic function. Each configuration profile was composed



Table 3: Datasets used to Construct Configurators

Artifact Connectivity
Project Source Target Links Src
Pos Train (AC1) Reqs (964) Design (242) 6961 Ind
Pos Train (AC2) Reqs (39) SubDes (241) 40 Ind
iTrust (AC3) Reqs (131) Code (227) 398 C
HIPAA (AC4) Safeguards(10) Reqs(1064) 78 C
HIPAA(AC5) Safeguards(10) Reqs(100) 31 C
WARC1(AC6) Func.Reqs(42) Sys.Reqs(89) 78 C
WARC2(AC7) NFRs(21) Reqs(59) 58 C
Easy-Clinic(AC8) TestCase (63) Classes(47) 204 C
English (AC9) UseCases (30) Class(47) 93 C
Italian (AC10) UseCase (30) Classes(47) 93 C
SMOS(AC11) Reqs (67) Code(100) 1044 C
CM1 (AC12) Reqs(1064) Des(116) 587 C
Event Trace (AC13) Reqs(41) Classes(50) 98 C
EBT2(AC14) Reqs(41) TestCase(25) 39 C
Med Pump (AC15) Component(21) Req(126) 131 C
Intel. Kiosk (AC16) Reqs(167) Process (167) 1847 LM
GANNT(AC17) Reqs(17) Design(69) 68 M
Albergate(AC18) Reqs(17) Code(55) 54 M
eANCI(AC19) UseCase(140) Code(55) 567 M
IceBreaker(AC20) UseCase(201) Class(73) 457 M
Data source: C=COEST, Ind = Industry, R=Miscellaneous

Fault Proneness
Project Versions (No. Classes,

No. Classes with Bugs)
Src

Ant
(FP1-FP7)

1.6.0(669,19); 1.6.5(669,17);
1.7.0(799,75); 1.7.1(598,24);
1.8.1(674,16); 1.8.2(845,35);
1.9.1(1080,35)

BZ

Batick-Jira
(FP8)

1.8(1676,137) BZ

JMeter
(FP9-FP11)

2.2(365,31); 2.3.2(352,15); 2.4(734,33) BZ

POI
(FP12-FP15)

3.0(1080,43); 3.8(1099,21); 3.9(1115,53);
3.10(1477,30)

BZ

Tomcat
(FP16-FP19)

6.0.20(793,19); 6.0.29(1100,19);
7.0.26(2201,70); 7.0.27(1819,27)

BZ

Velocity
(FP20)

1.4(217,145) PR[R]

Data Source: BZ=Bugzilla, PR=Promise repository.

Find the Expert
Project Issues Lines Type Exp Top Spars. Src
Sugar CRM (XP1) 523 330 B 58 60 5.5 SG
(XP2) 6880 4955 V 2422 50 99.1
Railway Sys. (XP3) 137 1633 B 118 54 30.2 *
(XP4) 1031 826 V 118 54 16.2
Second Life (XP5) 2120 1880 B 273 50 37.6 SL
Apache (XP6) 3309 1291 V 322 64 20.17 BZ
Tomcat 4 (XP7) 3304 2197 CB 97 50 43.94 BZ
(XP8) 3304 2197 CB 97 20 67.09
Tomcat 5 (XP9) 2384 444 V 151 18 24.67 BZ
FOP-Jira (XP10) 1209 2238 V 81 10 23.80 BZ
Ant (XP11) 4384 2352 CB 90 50 47.04 BZ
(XP12) 4384 1372 CB 90 20 68.60
Tomcat (XP13) 381 838 CB 28 50 16.76 BZ
Connectors (XP14) 381 451 CB 28 20 22.55
Lenya (XP15) 870 287 V 34 24 11.96 BZ
Guava (XP16) 330 285 V 93 21 13.57 GH
Zurb (XP17) 446 514 V 413 11 46.72 GH
Junit (XP18) 388 1023 CB 53 50 20.46 GH
(XP19) 388 697 CB 53 20 34.85
JHipster (XP20) 458 707 CB 53 20 35.35 GH
Source: BZ=Bugzilla, GH=Github. SG=SugarCRM,
SL=SecondLife, *=multiple sources

from the data of 20 projects as described in Table 3. For
Artifact Connectivity, twelve of the project datasets were
acquired from the COEST.org library with additional pro-
prietary datasets made available by our industrial partners
and research colleagues. The datasets ranged in size and in-
cluded trace links between diverse artifacts such as require-
ments, regulatory safeguards, use cases, test cases, and com-
ponent descriptions. The Fault Proneness datasets included
different versions of Ant, Batack-Jira, POI, TomCat, and
Velocity acquired primarily from Bugzilla or the PROMISE
repository. We were unable to use many of the PROMISE
datasets because the provided pre-computed metrics were
insufficient for our experiments and it was difficult to re-
trieve original versions of the source code. Finally, the meta-
profile for Find the Expert was constructed from five sets of
feature requests (containing requirements and users) and fif-
teen sets of bug assignments (consisting of bug reports with
associated fixes as well as the names of developers assigned
to fix the bugs).

A new metric, which we refer to as PercentOfAchieved-
Maximum (PAM), was used to comparatively evaluate tech-
niques. As its name suggests, it takes the highest score dis-
covered using the exhaustive search (Find the Expert) or
the genetic algorithm search (Fault Proneness and Artifact
Connectivity) for a specific dataset and analytic function.
It then computes the percentage of that score achieved by
a given configuration C. For example, if the highest MAP
score achieved for artifact connectivity in a specific project
were 0.550, and configuration C returned 0.359, then the
PAM score of C would be ≡ .359

.550
=.653.

We used a leave-one-out approach to evaluate both tech-
niques. Given a configuration profile composed of 20 pro-
jects, we set one project aside to serve as the cold-start
project during each iteration. The remaining 19 projects
were retained in the configuration profile. The best-of-breed
and profile-driven configurations were identified for the cold-
start project following the techniques described in Section
3. The recommended configuration was then used to per-
form the respective task in the cold-start project and MAP,
MMR, and F2 metrics computed as appropriate for each
task. We repeated this process for each of the three ana-
lytic tasks until all 20 projects from the initial configuration
profile had been tested as a cold-start project.

4.2 Results
We evaluate results for the best-of-breed and profile-driven

techniques and compare them to the results achieved using
the customized-configurations.

4.2.1 Profile-Driven Approach
In the profile-driven approach, the cold-start project is

matched against the profile by computing the cosine simi-
larity of project characteristics. We evaluated two alternate
options for identifying the nearest neighbor: non-weighted –
in which each project characteristic was assigned equal im-
portance, and weighted – in which we applied a two-layered
leave-one-out experimental process to customize weights.

Weightings were learned according to the following pro-
cess. In each run of the experiment, 19 projects were placed
into the training set and one was set-aside as a cold-start
project (CS∗) for evaluation purposes. Within the training
set of 19 projects we performed a leave-one-out approach
in which the configuration profile was constructed from 18



Table 4: Average PAM scores for Three Analytic Functions

Best-of- Profile-Driven
Analytic Function Breed With

Weights
Without
Weights

Artifact Connectivity 94.33% 91.21% 87.66%
Find the Expert 95.44% 80.87% 82.70%
Fault Proneness 69.28% 41.52% 50.60%

projects and the remaining project played the role of a cold-
start project (CS+). We then systematically applied mul-
tiple weighting configurations for matching CS+ to the 18
projects in the configuration profile. Weights ranged from
0 to 1 at intervals of 0.1 for each characteristic and all pos-
sible combination of weights were used to match CS+ to
its closest neighbor in order to recommend a configuration.
The weighting that produced the best result was recorded
in each case. The process was repeated until each of the
19 datasets had served as the cold-start project, and the 19
weightings were then averaged. The averaged weights were
then used to find the nearest neighbor of the 20th project
(i.e., CS∗) in order to recommend a configuration. This
configuration was used to execute the analytic function and
metrics (MAP, MMR, or F2) results were recorded. This
entire process was repeated 20 times until each project had
played the role of CS∗.

For Artifact Connectivity, in 18 out of 20 cases, the best
result was achieved when only a single dimension in the re-
duced space was used for matching purposes (i.e., weights
were set to 1 for this dimension, and 0 for all others). The
primary characteristics contributing to this dimension are
Average Size of Source Documents 30.16%, Number of Terms
in Source Document 29.09%, and Number of Overlapping
Terms 27.73%. In the case of Find the Expert and Fault
Proneness, we did not identify any form of reoccurring dom-
inant dimensions.

In Table 4 we compare PAM scores for weighted versus
unweighted approaches. In the case of Artifact Connectiv-
ity, the weighted approach improved the quality of the con-
figuration returning PAM of 91.21% versus 87.99% without
weightings. However, in the other two cases, without weight-
ing outperformed weighting. Fault Proneness returned PAM
of 69.28% without weighting and only 41.52% with weight-
ing, while Find the Expert returned 82.87% without weight-
ing and only 80.87% with weighting. Overall, the non-
weighted approach performed best and we therefore adopt
it throughout the remainder of the paper.

4.2.2 Best-of-Breed Approach
For the best-of-breed approach, we again used a leave-

one-out approach in which 19 projects were used to dis-
cover the best overall approach and then applied to the
left-out (cold-start) project. Results from this experiment
are reported. However, to provide insights into our ap-
proach we discuss the best overall configuration as learned
from all 20 projects – as this configuration would be used
for future datasets. The winning configuration for Arti-
fact Connectivity included a Semeru source-side stopper and
splitter, a target-side stemmer, and a voting mechanism
(Majority Rules) to integrate results from VSM smoothing
and standard tf-idf techniques. For Fault Proneness, the
winner included the Logistical regression model with PCA
(FaultThreshold 0.2, TOL value 90), response set for class,

weighted methods per class, lack of cohesion in methods, to-
tal cyclomatic complexity, average complexity of all meth-
ods, cohesion, closeness centrality, and eigenvector central-
ity. For Find the Expert, the overall winner incorporated a
boolean recommender and used the tanimoto similarity and
a threshold neighborhood.

4.3 Analysis of Results
To determine whether the best-of-breed or profile-driven

approach performed best, we computed PAM scores from
the experiment. We used the non-weighted version of the
profile-driven approach. The distribution of these scores was
plotted in Figure 4 as box plots. The PAM scores for profile-
driven configurations and best-of-breed configurations are
depicted as blue Xs and red squares, respectively.

From observing these box plots, and the PAM scores re-
ported in Table 4, it is immediately apparent that the best-
of-breed configuration outperformed the profile-driven ap-
proach in most cases. We then performed a series of sta-
tistical tests to determine whether the differences were sta-
tistically significant. Because the data is not normally dis-
tributed (per the Shapiro-Wilk test), variances were poten-
tially unequal, and sample observations overlap, we utilized
the Wilcoxon Signed Rank test to compare results. For
Artifact Connectivity and Fault Proneness, there is a sta-
tistically significant difference between the medians of the
two groups at confidence of 0.05 (AC:z − value = −3.06,
p − value = 0.002) (FP:z − value = −2.45, p − value =
0.014). In the case of Find the Expert, the difference is not
significant (XP:z − value = −1.89, p− value = 0.059).

Based on these results we conclude that the best-of-breed
approach outperformed the profile-driven approach in each
of the three analytics areas, although differences are not
statistically significant in the case of Find the Expert.

We also evaluated how well each technique performed in
comparison to the customized configuration. From Table
4 we see that the best-of-breed solution returned an average
of 94.33% of the customized-configuration scores for Artifact
Connectivity and 95.44% for Find the Expert. However, in
the case of Fault Proneness the best of breed returned an av-
erage of only 69.28% of the customized-configuration PAM
score suggesting that neither of our solutions adequately
solve the cold-start solution across all areas of software ana-
lytics. Insights into the difference in results may be partially
achieved by analyzing the range of PAM scores depicted in
the box plots of Figure 4 for each of the three analytic func-
tions. The range is far greater for Fault Proneness than for
the other analytic functions – suggesting that applying the
wrong configuration will have more significant impact upon
the quality of the prediction. However, we also observe that
in Find the Expert projects XP4, XP5, XP16, and XP17 for
which PAM scores covered a large range of the spectrum,
the best of breed still performed close to the maximum.

Given these results, we conclude that in two cases of Arti-
fact Connectivity and Find the Expert, the cold-start solu-
tion proposed in this paper is relatively effective; however, in
the case of Fault Proneness neither of our proposed solutions
effectively solved the cold-start problem.

Intuitively it makes sense that a profile-driven approach
should outperform a best-of-breed approach. We therefore
discuss reasons that the profile-driven approach may have
underperformed in our experiments. First, it is possible
that the identified project characteristics (cf. Table 1) did
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Figure 4: Percentage of Achieved Maximum (PAM) for � best-of-breed and X profile-driven configurations.

not adequately capture the differentiators which drive fea-
ture selection. However, the characteristics seemed reason-
able, and additional characteristics we initially proposed ex-
hibited high degrees of correlation with the set we finally
evaluated. A second plausible explanation is that the con-
figuration profiles were too small to perform well and that
significantly increasing the number and diversity of projects
in each profile would allow closer matches to be made. How-
ever, we note the very significant time and effort that went
into building profiles containing even 20 projects, and the
practicality barrier that exists in extending the profiles to
hundreds or even thousands of datasets.

5. RELATED WORK
Much of the related work in this area has focused on

demonstrating that analytic functions should be customized
for each project environment.

There is a large body of work in each of the three an-
alytic areas. We therefore provide only a brief summary
here. In the area of traceability (i.e., artifact connectivity),
researchers have proposed numerous diverse techniques [15].

The most similar work comes in the area of integrating trac-
ing solutions. Biggers et al. [7] explored different configura-
tions of a Latent Dirichlet Allocation (LDA)-based Feature
Location Technique (FLT). Panichella et al. [40] used a Ge-
netic Algorithm (GA) to adapt and configure LDA solutions
and showed that it led to higher accuracy than previously
non-configured results. Falessi, Cantone, and Canfora [18]
combined and evaluated several natural language process-
ing techniques for identifying associations between artifacts.
They concluded that techniques should be customized for
the artifacts. Lohar et al. [33] demonstrated that trace
accuracy increased if a trace engine were configured accord-
ing to the project context. Finally, Dietrich et al. [14] and
Moreno et al. [37], have all explored customization at the
query level. Together, this body of work highlights the im-
portance of customizing a tracing solution; however, at the
dataset level, prior work has not addressed the cold-start
configuration problem that we address in this paper.

There is a similarly large body of work in the area of
fault prediction. For the most part, the work highlights
the diversity of candidate techniques. For example, Can-
fora and Oliveto [9] proposed cross-project defect prediction



using a multi-objective logistic regression model built using
a genetic algorithm. Jiang et al. [29] showed that inte-
grating requirements-based textual metrics with code-based
ones improved predictive ability. Singh et al. [45] compared
logistic regression with multiple machine learning methods
for predicting fault-prone code. Ostrand and Weyuker [39]
applied a statistical model based on historical fault informa-
tion and file characteristics to predict faults at the file level.
Zimmermann et al. [51] built a model using mapped defects
from the Eclipse bug database combined with source code
metrics to predict bug-prone modules. One of our regression
modeling features is closely built upon their approach. Elish
and Elish [17] showed that support vector machines can out-
perform statistical and other machine learning techniques.
Others reported success with random forests [20], statistical
regression models [38], and change management data [19].
Each technique requires different tools and different data,
and all of them would be candidates for modeling as avail-
able features and for integration into our software analytics
configurator.

Finally, several researchers have explored the use of rec-
ommender systems in the software engineering domain. One
primary focus has been on identifying people to fix bugs.
Researchers such as Cubranic and Murphy [13], Ahsan et
al. [3], and Anvik et al. [4] have trained classifiers to identify
associations between bug descriptions and assigned develop-
ers. Mockus and Herbsleb [36] directly analyzed and used
developers’ source code changes to identify experts for var-
ious parts of the system. Other researchers have focused
on recommending domain experts during the requirements
engineering process. Castro-Herrera et al. [10] explored a
variety of content-based and collaborative-filtering recom-
mender systems for identifying domain experts based on
their contribution to online discussion forums. Maalej et
al. [21] used sentiment analysis to identify users interested
in specific features. These techniques provided the inspira-
tion for the techniques we incorporated into our ‘Find the
Expert’ configurator.

In a more general sense, Thornton et al. [47] address
the combined algorithm selection and hyperparameter opti-
mization (CASH) problem to assist non-expert users using
WEKA to select the best machine learning algorithm and
attendant hyperparameters. Our approach addresses the
cold-start problem using three different analytic functions
in the software engineering domain, while Thornton et al.
examine the ability to learn parameters and the best ma-
chine learning approach for a large collection of unrelated
datasets. Our work uses objective/fitness functions tailored
to the task versus more generic measures.

6. THREATS TO VALIDITY
External validity evaluates the generalizability of the

approach. To address this threat we applied our approach to
three different analytic functions. We expect that the lessons
learned will be applicable to other types of functions, but
broader analysis is necessary to understand the scope and
constraints of our claims. Furthermore, we incorporated 20
relatively distinct datasets for each function; however, the
challenge of collecting so much data meant that our choices
were limited. Nevertheless, the collected data was evaluated
and shown to be quite diverse.

Construct validity evaluates the degree to which the
claims were correctly measured. For each of the analytic

functions we identified a commonly used metric which has
been broadly adopted in the domain. This metric was used
to measure the quality of an individual configuration. Fur-
thermore, we opted to compare configurations according to
the percentage of the maximum metric score they were able
to achieve. This allowed us to compare top-ranking config-
urations against each other but with a comparative, rather
than an absolute, measure of success. We justify this be-
cause our goal was to compare the performance of different
configurations.

Internal validity reflects the extent to which a study
minimizes systematic error or bias, so that a causal conclu-
sion can be drawn. We attempted to reduce bias by using a
diverse and relatively extensive set of data samples for each
of the three analytic areas. However, constructing or ac-
quiring such datasets can be extremely time-consuming and
challenging and therefore we were limited to 20 datasets per
analytic function. Nevertheless, we believe this to be the
largest number of datasets used so far for investigating any
of the three areas of Artifact Configuration, Fault Proneness,
or Find the Expert.

7. CONCLUSION
In this paper we addressed the cold-start software analyt-

ics problem by proposing two different configuration tech-
niques: a ‘best-of-breed’ and a ‘profile-driven’ approach. We
focused on the three different analytic areas of artifact con-
nectivity, fault-prediction, and finding the expert to evaluate
the approaches. We have determined that in computing pro-
file similarity, considering all of the features is preferrable to
focusing on the dominant ones. Our results have further-
more shown that the best-of-breed approach outperformed
the profile-driven approach; however, it returned acceptable
results for only two of the three analytic functions.

As previously discussed, it is plausible that the profile-
driven approach might perform better if we could collect ad-
ditional data sources and construct larger and more diverse
configuration profiles. As techniques for mining datasets
within the Software Engineering community continue to im-
prove through the advent of tools such as BOA [16], such
an approach may be viable. However, we believe that in-
cluding additional characteristics is likely to result in small
marginal performance improvement. Similarly, we expect
that noticeable improvement from new sources (if possible)
would require a very large number of new datasets.

We conclude by pointing out that cold-start solutions are
only intended for use in early phases of a project and have
natural performance limitations. As sufficient project-specific
data is accumulated, the analytic function should be re-
trained on its own data and the cold-start configuration re-
placed with a customized configuration.
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Table 5: Appendix A: A Summary of Features used in each Configurator

Artifact Connectivity (aka Just-in-time Traceability)
Goal: To leverage information retrieval techniques to generate trace links between artifacts (e.g.,

between requirements and design artifacts), Functions are composed from preprocessors, similarity
computations, post-processors, etc.

Objective: Maximize Mean Average Precision (MAP): MAP =
∑Q

q=1 AP (q)/Q where Q = total number of

queries and AP = Average Precision per query (more)
Preprocessors Stemmers (3): Reduces each word to its morphological root. TraceLab Lib.

Stoppers (3): Removes common words. TraceLab Lib.
Splitters (2): Splits compound terms, e.g., camelCase style variable names. TraceLab Lib.
Character cleanser (2): Removes certain characters from the text. TraceLab Lib.

Similarity
Computations

Latent Semantic Indexing (LSI): Identifies latent topics and leverages these
topics to identify similarities. Configured by number of latent topics.

BlueBit Matrix
lib.(http://bluebit.gr)

Vector Space Model (VSM): Represents each document as a vector of terms.
Utilizes various formulas to compute similarity between vectors, e.g., Cosine,
Jacard, SimpleCount.

Existing TraceLab
Component

Post-Proc. Voter: Merges results from multiple similarity computations. New component

Fault Proneness
Goal To identify classes which are likely to exhibit faults in the future. Numerous publications have

proposed a wide variety of solutions including predictions based on coupling and cohesion metrics
[28, 29], network analysis metrics [50], bug and change history [31], etc.

Objective: F-measure:the harmonic mean of precision and recall. F = 2·precision·recall
precision+recall

.

Metrics CKJM Metrics: Traditional Chidamber and Kemerer metrics [11, 46] www.spinellis.gr
/sw/ckjm/

Jhawk Metrics: A commercial tool providing 105 system, package, class, and
method level metrics, e.g., Cyclomatic Complexity[34], Halstead measures
[23]

virtualmachinery.com/
jhawkprod.htm [1]

Network Analysis Metrics: DegreeCentrality, InDegreeCentrality,
LoadCentrality, OutDegreeCentrality, ClosenessCentrality, PageRank,
BetweennessCentrality, EigenvectorCentrality

https://networkx.
github.io/

Regression
Models

Logistical regression: (i) Normalized data, (ii) Probit and Logit models, (iii)
with/without PCA, (iv) Prediction thresholds (range: -0.5-0.3),
(v)TOLValues (range: 10%-90%)

R Statistics Package
[2]

Classifier Näıve Bayes: Probabilistic classifier based on independence assumption
between predictors.

Weka [22]

JRIP: Implements RIPPER rule learner that builds a ruleset by repeatedly
adding rules to an empty ruleset until all positive examples are covered.

Weka [22]

J48: Implements the C4.5 decision tree algorithm, breaks the data into
smaller subsets and uses information gain to determine attribute for splitting
data.

Weka [22]

Random Forest: An ensemble learning method that constructs many
different decision trees during training, and during classification, outputs the
class that represents the mode of the runtime decisions.

Weka [22]

Find The Expert
Goal To identify an expert in a specific area, for example, somebody who has the skills to fix a specific

bug or is a domain expert in a specific requirements topic.
Objective: Maximize Mean Reciprocal Rank, MRR = 1/n

∑n
i=1 1/rank(i), where n is the number of queries,

and rank(i) the rank of the item within the list of elements proposed by the recommender
Preprocessors Topic Modeling: Mallet is a Java-based tool for natural language processing,

topic modeling, and other machine learning applications to text.
Mallet [35]

Recommender
System

Recommender: Apache Mahout 0.10.2 [5], NReco C# Recommendation
Engine, Boolean Recommender, User-based

http://mahout.apache.
org,
www.nrecosite.com

Topic Similarity: Spearman-Correlation, PearsonCorrelation,
UncenteredCosine, CityBlock Similarity, TanimotoCoefficient
Neighborhood: Nearest-Neighbor, Nearest-Neighbor Threshold
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and G. Antoniol. Combining probabilistic ranking and
latent semantic indexing for feature identification. In
Proc. of the 14th Int’l Conf. on Program
Comprehension (ICPC 2006), pages 137–148, 2006.

[43] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proc. of the 25th Annual Int’l
ACM SIGIR Conf. on Research and Development in
Information Retrieval, SIGIR ’02, pages 253–260, New
York, USA, 2002. ACM.

[44] Y. Shin, J. H. Hayes, and J. Cleland-Huang.
Guidelines for benchmarking automated software
traceability techniques. In Proc. of the 8th
IEEE/ACM Int’l Symp. on Software and Systems
Traceability, SST 2015, pages 61–67, 2015.

[45] Y. Singh, A. Kaur, and R. Malhotra. Prediction of
fault-prone software modules using statistical and
machine learning methods. Int’l Journal of Computer
Applications, 1(22):8–15, 2010.

[46] D. Spinellis. Tool writing: a forgotten art? (software
tools). Software, IEEE, 22(4):9–11, July 2005.

[47] C. Thornton, F. Hutter, H. H. Hoos, and
K. Leyton-Brown. Auto-weka: Combined selection and
hyperparameter optimization of classification
algorithms. In Proc. of the 19th ACM SIGKDD Int’l
Conf. on Knowledge discovery and data mining, pages
847–855. ACM, 2013.

[48] Z. Zhang, C. Liu, Y. Zhang, and T. Zhou. Solving the
cold-start problem in recommender systems with
social tags. CoRR, abs/1004.3732, 2010.

[49] P. R. Zimmermann, Thomas and A. Zeller. Predicting
defects for eclipse. In Proc. of the Int’l WS on
Predictor Models in Software Engineering,
PROMISE’07: ICSE Workshops 2007, pages 9–9.
IEEE, 2007.

[50] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In Proc.
of the 30th Int’l Conf. on Software Engineering, ICSE
2008, pages 531–540, 2008.

[51] T. Zimmermann, N. Nagappan, H. C. Gall, E. Giger,
and B. Murphy. Cross-project defect prediction: a
large scale experiment on data vs. domain vs. process.
In Proc. of the the 7th Joint Meeting of the European
Software Engineering Conf. and the ACM SIGSOFT
Symp. on The Foundations of Software Engineering,
ESEC/FSE’09, pages 91–100, 2009.


