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Abstract 
Requirements assurance aims to increase confidence in the 

quality of requirements through independent audit and 

review. One important and effort intensive activity is 

assurance of the traceability matrix (TM). In this, 

determining the correctness and completeness of the many-

to-many relationships between functional and non-

functional requirements (NFRs) is a particularly tedious 

and error prone activity for assurance personnel to peform 

manually. We introduce a practical to use method that 

applies well-established text-mining and statistical methods 

to reduce this effort and increase TM assurance. The 

method is novel in that it utilizes both requirements 

similarity (likelihood that requirements trace to each other) 

and dissimilarity (or anti-trace,  likelihood that 

requirements do not trace to each other) to generate 

investigation sets that significantly reduce the complexity of 

the traceability assurance task and help personnel focus on 

likely problem areas. The method automatically adjusts to 

the quality of the requirements specification and TM. 

Requirements assurance experiences from the SQA group at 

NASA's Jet Propulsion Laboratory provide motivation for 

the need and practicality of the method. Results of using the 

method are verifiably promising based on an extensive 

evaluation of the NFR data set from the publicly accessible 

PROMISE repository. 

Keywords- traceability; software assurance; completeness; 

non-functional requirements 

1. INTRODUCTION 

Though it is well known that traceability information can 

assist with a number of vital software engineering and 

software assurance activities, the capture and maintenance of 

such information is still not commonplace.  This is largely 

due to the fact that building requirements traceability 

matrices (RTMs), even with automated support, is very time 

consuming and error prone.  RTMs are thus not maintained 

and hence cannot be used to support activities such as change 

impact analysis, regression testing, criticality analysis, etc.  

Researchers have sought to improve automated techniques 

for generating and maintaining RTMs.  However, there has 

been very little done to address the assessment, either 

manually or with automated support, of RTMs that are built.  

In fact, a recent survey of traceability in the requirements 

engineering community as well as in the model-driven 

development community [1] notably lacks any discussion of 

the assessment of RTMs.  As a point of terminology, when a 

party not directly involved in generating the requirements 

performs assessment, it is generally called assurance. 

The Software Quality Assurance (SQA) group at NASA‟s 

Jet Propulsion Laboratory (JPL) is one of many 

organizations developing or assuring large mission- and/or 

safety-critical systems.  For them, the development of RTMs 

is a mandated activity. Because of the high-risk typically 

associated with JPL projects, assurance of RTMs is also a 

mandated activity, albeit one that is not being accomplished 

as effectively or efficiently as desired.  Interviews with SQA 

personnel indicate that “Spot checking” and “completeness 

by expectation” are phrases that best describe the heuristics 

currently applied when assessing traces.   

As if these tracing challenges weren‟t daunting enough, a 

further challenge confronts assurance personnel – that of 

non-functional requirements or NFRs.  Assurance staff are 

responsible for ensuring that all NFRs trace to all appropriate 

functional requirements (or FRs), and that there are no 

inappropriate or spurious traces (i.e., requirements that with 

certainty do not trace, or anti-traces). This is also referred to 

informally as ensuring the completeness and correctness of 

the NFR traces. What makes this difficult is that the degree 

or strength of a trace is not considered; it is a binary 

relationship, each NFR either traces or anti-traces to an FR. 

What exactly determines an appropriate degree is generally 

unspecified, but the intent is to only trace an NFR to an FR 

upon which it has an observable effect. We refer to the RTM 

sub-matrix of traces from NFRs to FRs simply as the NFR-

FR matrix. 

Because there may be missing traces, this is a highly effort-

intensive activity as assurance personnel must check all 

possible traces, not just those already indicated in a 

traceability matrix. In addition, traceability assurance is a 

highly detail-oriented and information-intensive activity, 

unguided and tedious for humans to perform. Clearly 

automated traceability techniques could greatly assist in 

guiding assurance efforts.  Unfortunately, approaches do not 

currently exist to assist with such completeness or 

correctness assessments. 

We introduce a pragmatic text-mining based approach 

currently under study within JPL‟s SQA group to assessing 

the completeness and correctness of NFR-FR traces that 

reduces the effort required of assurance personnel while 

increasing quality and confidence. Specifically, we introduce 

a method akin to graph-based semi-supervised classification 

[2] utilizing a mixed model of requirements similarity and 

dissimilarity to automatically generate investigation sets that 

help identify low-risk and possible problem areas in the 

NFR-FR RTM.  The approach also supports automatic 

adjustment to the quality of the trace under assessment. The 

approach was empirically validated through a series of 

controlled experiments and a comprehensive case study 

using data from the PROMISE repository [9]. 

Because the method is being developed for use within a 

practicing assurance organization, our approach is more 

pragmatic than theoretical. In this, success is determined by 



how well the method meets certain practical key objectives 

for application. These will be detailed later. Pragmatics 

dictates that we try to make use of established techniques and 

technology.  Notwithstanding, there are a number of 

novelties in our approach: a) It uses information contained in 

a given RTM to address difficult assurance problems; b) It 

leverages information generated independently from both 

similarity and dissimilarity between requirements; c) It 

integrates deterministic classification rules with statistically 

generated classifications; and d) It considers both traces and 

anti-traces as first class artifacts. 

The paper is organized as follows.  Section 2 discusses 

requirements assurance.  Manual performance of NFR-FR 

tracing is discussed in Section 3.  Related work is presented 

in Section 4.  Section 5 presents text-mining support for trace 

assurance while Section 6 discusses the investigation set 

generator.  A case study is presented in Section 7. Evaluation 

follows in 8. Section 9 presents validation of the method and 

Section 10 concludes. 

2. REQUIREMENTS ASSURANCE AND TRACING 

What is requirements tracing assurance ? 

Requirements assurance is concerned with independently 

(from requirements developers) assessing and ensuring the 

quality of the requirements. Chiefly this includes assessing 

the correctness and completeness of the requirements for 

which tracing is key. This tracing encompasses high and low 

level requirements as well as their relationships with other 

artifacts (relationships between requirements and test cases, 

e.g.) and within artifacts (tracing between NFRs and FRs). 

Tracing assurance is typically performed by assurance 

professionals within an SQA engagement, while conducting 

verification and validation (V&V) of requirements, or within 

an independent V&V (IV&V) assessment.  

Why assure traces? 

In 1999, the Mars Climate Orbiter (MCO) was lost due to the 

incorrect use of English measures by the development 

contractor (not in keeping with the interface specifications 

which called for metric units).  In addition to the loss of the 

$125 million Orbiter, further issues were caused for its 

partner mission Mars Polar Lander which was to receive data 

from the climate orbiter.  While official reports discussed 

breakdowns in the V&V of the system (including lack of end 

to end testing for the trajectory tracking software), a careful 

NFR-FR trace assurance may have avoided the problem. 

Software assurance is a risk management technique.  As with 

defects, it is well known that the earlier that risks can be 

identified and mitigated, the better.  Specifically, it is 

important to ensure that all FRs have considered the 

appropriate NFR qualities and to ensure that adequate tests 

are planned for execution and quality specifications are 

satisfied.  Toward that end, JPL SQA primarily performs 

requirements tracing assurance early in the lifecycle, 

generally during requirement definition or before appropriate 

milestone reviews.  They have found that this avoids more 

costly rework later in the lifecycle (at/after testing).  

The NFR-FR completeness of tracing problem 

In NFR-FR traceability assurance, correctness is important 

but completeness is a more significant focus as it generally 

presents more risk. For example, a missing NFR-FR trace 

may lead to a later omission of a test cover trace, and 

subsequently to omission of a test for the quality of a critical 

function (e.g., metric units for output of propulsion system 

monitor). Incorrect NFR-FR tracings are more likely to be 

identified and resolved at various stages (e.g., reviews, test) 

whereas a missing trace can more easily go undetected and 

thus become a latent defect (i.e., lies dormant in the system 

or is detected only when it presents a failure in operation). 

Traceability research has also shown that humans are better 

at discovering errors of commission in traces than at 

discovering errors of omission [11].  In addition, NFRs 

present a particularly challenging problem in that they tend 

to be broadly relevant to many FRs.  We discuss the 

challenge of NFR-FR trace assurance next. 

3. CHALLENGE OF MANUAL NFR-FR TRACE ASSURANCE 

There are three major challenges to the manual assurance of 

NFR to FR traces:  size, complexity, and effort/cost.  We 

discuss each below. 

Size 

Imagine a very small software requirements specification 

consisting of just 50 requirements, 20 of which are FRs and 

30 of which are NFRs.  There are 20 x 30 = 600 possible 

traces between the FRs and NFRs that may have to be 

assured.  It is not optimal for analysts to assess 600 traces 

manually, but it is possible.  In contrast, the MCO 

(mentioned earlier) had over 7500 requirements, a portion of 

which were NFRs. If we assume 7300 FRs and 200 NFRs, 

there could still be 1,460,000 traces to assure.   

Complexity 

NFR to FR trace assurance is a matching problem, central to 

graph theory, which can be modeled as a bi-partite graph (the 

tracing graph) on the two sets of requirements NFR and FR 

where an edge indicates that a given non-functional 

requirement affects the related functional requirement. Such 

bi-partite graphs are equivalent informationally to an NFR-

FR matrix. The matching problem is relevant due to the fact 

that every NFR must trace to at least one FR and that the 

focus is on validating a “tracing” from the many “valid” 

combinations of tracings possible (that is, not all valid traces 

of an NFR-FR are expected to be relevant or of interest). 

     Even though the tracing graph is expected to be relatively 

sparse (generally each NFR traces only to a small percentage 

of FRs), assuring completeness requires examination to 

ensure that edges are valid and no edges are missing. This 

implies that the complete bi-partite graph K(NF,F) with 



|NF|*|F| edges must be reviewed to verify the trace/anti-trace  

relevancy. This requires O(|F|^2) number of steps 
1
. 

     Part of the assurance process is determining the risky and 

non-risky areas, thus we cannot reduce the complexity by 

prioritizing or reducing the set of requirements to investigate 

(the “investigation set”) based solely on external risk or cost.  

     We have taken a somewhat simplified view of the 

problem. At JPL, requirements tend to be hierarchical: there 

is “flow-down” from one level to another (hence the terms 

upwards/downwards tracing). Thus if there is a trace at one 

level, this trace will flow-down to the requirements below it. 

This can significantly reduce the number of traces to be 

verified. However, in order to “depend” on this hierarchy, 

one must first validate that the trace is at the appropriate 

level.  Hence, “layering” the requirements does not totally 

circumnavigate the complexity of the assurance problem. 

Effort/cost 

NFR to FR tracing assurance is a costly and effort 

consuming activity. Consider the MCO project with 7500 

requirements.  If we assume that there are 1,460,000 traces to 

assure and assume an average of 1 minute per trace audit (a 

highly optimistic estimate), then we expect |7300|*|200|/60 = 

24,333 person-hours of effort. With a 40-hr work week, it 

would take 11.7 people an entire year to complete the work. 

As a result, assurance personnel rarely perform exhaustive 

analysis. Rather, they become “familiar” with the 

requirements and use a variety of approaches to approximate 

a completeness check. A common approach is to “spot 

check” to rapidly identify potential problem areas and then to 

focus on these. Another popular approach is to only validate 

the existing traces and then prune and expand these. 

Assurance personnel will augment these approaches by 

considering related groups of requirements. For example, if 

there is a trace from a particular NFR to a FR, then it is often 

fruitful to look at the requirements that are similar or 

strongly related to that FR for traces.  

All these approaches assume a sufficient familiarity with the 

entire set of requirements and rely heavily on the experience 

and domain knowledge of assurance personnel. Given this 

assumption, completeness is addressed by comparing a given 

trace to what traces are “expected” relative “not expected” in 

the particular system. Gaps in domain knowledge are 

unavoidable (a person cannot keep all knowledge of a system 

in their mind at one time), thus making it difficult to gauge 

the believability of a completeness audit.  

It is clear that the above challenges point to the need for 

automated tool support. However, such support must also be 

in alignment with assurance practices as indicated above. 

4. RELATED WORK 

Related work is addressed in the subsections below. 

                                                 
1
 assuming |F| > |NF|. 

Challenges in Requirements Traceability Research and 

Practice 

There has been relatively little work on the assessment or 

quality assurance of traces. The only work on assessing 

traces is that of Dekhtyar, et al. [5] where a committee of 

automated methods was executed and each voted on the 

accuracy of a given RTM link.  A number of different voting 

schemes were used.  The approach succeeded at finding and 

rejecting false positives (pf) in RTMs created by automated 

methods. Our paper meets these traceability challenges by 

reducing the human effort required for and by increasing the 

confidence in assurance activities performed for the RTM. 

In addition to the shortcoming of research on assessing 

traceability matrices, there is also a lack of work on non-

functional requirements (NFRs).  Next, we address research 

to date on NFR traceability. 

Tracing Non-functional to Functional Requirements 

Our work examines the satisfaction or completeness of NFRs 

by FRs (each NFR minimally needs to map to at least one 

FR in order to be „satisfied‟).  Holbrook, Hayes, and 

Dekhtyar examined the use of RTMs to assist with 

performing satisfaction assessment determining if 

requirements were satisfied by design, e.g. [6].  Such a 

technique could be used to examine each NFR and see if it is 

satisfied by one or more FRs.  It should be noted that this 

technique requires that each FR/NFR be chunked (parsed 

into phrases) as well as tagged with parts of speech.  Our 

technique does not require this pre-processing. Another 

unique aspect of our work is the use of bi-partite graphs.  

Though all tracing work directly or indirectly represents 

RTMs as graphs, traceability research does not discuss the 

assessment of the RTMs based on this structure.  Next, we 

examine the use of clustering to support tracing. 

Clustering Support for Automated Requirement Tracing 

Cleland-Huang, Settimi, Zou, and Solc examined a technique 

for automating the detection and classification of NFRs 

based on stakeholders‟ quality concerns across requirements 

specifications containing scattered and non-categorized 

requirements, and also across freeform documents [7].  In 

fact, our validation uses their datasets and classifications. 

Compared to the Huang work, a unique contribution of our 

clustering support is to make use of both requirements 

similarity and dissimilarity to generate two sets of clusters 

tracing NFRs to FRs. 

Goldberg, Zhu, and Wright present a semi-supervised 

classification algorithm that learns from dissimilarity and 

similarity information on labeled and unlabeled data to 

handle both binary and multi- class classification [2]. This 

work provides a theoretical support for our clustering 

methods. 

5. TEXT-MINING SUPPORT FOR TRACE ASSURANCE 

We now describe the approach for using text mining to 

support trace assurance. For clarity, we emphasize a few 

things up front. First, the method does not aim to generate an 



RTM. Indeed, the method requires an existing RTM as input 

i.e., the RTM to be assured. Second, the aim of the method is 

not to automate the detection of or assure FRs or NFRs. 

However, a by-product of tracing assurance can help with 

this. Last, the method is not designed to detect vague or 

poorly stated requirements.  

With the above in mind, we state that a successful method 

for automated support of trace assurance at JPL would meet 

the following vital objectives: 1) Must be compatible with 

the way assurance personnel address trace assurance (e.g., 

“expected” and “unexpected” traces based on prior 

experience, domain knowledge, and familiarity with the 

requirements); 2) Must be empirically driven, adjusting to 

the quality of the requirements specification (e.g., vaguely 

specified requirements should result in more conservative 

automated results) and adjusting to the quality of a given 

RTM; 3) Must be easily implemented and integrate with 

existing requirements managers (e.g., DOORS, RequisitePro, 

etc.); 4) Must have an established theoretical foundation; 

Must be practical to use (e.g., low-learning curve) and 

provide meaningful guidance; 5) Must be based on open 

methods and technologies (assurance cannot be based on 

black-box solutions); 6) Must reduce overall effort, increase 

efficiency of effort, and increase confidence in results. Note 

that Hayes, Dekhtyar, Sundaram, and Howard have posited 

essential requirements for any requirements tracing tool as 

examined from the user‟s perspective.  Objective (5) ties to 

their Usability sub requirement (of Believability) [7]. 

We now describe an approach to meet the above objectives 

in a series of concepts and examples given below. 

Trace investigation sets 

     The fundamental challenge for trace assurance is 

effectively managing the verification of a large number of 

traces and anti-traces. A natural means of addressing this is 

to employ a divide and conquer strategy that partitions these 

sets into more manageable investigation subsets based on 

meaningful rules and empirical properties of the 

requirements. For example, an obvious rule is “each NFR 

must trace to at least one FR” and the resulting investigation 

set (a subset of the traceability graph that is under 

assessment) would simply be all those NFRs without traces. 

Determining rules and properties and making them 

actionable (e.g., if an NFR has no traces then it must be 

removed or be reported as having missing traces) helps 

address objective (5).  

Aligning rules and empirical properties with assurance 

personnel‟s a priori knowledge helps meet objective (1). 

Partitioning the assurance tasks into investigation sets greatly 

reduces the complexity and narrows the focus of the 

assurance effort. Furthermore, each investigation set implies 

particular assurance activities (e.g., look for a missing trace), 

“guiding” the effort to be more efficient and effective 

thereby helping to meet objective (7). If some investigation 

sets have a low risk (when appropriately defined) of its 

elements being incorrectly determined (as being in the set, 

for example), then such sets can be eliminated or “lightly” 

assured further helping to satisfy objective (7). 

To illustrate, assume that as we examine the traceability 

matrix to be assured, we notice an observable property 

between a pair of requirements called “high-similarity” 

(perhaps each requirement contains many of the same words, 

e.g.) which we believe is highly correlated (but this is not 

certain) with requirements that have been associated to each 

other in the traceability matrix (meaning that it is highly 

correlated with our notion of trace). We note that absence of 

this property between two requirements does not imply that 

they anti-trace. The absence of “high-similarity” provides no 

information, whereas the presence of “high-similarity” 

appears to provide evidence of trace.  

With this idea in mind, let us examine the notion of trace 

investigation sets further.  In the previous example, we 

discussed the trace set or T.  Fig. 1 shows T in the top left; 

all NFRs trace to at least one FR, but do not trace to every 

FR.  By simply examining the edges that do not exist in T, 

we obtain the anti-trace or AT (shown in the top middle 

section of Fig. 1). Based on T and AT and our notion of 

“high similarity” (called HT), we can generate four trace 

investigation sets L, M, F, N (see Fig. 1).  

 

 
Figure 1.  Illustration of partitioning into investigation sets. 

We consider traces in the investigation set L (T∩HT, as 

shown in Fig. 1) to be low risk as they have two independent 

sources corroborating the trace (they were in the RTM under 

assessment and we observed the high-similarity property). 

Items in M are at high-risk of being possible omissions from 

T as we expect requirement pairs with high-similarity to 

trace (but not the converse). Items in M need to be carefully 

checked to see if they are indeed traces. We have little 

information about items in F, but as they did not have high-

similarity, they should be checked first as possible bad traces 

(also called false positives or errors of commission). Last, 

there is little to say about items in N other than that they do 

not have high-similarity and they did not trace, so we first try 

to verify that they are anti-traces.  

The example just presented, while simplified and overly 

generic, is in essence our method. The complexity reduction, 

work avoided (assuming we do not check the low-risk set L), 

and increased assurance efficiency is self-evident. Increased 



confidence in the assurance results is in part self-evident, but 

also depends greatly on our confidence in the correlation of 

the high-similarity property and requirements that trace.  

Finding properties that are practical to observe and in which 

experienced assurance personnel have high confidence is a 

key component of our method. Also, finding properties that 

determine both inclusion and exclusion of elements into an 

investigation set is essential to effectively addressing the 

trace completeness problem; this is discussed next.   

Similarity and Dissimilarity of requirement pairs 

Several studies have suggested that requirements that trace 

have a high degree of “similarity” based on the terms they 

use [11] and in the semantic meaning or context in which 

they are used [12]. This is intuitive as a trace indicates a 

relationship between a pair of requirements that are typically 

expressed by using common or highly related terminology 

(e.g., NFR: “The Xs shall have Y,” FR: “This X shall do Z”, 

the trace is the implied relation on all Xs). Similarly, but 

with subtle differences, requirements that anti-trace have a 

high degree of dissimilarity. This is intuitive as we do not 

expect to see similar terms used in a similar context for 

requirements with little or no relationship. Rather, we expect 

them to have a high degree of independence.   

Our observations of trace assurance in practice and 

interviews with JPL SQA personnel indicate that, indeed, 

similarity and dissimilarity form the fundamental basis for 

verifying traces and anti-traces. Hence, similarity and 

dissimilarity are good candidates for empirical properties to 

generate investigation sets that satisfy our objective (1). 

However, “high degree of similarity/dissimilarity” are 

generally subjective assessments which are somewhat 

ambiguous, arbitrary, or inconsistent, and perhaps difficult to 

observe in an automated manner. It is unclear what 

confidence we can have in such assessments, especially 

when results vary between assessors and between 

assessments performed by the same assessor; this runs 

contrary to our objectives (3), (4), and, in part, (7). 

Fortunately, text-mining research has produced a number of 

well-established approaches for reliably automating the 

assessment of similarity/dissimilarity between documents 

(requirements, in our case). One such approach is Latent 

Semantic Analysis (LSA) [10].  Briefly, LSA is a theory and 

method for extracting and representing the contextual-usage 

meaning of words by statistical computations applied to a 

large corpus of text. The underlying idea is that the totality of 

information about all the word contexts in which a given 

word does and does not appear provides a set of mutual 

constraints that largely determines the similarity of the 

meaning of words and sets of words to each other.  

We know that LSA produces measures of word-word, word-

passage, and passage-passage relations that are reasonably 

well correlated with several human cognitive phenomena 

involving association or semantic similarity. LSA allows us 

to approximate human judgments of overall meaning 

similarity, estimates of which often figure prominently in 

research on discourse processing. It is important to note from 

the start, however, that the similarity estimates derived by 

LSA are not simple contiguity frequencies or co-occurrence 

contingencies.  Rather, the estimates depend on a deeper 

statistical analysis (thus the term "Latent Semantic") that is 

capable of correctly inferring relations beyond first order co-

occurrence.  As a consequence, LSA is often a much better 

predictor of human meaning-based judgments and 

performance than contiguity and co-occurrence counts.  

Approximating human judgment of dissimilarity is a related, 

but fundamentally different, problem than similarity. 

Research has shown that we cannot define dissimilarity as 

“not similar” because natural language interpretation does 

not follow the law of the excluded middle. Thus, similarity 

and dissimilarity between requirements provide different 

information; a fact that our method exploits.  Fortunately, 

LSA is also capable of characterizing dissimilarity. 

Correlation and likelihood of  trace/anti-trace 

Given a pair of requirements (NFRi, FRj), the LSA 

characterization for similarity results in a similarity measure  

S(NFRi, FRj)  [-1,1] and for a dissimilarity  measure 

D(NFRi, FRj)  [0,1], where higher values indicate greater 

similarity/dissimilarity. Typically, similarity is expressed as 

a symmetric matrix S[i,j]=S(NFRi, FRj) with D[i,j]=D(NFRi, 

FRj) expressing dissimilarity.  We have performed a number 

of studies using simulated data and real project data (from 

the NFR PROMISE data set), which consistently support the 

desired correlations of LSA similarity/dissimilarity with 

trace/anti-trace: 1) likelihood of trace increases with LSA 

similarity (S), and 2) likelihood of anti-trace increases with 

LSA dissimilarity (D). Curiously, low LSA similarity does 

not increase likelihood of anti-trace, and the same for low 

dissimilarity and trace. 

There are a variety of ways to interpret the above statements.  

For example, in one study we fit a probit model: 

 

P[(NFRi, FRj) is a trace | S(NFRi, FRj)] =  

[ S(NFRi, FRj)+].  

 

to both simulated and real project data (NFR P10). We found 

that the parameter  was statistically significant. We do not 

detail these studies further here. Rather, note that while we 

have high confidence in the correlation of the LSA measures 

in general, in practice such correlations must be verified for 

each particular case.  

Having performed the more general correlation studies, such 

as the probit model, for a particular RTM, it suffices to 

perform a simple hypothesis test to indicate if the estimator 

(e.g., the median or mean) for the set of observations in S (or 

D) for a set of requirement pairs that trace (or anti-trace) is 

significantly different than the estimator for the set of pairs 

that do not.  Our general studies show that if there is 

significance, the correlation will be expected. We will show 

examples of this in the case study given in section 7.  



However, correlation does not address the problem of 

sufficient degree of similarity or dissimilarity. As discussed 

earlier, assurance personnel determine subjectively what 

degree of similarity/dissimilarity indicates a likely trace/anti-

trace. This is highly variable and is often performed on a 

case-by-case basis. In particular, there may not be a single 

constant “threshold” by which requirement pairs with greater 

similarity are considered traces (noting again that low 

similarity does not necessarily imply an anti-trace). One 

approach to this is to interpret the degree of similarity as an 

observed conditional on the likelihood function of the 

indicator that Trace(NFRi, FRj) = 1 (i.e., if the requirements 

trace, 0 anti-trace). In this context, a natural model is to seek 

a threshold value St such that when S(NFRi, FRj)] > St, it is 

“highly-likely” that Trace(NFRi, FRj) = 1. We represent this 

by the concept of a likelihood function that we denote by 

L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)] > St] quantifying how 

likely the event Trace(NFRi, FRj)=1 would occur given the 

observation S(NFRi, FRj)] > St. Likelihoods are similar to 

probabilities but with a different perspective.  We are 

interested in finding the value of the parameter St that makes 

Trace(NFRi, FRj)=1 “highly-likely” (or most probable) given 

the similarity data S and trace data Trace(NFRi, FRj). From 

likelihood theory (also from Bayes Rule), for constant : 

 

L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)] > St] = 

 P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1]. 

 

The situation is completely analogous for the dissimilarity 

matrix D where we are interested in the threshold value Dt 

for the likelihood function L[Trace(NFRi, FRj)=1 | D(NFRi, 

FRj)] > Dt]. For simplicity, we will limit our subsequent 

discussion to similarity (dissimilarity is analogous).    

A nice feature of the likelihood functions of interest is that 

they are determined from the particular requirements and the 

corresponding RTM under assessment (in our case, the sub-

matrix of NFR traces FR). Thus, they “automatically adjust” 

to the given quality of the requirements and traceability 

matrix as desired by objective (2). Here we do not assume or 

expect universal or constant threshold values St and Dt. With 

such values at hand, we have a precise meaning for “highly-

similar” and “highly-dissimilar” and can proceed to generate 

investigation sets as illustrated in Fig. 1. Determination of 

the threshold values St and Dt will be discussed next. 

Empirical Maximum Likelihood estimates  

Generating useful trace investigation sets is predicated on the 

ability to determine, from a set of requirements and NFR-FR 

trace matrix, meaningful values for the similarity trace 

threshold St and dissimilarity anti-trace threshold Dt 

(understanding likelihood functions described previously). 

Two challenges exist. First, we cannot assume particular 

probability distributions for the collections of data at hand – 

i.e., the S(NFRi, FRj)s or Trace(NFRi, FRj)s. They can be, 

from our studies, wholly arbitrary. Second, there are multiple 

significant sources of error in the data at hand: an unknown 

number of incorrect traces and anti-traces, inherent error and 

inaccuracy in the text-mining that determines the LSA 

similarity and dissimilarity values, and error in the 

correlation between traces and LSA similarity. Furthermore, 

we do not have insight into what the possible distributions of 

the above errors might be.  

Owing to these errors, we must contend with “noise” in the 

data when determining the threshold values we seek. Our 

approach must be robust and make minimal assumptions 

about the data. With this in mind we will assume: 

1. likelihood of trace increases with similarity, 

2. likelihood of anti-trace increases with dissimilarity, and 

3. NFR-FR traces/anti-traces are mutually independent. 

However we do allow traces and anti-traces to depend on the 

similarities and dissimilarity between all requirements.  

Consider the ratio of likelihoods: 

 

LR = L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)]>St] / 

    L[Trace(NFRi, FRj)=0 | S(NFRi, FRj)] > St]. 

 

LR represents the relative likelihood that when its similarity 

exceeds the threshold St, the pair (NFRi, FRj) is actually a 

trace or “true positive” versus not being a trace or “false 

positive.” The larger the value of LR, the greater confidence 

we have in the statement “it is highly likely that (NFRi, FRj) 

is a trace when S(NFRi, FRj)]>St.” Thus, we want to find St 

such that LR is maximized. Using the definition of the 

likelihood functions we have:  

 

LR = Ω P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1] /  

P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=0] 

 

for some constant Ω. While we do not know the distributions 

for the probabilities above (nor the constant Ω), we will 

generally have enough data so that they can be approximated 

reasonably well by their marginal empirical cumulative 

distribution functions (edcf). Our studies indicate that the 

approximation errors involved make estimates of Ω 

unreliable.  Fortunately, Ω only affects the value of LR at the 

maximum, not its location, so in determining the value St we 

can ignore this constant. What we sacrifice is our ability to 

estimate the level of confidence (or significance) we can 

have in determining a trace when its similarity exceeds St. As 

demonstrated in section 7, graphical optimization techniques 

are generally sufficient for estimating St. Numerical 

optimization methods must be supervised carefully due to 

the inherent “noise” in the LR function that may cause 

spurious “spikes” and lead to false maximums as 

exemplified in our case study.  

Rules and their interpretations 

The tables below list rules we have observed in trace 

assurance with respect to properties St, Dt, and Trace(). 

TABLE I.  lists rules related to the structural of the overall 

NFR-FR matrix and do not create a partition. These 

structural rules detect inherently problematic trace patterns. 



TABLE II. list rules used to partition the TM into 

investigation sets. Each set represents “likely” trace 

properties.  

TABLE I.  STRUCTURAL RULES 

rule Investigation Set 

R1: Trace(NFRi, FRj)=0 all j NFRi must trace to at least one FRj 

R2: Trace(NFRi, FRj)=1 all j Too broad 

R3: D(NFRi, FRj)=1 all j Irrelevant 

R4: S(NFRi, FRj)=1 all j  Too broad 

R5: S(NFRi, FRj) =  

       S(NFR_k, FRj) some k 

Duplicates NFRi, NFR_k 

R6: S(NFRi, FRj) = 

       S(NFRi, FR_k) some k 

Duplicates FRi, NFR_k 

TABLE II.  NFR-FR partition rules 

 S>St, 

D>Dt 

S>St,  

D<Dt 

S<St, 

D>Dt 

S<St, 

D<Dt 

Trace=0 R7:  

Over-specialized 

R9: 

False anti-trace 

R11: 

Low risk 

R13:  

No info 

Trace=1 R8: Over-general R10:  

Low risk 

R12: 

False trace 

R14:  

No info 

   

Integration with requirements management systems 

Our prototype implementation of the method was performed 

entirely within the open-source statistics system R without 

any customization and utilizing the publicly available tm 

(text-mining) and proxy (Distance and Similarity Measures) 

packages. This was satisfactory for our evaluation and proof 

of concept study. For practice, we envision an assurance tool 

that integrates with JPL‟s requirement management system 

(IBM-Rational DOORS) that utilizes the R system API to 

perform statistical functionality. An assurance person would 

use the tool to acquire an RTM for a project, the tool would 

process the RTM generating the investigation sets and report 

these in an RTM annotated with codes (or colors) indicating 

possible concerns and low-risk elements. A confidence level 

and effort estimate report would also be generated.  

6. GENERATING INVESTIGATION SETS 

The process for generating the investigation sets in practice 

has six steps: 

 

1. Acquire and prepare requirements and RTM data 

2. Generate similarity and dissimilarity matrices 

3. Verify similarity/dissimilarity correlations 

4. Generate empirical likelihood ratio functions 

5. Determine MLE St, Dt threshold values 

6. Apply rule sets to generate investigation sets 

 

Assurance proceeds by validating the individual elements in 

each investigation set according to their interpretations. 

Step1: Acquire and prepare requirements and RTM data 

There is a certain amount of pre-processing needed on the 

requirements text and RTM in order to perform the text-

mining and statistical operations. First, the requirements 

must be converted into a “corpus” where each individual 

requirement is a “document.” We assume that each 

requirement has been classified as NFR or FR and we label 

these documents NFR_1, NFR_2,.,NFR_m and FR_1, FR_2, 

…, FR_n. Next, we pre-process the requirements corpus by 

removing punctuation, extra whitespace, stop-words (e.g. 

“the”, “of”, “shall”) and performing stemming (see [11] for 

details). This is necessary to reduce “noise” and nuisance 

factors when computing similarity and dissimilarity.  

Requirements are a little different than general documents in 

that they tend to make frequent use of generic terms such as 

“system” and “project” that provide little information. 

Frequent terms that appear in many documents are 

automatically down-weighted by the LSA algorithm, 

however they still contribute noise. This is not sufficient 

because use of such terms can vary greatly and we want to 

avoid creating artificial similarities between requirements 

simply because both use the term “system” while another 

requirement did not use the term. So we do our best to 

identify and remove such words. This is relatively easily 

done by first generating a term-frequency list and looking at 

the most frequent terms that are judged generic. These words 

are then removed from all documents in the corpus. If there 

is doubt about a particular word being generic, we leave it in. 

Step2: Generate similarity and dissimilarity matrices 

Having pre-processed the requirements corpus we generate 

the similarity matrix S and dissimilarity matrix D. We use 

LSA with the “cosine” similarity and distance measures. 

There are a variety of alternative analyzers and measures, 

some of which we have experimented with, but none that 

were particularly superior. What is most important is that D 

is generated independently from S via an actual dissimilarity 

measure. That is, something like setting D = I – S (where I is 

the identity matrix) would not be independently generated. 

The matrix S should not be used at all in the generation of D. 

At this point we should now have available as entries from 

the matricies S, D, and RTM, the values for S(NFRi, FRj), 

D(NFRi, FRj), and Trace(NFRi, FRj) respectively. 

Step 3: Verify similarity/dissimilarity correlations 

Before proceeding, it is good practice to check that the errors 

present do not overwhelm the information we may extract 

from the data given. In particular, the fidelity of the data 

should be such that we are confident that the assumptions 1-

3 given in Section 5  are satisfied. Here we discuss what is 

sufficient to test that the set of similarity values for traces 

and anti-traces (as determined in the NFR-FR matrix) have 

significantly different similarities. Because we cannot 

assume a particular distribution for the similarity measures 

between requirements, we suggest using boxplots and the 

Wilcoxon Rank Sum significance test. Specifically we 

compare boxplots of the set of values T = {S(NFRi, FRj) | 

Trace(NFRi, FRj)=1} with  the set NT = {S(NFRi, FRj) | 

Trace(NFRi, FRj)=0} and verify that there is an observable 

difference. Then, we perform a two-sided Wilcox test with 

the null-hypothesis median(T) = median(NT) and verify that 

the p-value is less than 0.05 (or a selected confidence level). 



The lower the p-value the more confident we can be there is 

sufficient information in the data because the median values 

of the two sets differ significantly. We repeat the above for 

the analogous sets of dissimilarity taken from D.  

Assessing independence from data is non-trivial. We want to 

avoid high co-linearity between S and D, we expect some 

degree of negative correlation because ideally a pair of 

requirements should not be both highly similar and 

dissimilar (“highly” being defined as exceeding St and Dt). 

For this, we compute the Pearson correlation coefficient 

between the sets of values {S(NFRi, FRj)} and {D(NFRi, 

FRj)} and verify that the value is in the range [-0.8, -0.2]. We 

provide examples of using boxplots, Wilcox tests, and 

negative correlation in the case study and validation sections.  

Step 4: Generate empirical likelihood ratio functions 

In Section 5 the likelihood ratio LR is defined by conditional 

distributions like P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1] 

= 1 - P[S(NFRi, FRj)] ≤ St | Trace(NFRi, FRj)=1]. The right 

hand side distribution function P[S(NFRi, FRj)] ≤ St | 

Trace(NFRi, FRj)=1] can be approximated by creating the 

empirical cumulative distribution function from the set T 

defined in Step 3 above (this function is straightforward to 

compute and packages such as R have excellent support). 

We call this function T_edcf(x) and similarly create 

NT_edcf(x) from the set NT. Now the similarity LR will be 

approximately proportional to  

slr(x) = (1-T_ecdf(x))/(1-NT_ecdf(x)).  Then, the analogous 

empirical dissimilarity LR function is generated, dlr(x). 

Step 5: Determine MLE St, Dt threshold values 

We plot slr(x) and visually estimate a range for the location 

of the maximum value. We take care to ignore “spikes” and 

look for a true maximum. Spikes occur from noise and 

approximation gaps in the data. What we look for is a so-

called “stable” maximum where a small shift to the left or 

right does not result in a large drop in value. Once we have 

an estimated range, we use a numerical optimization function 

to help narrow down this range. We may need to adjust the 

search range or tolerance to avoid spikes. With a range in 

hand, we set St to the maximum value in this range (if one 

wishes to be conservative, or to the minimum value if more 

tolerant of false positive trace detection). We repeat the 

above with the function dlr(x) to determine Dt. 

Step 6: Apply rule sets to generate investigation sets 

We now have all the values needed to apply the rules listed 

in Tables II,III. For each rule Ri, we create an investigation 

set by filtering entries in NFR-FR (WRT Ri). Note that each 

element can only satisfy one partition rule from Table III. 

7. CASE STUDY: NFR PROMISE PROJECT 10  

We present a case study performing the method steps 1-6 to 

generate trace assurance investigation sets. Subsequently we 

will discuss how effective the method was compared to a 

manual trace assurance. The case study is taken from the 

PROMISE NFR data set [9]. We selected this data for 

several reasons – it is publically available (unlike JPL 

requirements data), our analysis results can be posted to the 

PROMISE repository for others to verify or replicate, and the 

requirements require no specialized domain knowledge.  

Project 10 (P10) specifies requirements for an online version 

of a game like “Battleship” and we will not list them here as 

they are easily accessed online. We selected P10 more or less 

arbitrarily from the 15 projects in the NFR data set. The only 

consideration was to ensure both NFRs and FRs were listed 

and that the project seemed reasonably representative of the 

requirements data found in NFR. P10 has 15 NFRs and 38 

FRs and a manual NFR-FR requirements trace was generated 

and is illustrated in Fig. 2 to provide an initial feel for the 

complexity of the trace assurance task at hand. 

  
Figure 2.  P10 NFR-FR tracability graph. 

Step1: P10 is contained in the text file nfr.arff, which is 

conveniently loadable into a spreadsheet and edited. After 

cropping out all non-P10 text, we exported the file as a CSV 

and loaded it as a List object into R and then coerced it into a 

corpus object. From here the tm package supplies all the 

functions needed to perform the pre-processing desired (e.g. 

stemming, stop-words, term-frequencies, etc.). An example 

original and processed requirement is given below: 

NFR1: The product shall simulate the look of ships at sea. 

NFR1: simul  look ship sea (processed NFR1) 

From the frequency-term analysis we found the words 

“system” and “game” to be generic and these were removed. 

 

Step 2: The pre-processed corpus resulting from step 1 was 

used to generate a term-document matrix (tdm) from which 

the dissimilarity matrix  
D<-tm.dissimilarity(tdm,method=”cosine”) 

and similarity matrix  
S<-similarity(tdm, method=”cosine”) 

are generated. These are available on the PROMISE website. 

 

Step 3: The boxplots for the T and NT similarity and 

dissimilarity sets are shown in Fig. 3.  

 
Figure 3.  T, NT boxplots for simmilarty (left) and dissimilarty (right). 

The two-sided Wilcox p-value between the similarity sets is 

p=0.04599 indicating that we reject the null hypothesis that 



median(T) = median(NT). Performing a one-sided Wilcox 

test for the null hypothesis median(T) > median(NT) resulted 

in p=.977 indicating the data is consistent with this 

hypothesis. For the dissimilarity sets, the two-sided test had 

p=0.0161 and the one-sided test had p=0.008 indicting that 

we reject the null hypothesis median(T) > median(NT). This 

is what we expect as anti-traces should be more dissimilar 

than traces. The Pearson correlation coefficient between the 

similarity and dissimilarity value pairs is -0.55, comfortably 

negative and within the desired range. We are confident that 

the data is not too noisy to extract meaningful information. 

 

Step 4: The T and NT similarity and dissimilarity data sets 

were used to generate the LR‟s using R‟s ecdf()function: 

slr(x)=(1-ecdf(T)(x))/(1-ecdf(NT)(x)) 

dlr(x)=(1-ecdf(T)(x))/(1-ecdf(NT)(x)) 

Note that the sets T and NT are generated from S for slr(x) 

and from D for dlr(x).  

 

Step 5: Figure 4 shows the LR graphs for slr(x) and dlr(x). 

Visually we estimate the maximum of slr(x) lies within the 

0.6< x < 0.7 range. The maximum around x=7.5 is clearly a 

noise spike. Using R‟s optimze() function we were able to 

determine that the maximum within our estimated range 

starts to drop after x=0.64 so we conservatively select 

St=0.64 for our similarity threshold. A similar analysis of 

dlr(x) provides  Dt=0.98 for the dissimilarity threshold.  

 

Figure 4.  LR graphs for slr(x) and dlr(x) 

Step 6: We apply the rules in Table III to generate 

investigation sets (sets for Table II were empty or small, so 

were skipped). It is straightforward to express the rules as list 

(matrix) index selectors in R. Fig. 5 shows snippets of two 

different ways to report the investigation sets (you are not 

expected to read these tables, they are illustrative only). The 

report on the left provides a compact view while the report 

on the right uses the investigation sets to annotate the RTM 

with color to help alert assurance staff of potential issues. 

 

 

Figure 5.  P10 NFR-FR partition investigation sets report examples 

More results and trace sets are available through the 

PROMISE repository [9]. 

8. EVALUATION  

We begin with an independent assessment of the 

investigation set accuracy. One author went through each set 

element-by-element assessing the veracity for being in that 

set (except “no info” sets which make no claims about the 

requirements).  Results are listed in Table IV where each 

entry x\y is read, “x were found correct from y elements.” An 

(a~b) entry means the assessor was unsure about b-a of the 

elements. These could be correct, but there is some doubt.  

TABLE III.  Accuracy of investigation sets 

R5 R7 R8 R9 R10 R11 R12 

1\2 3\3 1\1 (8~11)\11 (7~9)\9 330\330 (91~101)\109 

 

Our independent verification gives the investigation sets 

95%-98% accuracy. The verification effort took 188 

minutes. This is not surprising given that the assessor had to 

review all but 107 of the 507 potential traces and anti-traces.  

Next, we had a JPL assurance staff member perform a fully 

manual P10 trace assurance by means usual to them. Table V 

compares the results of this effort with the author‟s 

assessment guided by the investigation sets generated. 

TABLE IV.  Comparison of manual and investigation set 

 Effort Missing 

Traces 

False 

Traces 

Duplicates Verified 

Traces 

Verified 

Anti-

Traces 

Manual 227 

mins 

5 39 2 131 395 

 

Inv-set 94 

mins 

11 99 2 159 301 

 

Verified trace/anti-trace means that a trace/anti-trace was 

reviewed and found correct. For the investigation set based 

assurance, elements in the “low risk” sets R10 and R11 were 

only “lightly” reviewed to achieve the verification. Here very 

few elements in the low risk sets were found to be incorrect. 

In comparison with the manual trace assurance, the set based 

assurance effort took 58% less effort, found 120% more 

“high risk” missing traces, and 154% more spurious traces 

(not so risky, but resource wasteful). The verification rates 

were comparable, but since any problem found reduces the 

number of verified elements, it makes little sense to compare 

the increase or decrease of these. The author‟s experience in 

performing the set guided assurance felt more focused and 

less tedious than the manual approach. While this is wholly 

subjective, consider if the elements in the low-risk sets were 

not reviewed at all. This would remove 59% of the 

trace/anti-trace review size, and assuming a constant effort 

per trace/anti-trace review, would result in a decrease in 41% 

of the effort. Given that in this evaluation we saw a 58% 

decrease in effort, there is likely further efficiencies present 

than only reducing the number of items to review (and recall 

that the author did not entirely eliminate review of the low-

… 11 12 13 … 

21 R14 R11 R11 … 

22 R9 R12 R13 … 

23 R11 R12 R11 … 

24 R10 R12 R11 … 

…     



risk elements). Neither the author nor the assessor was 

familiar with P10 beforehand. 

Manual trace assurance was performed on 10 of the 15 

projects from the NFR PROMISE data set. These, along with 

the complete details for the P10 evaluation above will be 

made available there for review. 

9. VALIDATION 

For this proof-of-concept stage, study validation consists of 

demonstrating that the method performs as expected under 

predictable conditions. Later validation studies would 

address meeting the seven success objectives listed 

previously and other organization value-oriented criteria. 

Here we perturb the data in P10 in some controlled manner 

and compare our expected results from what is observed. 

First, we use a random similarity matrix for P10. Here we 

expect that data will no longer have sufficient information to 

generate reliable investigation sets. The result we observed 

was that the Wilcox test on T, NT sets had p-value=0.76 

implying the data is consistent with the null hypothesis 

median(T)=median(NT) giving  the expected result.  

Next, we use a random trace matrix for P10 for which we 

again expect the data will no longer have sufficient 

information. Here the Wilcox test had p-value=0.48 giving 

the expected result.  

Our last validation is to check that the empirical MLE is able 

to identify an expected threshold value for St. For this we 

generated random similarity values in the range [0.7-1.0] for 

291 traces, and random similarity values in the range [-1.0-

1.0] for 279 anti-traces. In this case we expect a highly 

significant difference between median(T) and median(NT). 

The Wilcox test had a p-value=2.2e-16 strongly rejecting the 

null hypothesis, as expected. Now, we expect that the 

maximum for the LR in this case will occur near 0.7, and 

indeed this is observed in the graph of slr(x) on the left side 

of Figure 6. Numerical optimization places the maximum at 

0.69, well within tolerance. It is also instructive to consider 

the likelihood ratio L[T=1 | S < St]/ L[T=0 | S < St] which 

represents the ratio of false negatives to true negatives. Here 

we expect that the ratio will rapidly increase after the 

threshold value 0.7, by design, because prior to this we know 

there cannot be any traces and after this point we know there 

will be more and more traces until at S=1 there are about an 

equal number of them as all traces have S ≤ 1.    

              
Figure 6.  Empirical likelihood ratio function for 0.7 trace set 

10. CONCLUSION 

Our case study detailed numerous “manual” steps, yet it is 

clear that much, if not all, of these steps can be automated. 

Our case study is small, but representative, and observed no 

inhibitors to scaling the method up to JPL sized projects. If 

similar results for our case study hold, JPL will save 

substantial effort, reduce cost, and increase trace assurance 

effectiveness. As the method shows great promise for 

meeting the seven objectives vital for success at JPL, we will 

be initiating a pilot study on select JPL SQA engagements. 

Acknowledgment 

Our thanks to the experts in assurance from JPL‟s SQA 

group (5125) for their participation, feedback, and support. 

This work is funded in part by the National Science 

Foundation under NSF grant CCF-0811140.  

References 

[1] S. Winkler and J. von Pilgrim, “A survey of traceability in 
requirements engineering and model-driven development,” 
Software and Systems Modeling, Dec. 2009. 

[2] A. Goldberg, X. Zhu, and S. Wright, “Dissimilarity in graph-
based semisupervised classification,” Eleventh International 
Conference on Artificial Intelligence and Statistics 
(AISTATS), 2007. 

[3] J.H. Hayes and A. Dekhtyar, “Humans in the traceability 
loop: can't live with 'em, can't live without 'em,” Proceedings 
of the 3rd international workshop on Traceability in 
emerging forms of software engineering,  Long Beach, 
California: ACM, 2005, pp. 20-23. 

[4] J. Cleland-Huang, A. Dekhtyar, J.H. Hayes, G. Antoniol, B. 
Berenbach, A. Egyed, S. Ferguson, J. Maletic, and A. 
Zisman, “Grand challenges in traceability,” TR COET-GCT- 
06-01-0.9, Center of Excellence for Traceability, 2006. 

[5] A. Dekhtyar, J.H. Hayes, S.K. Sundaram, E.A. Holbrook, and 
O. Dekhtyar, “Technique Integration for Requirements 
Assessment,” RE, 2007, pp. 141-150. 

[6] E.A. Holbrook, J.H. Hayes, and A. Dekhtyar, “Toward 
Automating Requirements Satisfaction Assessment,” 
Proceedings of the 2009 17th IEEE International 
Requirements Engineering Conference, RE, IEEE Computer 
Society, 2009, pp. 149-158. 

[7] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, 
“Automated classification of non-functional requirements,” 
Requir. Eng.,  vol. 12, 2007, pp. 103-120. 

[8] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. 
Berezhanskaya, and S. Christina, “Goal-centric traceability 
for managing non-functional requirements,” Proceedings of 
the 27th international conference on Software engineering,  
St. Louis, MO, USA: ACM, 2005, pp. 362-371. 

[9] “Predictor Models in Software Engineering (Promise) 
Software Engineering Repository.” 
http://promise.site.uottawa.ca/SERepository 

[10] Landauer, T. K., Foltz, P. W., & Laham, D. (1998). 
Introduction to Latent Semantic Analysis. Discourse 
Processes,25, 259-284. 

[11] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E. 
Merlo, “Recovering Traceability Links between Code and 
Documentation,” IEEE Transactions on Software 
Engineering/, vol. 28, 2002, pp. 970-983. 

[12] A. Marcus and J. Maletic, “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic 
Indexing,” /Proceedings of the Twenty-Fifth International 
Conference on Software Engineering 2003, 2003, pp. 125-
135. 

http://promise.site.uottawa.ca/SERepository


[13] “Recovering Traceability Links between 

Code and Documentation,” IEEE Transactions on 

Software Engineering/, vol. 28, 2002, pp. 970-

983. 

[14] A. Marcus and J. Maletic, “Recovering 

Documentation-to-Source Code Traceability 

Links using Latent Semantic Indexing,” 

/Proceedings of the Twenty-Fifth International 

Conference on Software Engineering 2003, 2003, 

pp. 125-135. 

[15] Landauer, T. K., Foltz, P. W., & Laham, 

D. (1998). Introduction to Latent Semantic 

Analysis. Discourse Processes,25, 259-284.

Formatted: Normal



 


