
Text Mining Support for Software Requirements: Traceability Assurance

Abstract
Requirements assurance aims to increase confidence in the

quality of requirements through independent audit and

review. One important and effort intensive activity is

assurance of the traceability matrix (TM). In this,

determining the correctness and completeness of the many-

to-many relationships between functional and non-

functional requirements (NFRs) is a particularly tedious

and error prone activity for assurance personnel to peform

manually. We introduce a practical to use method that

applies well-established text-mining and statistical methods

to reduce this effort and increase TM assurance. The

method is novel in that it utilizes both requirements

similarity (likelihood that requirements trace to each other)

and dissimilarity (or anti-trace, likelihood that

requirements do not trace to each other) to generate

investigation sets that significantly reduce the complexity of

the traceability assurance task and help personnel focus on

likely problem areas. The method automatically adjusts to

the quality of the requirements specification and TM.

Requirements assurance experiences from the SQA group at

NASA's Jet Propulsion Laboratory provide motivation for

the need and practicality of the method. Results of using the

method are verifiably promising based on an extensive

evaluation of the NFR data set from the publicly accessible

PROMISE repository.

Keywords- traceability; software assurance; completeness;

non-functional requirements

1. INTRODUCTION

Though it is well known that traceability information can

assist with a number of vital software engineering and

software assurance activities, the capture and maintenance of

such information is still not commonplace. This is largely

due to the fact that building requirements traceability

matrices (RTMs), even with automated support, is very time

consuming and error prone. RTMs are thus not maintained

and hence cannot be used to support activities such as change

impact analysis, regression testing, criticality analysis, etc.

Researchers have sought to improve automated techniques

for generating and maintaining RTMs. However, there has

been very little done to address the assessment, either

manually or with automated support, of RTMs that are built.

In fact, a recent survey of traceability in the requirements

engineering community as well as in the model-driven

development community [1] notably lacks any discussion of

the assessment of RTMs. As a point of terminology, when a

party not directly involved in generating the requirements

performs assessment, it is generally called assurance.

The Software Quality Assurance (SQA) group at NASA‟s

Jet Propulsion Laboratory (JPL) is one of many

organizations developing or assuring large mission- and/or

safety-critical systems. For them, the development of RTMs

is a mandated activity. Because of the high-risk typically

associated with JPL projects, assurance of RTMs is also a

mandated activity, albeit one that is not being accomplished

as effectively or efficiently as desired. Interviews with SQA

personnel indicate that “Spot checking” and “completeness

by expectation” are phrases that best describe the heuristics

currently applied when assessing traces.

As if these tracing challenges weren‟t daunting enough, a

further challenge confronts assurance personnel – that of

non-functional requirements or NFRs. Assurance staff are

responsible for ensuring that all NFRs trace to all appropriate

functional requirements (or FRs), and that there are no

inappropriate or spurious traces (i.e., requirements that with

certainty do not trace, or anti-traces). This is also referred to

informally as ensuring the completeness and correctness of

the NFR traces. What makes this difficult is that the degree

or strength of a trace is not considered; it is a binary

relationship, each NFR either traces or anti-traces to an FR.

What exactly determines an appropriate degree is generally

unspecified, but the intent is to only trace an NFR to an FR

upon which it has an observable effect. We refer to the RTM

sub-matrix of traces from NFRs to FRs simply as the NFR-

FR matrix.

Because there may be missing traces, this is a highly effort-

intensive activity as assurance personnel must check all

possible traces, not just those already indicated in a

traceability matrix. In addition, traceability assurance is a

highly detail-oriented and information-intensive activity,

unguided and tedious for humans to perform. Clearly

automated traceability techniques could greatly assist in

guiding assurance efforts. Unfortunately, approaches do not

currently exist to assist with such completeness or

correctness assessments.

We introduce a pragmatic text-mining based approach

currently under study within JPL‟s SQA group to assessing

the completeness and correctness of NFR-FR traces that

reduces the effort required of assurance personnel while

increasing quality and confidence. Specifically, we introduce

a method akin to graph-based semi-supervised classification

[2] utilizing a mixed model of requirements similarity and

dissimilarity to automatically generate investigation sets that

help identify low-risk and possible problem areas in the

NFR-FR RTM. The approach also supports automatic

adjustment to the quality of the trace under assessment. The

approach was empirically validated through a series of

controlled experiments and a comprehensive case study

using data from the PROMISE repository [9].

Because the method is being developed for use within a

practicing assurance organization, our approach is more

pragmatic than theoretical. In this, success is determined by

how well the method meets certain practical key objectives

for application. These will be detailed later. Pragmatics

dictates that we try to make use of established techniques and

technology. Notwithstanding, there are a number of

novelties in our approach: a) It uses information contained in

a given RTM to address difficult assurance problems; b) It

leverages information generated independently from both

similarity and dissimilarity between requirements; c) It

integrates deterministic classification rules with statistically

generated classifications; and d) It considers both traces and

anti-traces as first class artifacts.

The paper is organized as follows. Section 2 discusses

requirements assurance. Manual performance of NFR-FR

tracing is discussed in Section 3. Related work is presented

in Section 4. Section 5 presents text-mining support for trace

assurance while Section 6 discusses the investigation set

generator. A case study is presented in Section 7. Evaluation

follows in 8. Section 9 presents validation of the method and

Section 10 concludes.

2. REQUIREMENTS ASSURANCE AND TRACING

What is requirements tracing assurance ?

Requirements assurance is concerned with independently

(from requirements developers) assessing and ensuring the

quality of the requirements. Chiefly this includes assessing

the correctness and completeness of the requirements for

which tracing is key. This tracing encompasses high and low

level requirements as well as their relationships with other

artifacts (relationships between requirements and test cases,

e.g.) and within artifacts (tracing between NFRs and FRs).

Tracing assurance is typically performed by assurance

professionals within an SQA engagement, while conducting

verification and validation (V&V) of requirements, or within

an independent V&V (IV&V) assessment.

Why assure traces?

In 1999, the Mars Climate Orbiter (MCO) was lost due to the

incorrect use of English measures by the development

contractor (not in keeping with the interface specifications

which called for metric units). In addition to the loss of the

$125 million Orbiter, further issues were caused for its

partner mission Mars Polar Lander which was to receive data

from the climate orbiter. While official reports discussed

breakdowns in the V&V of the system (including lack of end

to end testing for the trajectory tracking software), a careful

NFR-FR trace assurance may have avoided the problem.

Software assurance is a risk management technique. As with

defects, it is well known that the earlier that risks can be

identified and mitigated, the better. Specifically, it is

important to ensure that all FRs have considered the

appropriate NFR qualities and to ensure that adequate tests

are planned for execution and quality specifications are

satisfied. Toward that end, JPL SQA primarily performs

requirements tracing assurance early in the lifecycle,

generally during requirement definition or before appropriate

milestone reviews. They have found that this avoids more

costly rework later in the lifecycle (at/after testing).

The NFR-FR completeness of tracing problem

In NFR-FR traceability assurance, correctness is important

but completeness is a more significant focus as it generally

presents more risk. For example, a missing NFR-FR trace

may lead to a later omission of a test cover trace, and

subsequently to omission of a test for the quality of a critical

function (e.g., metric units for output of propulsion system

monitor). Incorrect NFR-FR tracings are more likely to be

identified and resolved at various stages (e.g., reviews, test)

whereas a missing trace can more easily go undetected and

thus become a latent defect (i.e., lies dormant in the system

or is detected only when it presents a failure in operation).

Traceability research has also shown that humans are better

at discovering errors of commission in traces than at

discovering errors of omission [11]. In addition, NFRs

present a particularly challenging problem in that they tend

to be broadly relevant to many FRs. We discuss the

challenge of NFR-FR trace assurance next.

3. CHALLENGE OF MANUAL NFR-FR TRACE ASSURANCE

There are three major challenges to the manual assurance of

NFR to FR traces: size, complexity, and effort/cost. We

discuss each below.

Size

Imagine a very small software requirements specification

consisting of just 50 requirements, 20 of which are FRs and

30 of which are NFRs. There are 20 x 30 = 600 possible

traces between the FRs and NFRs that may have to be

assured. It is not optimal for analysts to assess 600 traces

manually, but it is possible. In contrast, the MCO

(mentioned earlier) had over 7500 requirements, a portion of

which were NFRs. If we assume 7300 FRs and 200 NFRs,

there could still be 1,460,000 traces to assure.

Complexity

NFR to FR trace assurance is a matching problem, central to

graph theory, which can be modeled as a bi-partite graph (the

tracing graph) on the two sets of requirements NFR and FR

where an edge indicates that a given non-functional

requirement affects the related functional requirement. Such

bi-partite graphs are equivalent informationally to an NFR-

FR matrix. The matching problem is relevant due to the fact

that every NFR must trace to at least one FR and that the

focus is on validating a “tracing” from the many “valid”

combinations of tracings possible (that is, not all valid traces

of an NFR-FR are expected to be relevant or of interest).

 Even though the tracing graph is expected to be relatively

sparse (generally each NFR traces only to a small percentage

of FRs), assuring completeness requires examination to

ensure that edges are valid and no edges are missing. This

implies that the complete bi-partite graph K(NF,F) with

|NF|*|F| edges must be reviewed to verify the trace/anti-trace

relevancy. This requires O(|F|^2) number of steps
1
.

 Part of the assurance process is determining the risky and

non-risky areas, thus we cannot reduce the complexity by

prioritizing or reducing the set of requirements to investigate

(the “investigation set”) based solely on external risk or cost.

 We have taken a somewhat simplified view of the

problem. At JPL, requirements tend to be hierarchical: there

is “flow-down” from one level to another (hence the terms

upwards/downwards tracing). Thus if there is a trace at one

level, this trace will flow-down to the requirements below it.

This can significantly reduce the number of traces to be

verified. However, in order to “depend” on this hierarchy,

one must first validate that the trace is at the appropriate

level. Hence, “layering” the requirements does not totally

circumnavigate the complexity of the assurance problem.

Effort/cost

NFR to FR tracing assurance is a costly and effort

consuming activity. Consider the MCO project with 7500

requirements. If we assume that there are 1,460,000 traces to

assure and assume an average of 1 minute per trace audit (a

highly optimistic estimate), then we expect |7300|*|200|/60 =

24,333 person-hours of effort. With a 40-hr work week, it

would take 11.7 people an entire year to complete the work.

As a result, assurance personnel rarely perform exhaustive

analysis. Rather, they become “familiar” with the

requirements and use a variety of approaches to approximate

a completeness check. A common approach is to “spot

check” to rapidly identify potential problem areas and then to

focus on these. Another popular approach is to only validate

the existing traces and then prune and expand these.

Assurance personnel will augment these approaches by

considering related groups of requirements. For example, if

there is a trace from a particular NFR to a FR, then it is often

fruitful to look at the requirements that are similar or

strongly related to that FR for traces.

All these approaches assume a sufficient familiarity with the

entire set of requirements and rely heavily on the experience

and domain knowledge of assurance personnel. Given this

assumption, completeness is addressed by comparing a given

trace to what traces are “expected” relative “not expected” in

the particular system. Gaps in domain knowledge are

unavoidable (a person cannot keep all knowledge of a system

in their mind at one time), thus making it difficult to gauge

the believability of a completeness audit.

It is clear that the above challenges point to the need for

automated tool support. However, such support must also be

in alignment with assurance practices as indicated above.

4. RELATED WORK

Related work is addressed in the subsections below.

1
 assuming |F| > |NF|.

Challenges in Requirements Traceability Research and

Practice

There has been relatively little work on the assessment or

quality assurance of traces. The only work on assessing

traces is that of Dekhtyar, et al. [5] where a committee of

automated methods was executed and each voted on the

accuracy of a given RTM link. A number of different voting

schemes were used. The approach succeeded at finding and

rejecting false positives (pf) in RTMs created by automated

methods. Our paper meets these traceability challenges by

reducing the human effort required for and by increasing the

confidence in assurance activities performed for the RTM.

In addition to the shortcoming of research on assessing

traceability matrices, there is also a lack of work on non-

functional requirements (NFRs). Next, we address research

to date on NFR traceability.

Tracing Non-functional to Functional Requirements

Our work examines the satisfaction or completeness of NFRs

by FRs (each NFR minimally needs to map to at least one

FR in order to be „satisfied‟). Holbrook, Hayes, and

Dekhtyar examined the use of RTMs to assist with

performing satisfaction assessment determining if

requirements were satisfied by design, e.g. [6]. Such a

technique could be used to examine each NFR and see if it is

satisfied by one or more FRs. It should be noted that this

technique requires that each FR/NFR be chunked (parsed

into phrases) as well as tagged with parts of speech. Our

technique does not require this pre-processing. Another

unique aspect of our work is the use of bi-partite graphs.

Though all tracing work directly or indirectly represents

RTMs as graphs, traceability research does not discuss the

assessment of the RTMs based on this structure. Next, we

examine the use of clustering to support tracing.

Clustering Support for Automated Requirement Tracing

Cleland-Huang, Settimi, Zou, and Solc examined a technique

for automating the detection and classification of NFRs

based on stakeholders‟ quality concerns across requirements

specifications containing scattered and non-categorized

requirements, and also across freeform documents [7]. In

fact, our validation uses their datasets and classifications.

Compared to the Huang work, a unique contribution of our

clustering support is to make use of both requirements

similarity and dissimilarity to generate two sets of clusters

tracing NFRs to FRs.

Goldberg, Zhu, and Wright present a semi-supervised

classification algorithm that learns from dissimilarity and

similarity information on labeled and unlabeled data to

handle both binary and multi- class classification [2]. This

work provides a theoretical support for our clustering

methods.

5. TEXT-MINING SUPPORT FOR TRACE ASSURANCE

We now describe the approach for using text mining to

support trace assurance. For clarity, we emphasize a few

things up front. First, the method does not aim to generate an

RTM. Indeed, the method requires an existing RTM as input

i.e., the RTM to be assured. Second, the aim of the method is

not to automate the detection of or assure FRs or NFRs.

However, a by-product of tracing assurance can help with

this. Last, the method is not designed to detect vague or

poorly stated requirements.

With the above in mind, we state that a successful method

for automated support of trace assurance at JPL would meet

the following vital objectives: 1) Must be compatible with

the way assurance personnel address trace assurance (e.g.,

“expected” and “unexpected” traces based on prior

experience, domain knowledge, and familiarity with the

requirements); 2) Must be empirically driven, adjusting to

the quality of the requirements specification (e.g., vaguely

specified requirements should result in more conservative

automated results) and adjusting to the quality of a given

RTM; 3) Must be easily implemented and integrate with

existing requirements managers (e.g., DOORS, RequisitePro,

etc.); 4) Must have an established theoretical foundation;

Must be practical to use (e.g., low-learning curve) and

provide meaningful guidance; 5) Must be based on open

methods and technologies (assurance cannot be based on

black-box solutions); 6) Must reduce overall effort, increase

efficiency of effort, and increase confidence in results. Note

that Hayes, Dekhtyar, Sundaram, and Howard have posited

essential requirements for any requirements tracing tool as

examined from the user‟s perspective. Objective (5) ties to

their Usability sub requirement (of Believability) [7].

We now describe an approach to meet the above objectives

in a series of concepts and examples given below.

Trace investigation sets

 The fundamental challenge for trace assurance is

effectively managing the verification of a large number of

traces and anti-traces. A natural means of addressing this is

to employ a divide and conquer strategy that partitions these

sets into more manageable investigation subsets based on

meaningful rules and empirical properties of the

requirements. For example, an obvious rule is “each NFR

must trace to at least one FR” and the resulting investigation

set (a subset of the traceability graph that is under

assessment) would simply be all those NFRs without traces.

Determining rules and properties and making them

actionable (e.g., if an NFR has no traces then it must be

removed or be reported as having missing traces) helps

address objective (5).

Aligning rules and empirical properties with assurance

personnel‟s a priori knowledge helps meet objective (1).

Partitioning the assurance tasks into investigation sets greatly

reduces the complexity and narrows the focus of the

assurance effort. Furthermore, each investigation set implies

particular assurance activities (e.g., look for a missing trace),

“guiding” the effort to be more efficient and effective

thereby helping to meet objective (7). If some investigation

sets have a low risk (when appropriately defined) of its

elements being incorrectly determined (as being in the set,

for example), then such sets can be eliminated or “lightly”

assured further helping to satisfy objective (7).

To illustrate, assume that as we examine the traceability

matrix to be assured, we notice an observable property

between a pair of requirements called “high-similarity”

(perhaps each requirement contains many of the same words,

e.g.) which we believe is highly correlated (but this is not

certain) with requirements that have been associated to each

other in the traceability matrix (meaning that it is highly

correlated with our notion of trace). We note that absence of

this property between two requirements does not imply that

they anti-trace. The absence of “high-similarity” provides no

information, whereas the presence of “high-similarity”

appears to provide evidence of trace.

With this idea in mind, let us examine the notion of trace

investigation sets further. In the previous example, we

discussed the trace set or T. Fig. 1 shows T in the top left;

all NFRs trace to at least one FR, but do not trace to every

FR. By simply examining the edges that do not exist in T,

we obtain the anti-trace or AT (shown in the top middle

section of Fig. 1). Based on T and AT and our notion of

“high similarity” (called HT), we can generate four trace

investigation sets L, M, F, N (see Fig. 1).

Figure 1. Illustration of partitioning into investigation sets.

We consider traces in the investigation set L (T∩HT, as

shown in Fig. 1) to be low risk as they have two independent

sources corroborating the trace (they were in the RTM under

assessment and we observed the high-similarity property).

Items in M are at high-risk of being possible omissions from

T as we expect requirement pairs with high-similarity to

trace (but not the converse). Items in M need to be carefully

checked to see if they are indeed traces. We have little

information about items in F, but as they did not have high-

similarity, they should be checked first as possible bad traces

(also called false positives or errors of commission). Last,

there is little to say about items in N other than that they do

not have high-similarity and they did not trace, so we first try

to verify that they are anti-traces.

The example just presented, while simplified and overly

generic, is in essence our method. The complexity reduction,

work avoided (assuming we do not check the low-risk set L),

and increased assurance efficiency is self-evident. Increased

confidence in the assurance results is in part self-evident, but

also depends greatly on our confidence in the correlation of

the high-similarity property and requirements that trace.

Finding properties that are practical to observe and in which

experienced assurance personnel have high confidence is a

key component of our method. Also, finding properties that

determine both inclusion and exclusion of elements into an

investigation set is essential to effectively addressing the

trace completeness problem; this is discussed next.

Similarity and Dissimilarity of requirement pairs

Several studies have suggested that requirements that trace

have a high degree of “similarity” based on the terms they

use [11] and in the semantic meaning or context in which

they are used [12]. This is intuitive as a trace indicates a

relationship between a pair of requirements that are typically

expressed by using common or highly related terminology

(e.g., NFR: “The Xs shall have Y,” FR: “This X shall do Z”,

the trace is the implied relation on all Xs). Similarly, but

with subtle differences, requirements that anti-trace have a

high degree of dissimilarity. This is intuitive as we do not

expect to see similar terms used in a similar context for

requirements with little or no relationship. Rather, we expect

them to have a high degree of independence.

Our observations of trace assurance in practice and

interviews with JPL SQA personnel indicate that, indeed,

similarity and dissimilarity form the fundamental basis for

verifying traces and anti-traces. Hence, similarity and

dissimilarity are good candidates for empirical properties to

generate investigation sets that satisfy our objective (1).

However, “high degree of similarity/dissimilarity” are

generally subjective assessments which are somewhat

ambiguous, arbitrary, or inconsistent, and perhaps difficult to

observe in an automated manner. It is unclear what

confidence we can have in such assessments, especially

when results vary between assessors and between

assessments performed by the same assessor; this runs

contrary to our objectives (3), (4), and, in part, (7).

Fortunately, text-mining research has produced a number of

well-established approaches for reliably automating the

assessment of similarity/dissimilarity between documents

(requirements, in our case). One such approach is Latent

Semantic Analysis (LSA) [10]. Briefly, LSA is a theory and

method for extracting and representing the contextual-usage

meaning of words by statistical computations applied to a

large corpus of text. The underlying idea is that the totality of

information about all the word contexts in which a given

word does and does not appear provides a set of mutual

constraints that largely determines the similarity of the

meaning of words and sets of words to each other.

We know that LSA produces measures of word-word, word-

passage, and passage-passage relations that are reasonably

well correlated with several human cognitive phenomena

involving association or semantic similarity. LSA allows us

to approximate human judgments of overall meaning

similarity, estimates of which often figure prominently in

research on discourse processing. It is important to note from

the start, however, that the similarity estimates derived by

LSA are not simple contiguity frequencies or co-occurrence

contingencies. Rather, the estimates depend on a deeper

statistical analysis (thus the term "Latent Semantic") that is

capable of correctly inferring relations beyond first order co-

occurrence. As a consequence, LSA is often a much better

predictor of human meaning-based judgments and

performance than contiguity and co-occurrence counts.

Approximating human judgment of dissimilarity is a related,

but fundamentally different, problem than similarity.

Research has shown that we cannot define dissimilarity as

“not similar” because natural language interpretation does

not follow the law of the excluded middle. Thus, similarity

and dissimilarity between requirements provide different

information; a fact that our method exploits. Fortunately,

LSA is also capable of characterizing dissimilarity.

Correlation and likelihood of trace/anti-trace

Given a pair of requirements (NFRi, FRj), the LSA

characterization for similarity results in a similarity measure

S(NFRi, FRj)  [-1,1] and for a dissimilarity measure

D(NFRi, FRj)  [0,1], where higher values indicate greater

similarity/dissimilarity. Typically, similarity is expressed as

a symmetric matrix S[i,j]=S(NFRi, FRj) with D[i,j]=D(NFRi,

FRj) expressing dissimilarity. We have performed a number

of studies using simulated data and real project data (from

the NFR PROMISE data set), which consistently support the

desired correlations of LSA similarity/dissimilarity with

trace/anti-trace: 1) likelihood of trace increases with LSA

similarity (S), and 2) likelihood of anti-trace increases with

LSA dissimilarity (D). Curiously, low LSA similarity does

not increase likelihood of anti-trace, and the same for low

dissimilarity and trace.

There are a variety of ways to interpret the above statements.

For example, in one study we fit a probit model:

P[(NFRi, FRj) is a trace | S(NFRi, FRj)] =

[ S(NFRi, FRj)+].

to both simulated and real project data (NFR P10). We found

that the parameter  was statistically significant. We do not

detail these studies further here. Rather, note that while we

have high confidence in the correlation of the LSA measures

in general, in practice such correlations must be verified for

each particular case.

Having performed the more general correlation studies, such

as the probit model, for a particular RTM, it suffices to

perform a simple hypothesis test to indicate if the estimator

(e.g., the median or mean) for the set of observations in S (or

D) for a set of requirement pairs that trace (or anti-trace) is

significantly different than the estimator for the set of pairs

that do not. Our general studies show that if there is

significance, the correlation will be expected. We will show

examples of this in the case study given in section 7.

However, correlation does not address the problem of

sufficient degree of similarity or dissimilarity. As discussed

earlier, assurance personnel determine subjectively what

degree of similarity/dissimilarity indicates a likely trace/anti-

trace. This is highly variable and is often performed on a

case-by-case basis. In particular, there may not be a single

constant “threshold” by which requirement pairs with greater

similarity are considered traces (noting again that low

similarity does not necessarily imply an anti-trace). One

approach to this is to interpret the degree of similarity as an

observed conditional on the likelihood function of the

indicator that Trace(NFRi, FRj) = 1 (i.e., if the requirements

trace, 0 anti-trace). In this context, a natural model is to seek

a threshold value St such that when S(NFRi, FRj)] > St, it is

“highly-likely” that Trace(NFRi, FRj) = 1. We represent this

by the concept of a likelihood function that we denote by

L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)] > St] quantifying how

likely the event Trace(NFRi, FRj)=1 would occur given the

observation S(NFRi, FRj)] > St. Likelihoods are similar to

probabilities but with a different perspective. We are

interested in finding the value of the parameter St that makes

Trace(NFRi, FRj)=1 “highly-likely” (or most probable) given

the similarity data S and trace data Trace(NFRi, FRj). From

likelihood theory (also from Bayes Rule), for constant :

L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)] > St] =

 P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1].

The situation is completely analogous for the dissimilarity

matrix D where we are interested in the threshold value Dt

for the likelihood function L[Trace(NFRi, FRj)=1 | D(NFRi,

FRj)] > Dt]. For simplicity, we will limit our subsequent

discussion to similarity (dissimilarity is analogous).

A nice feature of the likelihood functions of interest is that

they are determined from the particular requirements and the

corresponding RTM under assessment (in our case, the sub-

matrix of NFR traces FR). Thus, they “automatically adjust”

to the given quality of the requirements and traceability

matrix as desired by objective (2). Here we do not assume or

expect universal or constant threshold values St and Dt. With

such values at hand, we have a precise meaning for “highly-

similar” and “highly-dissimilar” and can proceed to generate

investigation sets as illustrated in Fig. 1. Determination of

the threshold values St and Dt will be discussed next.

Empirical Maximum Likelihood estimates

Generating useful trace investigation sets is predicated on the

ability to determine, from a set of requirements and NFR-FR

trace matrix, meaningful values for the similarity trace

threshold St and dissimilarity anti-trace threshold Dt

(understanding likelihood functions described previously).

Two challenges exist. First, we cannot assume particular

probability distributions for the collections of data at hand –

i.e., the S(NFRi, FRj)s or Trace(NFRi, FRj)s. They can be,

from our studies, wholly arbitrary. Second, there are multiple

significant sources of error in the data at hand: an unknown

number of incorrect traces and anti-traces, inherent error and

inaccuracy in the text-mining that determines the LSA

similarity and dissimilarity values, and error in the

correlation between traces and LSA similarity. Furthermore,

we do not have insight into what the possible distributions of

the above errors might be.

Owing to these errors, we must contend with “noise” in the

data when determining the threshold values we seek. Our

approach must be robust and make minimal assumptions

about the data. With this in mind we will assume:

1. likelihood of trace increases with similarity,

2. likelihood of anti-trace increases with dissimilarity, and

3. NFR-FR traces/anti-traces are mutually independent.

However we do allow traces and anti-traces to depend on the

similarities and dissimilarity between all requirements.

Consider the ratio of likelihoods:

LR = L[Trace(NFRi, FRj)=1 | S(NFRi, FRj)]>St] /

 L[Trace(NFRi, FRj)=0 | S(NFRi, FRj)] > St].

LR represents the relative likelihood that when its similarity

exceeds the threshold St, the pair (NFRi, FRj) is actually a

trace or “true positive” versus not being a trace or “false

positive.” The larger the value of LR, the greater confidence

we have in the statement “it is highly likely that (NFRi, FRj)

is a trace when S(NFRi, FRj)]>St.” Thus, we want to find St

such that LR is maximized. Using the definition of the

likelihood functions we have:

LR = Ω P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1] /

P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=0]

for some constant Ω. While we do not know the distributions

for the probabilities above (nor the constant Ω), we will

generally have enough data so that they can be approximated

reasonably well by their marginal empirical cumulative

distribution functions (edcf). Our studies indicate that the

approximation errors involved make estimates of Ω

unreliable. Fortunately, Ω only affects the value of LR at the

maximum, not its location, so in determining the value St we

can ignore this constant. What we sacrifice is our ability to

estimate the level of confidence (or significance) we can

have in determining a trace when its similarity exceeds St. As

demonstrated in section 7, graphical optimization techniques

are generally sufficient for estimating St. Numerical

optimization methods must be supervised carefully due to

the inherent “noise” in the LR function that may cause

spurious “spikes” and lead to false maximums as

exemplified in our case study.

Rules and their interpretations

The tables below list rules we have observed in trace

assurance with respect to properties St, Dt, and Trace().

TABLE I. lists rules related to the structural of the overall

NFR-FR matrix and do not create a partition. These

structural rules detect inherently problematic trace patterns.

TABLE II. list rules used to partition the TM into

investigation sets. Each set represents “likely” trace

properties.

TABLE I. STRUCTURAL RULES

rule Investigation Set

R1: Trace(NFRi, FRj)=0 all j NFRi must trace to at least one FRj

R2: Trace(NFRi, FRj)=1 all j Too broad

R3: D(NFRi, FRj)=1 all j Irrelevant

R4: S(NFRi, FRj)=1 all j Too broad

R5: S(NFRi, FRj) =

 S(NFR_k, FRj) some k

Duplicates NFRi, NFR_k

R6: S(NFRi, FRj) =

 S(NFRi, FR_k) some k

Duplicates FRi, NFR_k

TABLE II. NFR-FR partition rules

 S>St,

D>Dt

S>St,

D<Dt

S<St,

D>Dt

S<St,

D<Dt

Trace=0 R7:

Over-specialized

R9:

False anti-trace

R11:

Low risk

R13:

No info

Trace=1 R8: Over-general R10:

Low risk

R12:

False trace

R14:

No info

Integration with requirements management systems

Our prototype implementation of the method was performed

entirely within the open-source statistics system R without

any customization and utilizing the publicly available tm

(text-mining) and proxy (Distance and Similarity Measures)

packages. This was satisfactory for our evaluation and proof

of concept study. For practice, we envision an assurance tool

that integrates with JPL‟s requirement management system

(IBM-Rational DOORS) that utilizes the R system API to

perform statistical functionality. An assurance person would

use the tool to acquire an RTM for a project, the tool would

process the RTM generating the investigation sets and report

these in an RTM annotated with codes (or colors) indicating

possible concerns and low-risk elements. A confidence level

and effort estimate report would also be generated.

6. GENERATING INVESTIGATION SETS

The process for generating the investigation sets in practice

has six steps:

1. Acquire and prepare requirements and RTM data

2. Generate similarity and dissimilarity matrices

3. Verify similarity/dissimilarity correlations

4. Generate empirical likelihood ratio functions

5. Determine MLE St, Dt threshold values

6. Apply rule sets to generate investigation sets

Assurance proceeds by validating the individual elements in

each investigation set according to their interpretations.

Step1: Acquire and prepare requirements and RTM data

There is a certain amount of pre-processing needed on the

requirements text and RTM in order to perform the text-

mining and statistical operations. First, the requirements

must be converted into a “corpus” where each individual

requirement is a “document.” We assume that each

requirement has been classified as NFR or FR and we label

these documents NFR_1, NFR_2,.,NFR_m and FR_1, FR_2,

…, FR_n. Next, we pre-process the requirements corpus by

removing punctuation, extra whitespace, stop-words (e.g.

“the”, “of”, “shall”) and performing stemming (see [11] for

details). This is necessary to reduce “noise” and nuisance

factors when computing similarity and dissimilarity.

Requirements are a little different than general documents in

that they tend to make frequent use of generic terms such as

“system” and “project” that provide little information.

Frequent terms that appear in many documents are

automatically down-weighted by the LSA algorithm,

however they still contribute noise. This is not sufficient

because use of such terms can vary greatly and we want to

avoid creating artificial similarities between requirements

simply because both use the term “system” while another

requirement did not use the term. So we do our best to

identify and remove such words. This is relatively easily

done by first generating a term-frequency list and looking at

the most frequent terms that are judged generic. These words

are then removed from all documents in the corpus. If there

is doubt about a particular word being generic, we leave it in.

Step2: Generate similarity and dissimilarity matrices

Having pre-processed the requirements corpus we generate

the similarity matrix S and dissimilarity matrix D. We use

LSA with the “cosine” similarity and distance measures.

There are a variety of alternative analyzers and measures,

some of which we have experimented with, but none that

were particularly superior. What is most important is that D

is generated independently from S via an actual dissimilarity

measure. That is, something like setting D = I – S (where I is

the identity matrix) would not be independently generated.

The matrix S should not be used at all in the generation of D.

At this point we should now have available as entries from

the matricies S, D, and RTM, the values for S(NFRi, FRj),

D(NFRi, FRj), and Trace(NFRi, FRj) respectively.

Step 3: Verify similarity/dissimilarity correlations

Before proceeding, it is good practice to check that the errors

present do not overwhelm the information we may extract

from the data given. In particular, the fidelity of the data

should be such that we are confident that the assumptions 1-

3 given in Section 5 are satisfied. Here we discuss what is

sufficient to test that the set of similarity values for traces

and anti-traces (as determined in the NFR-FR matrix) have

significantly different similarities. Because we cannot

assume a particular distribution for the similarity measures

between requirements, we suggest using boxplots and the

Wilcoxon Rank Sum significance test. Specifically we

compare boxplots of the set of values T = {S(NFRi, FRj) |

Trace(NFRi, FRj)=1} with the set NT = {S(NFRi, FRj) |

Trace(NFRi, FRj)=0} and verify that there is an observable

difference. Then, we perform a two-sided Wilcox test with

the null-hypothesis median(T) = median(NT) and verify that

the p-value is less than 0.05 (or a selected confidence level).

The lower the p-value the more confident we can be there is

sufficient information in the data because the median values

of the two sets differ significantly. We repeat the above for

the analogous sets of dissimilarity taken from D.

Assessing independence from data is non-trivial. We want to

avoid high co-linearity between S and D, we expect some

degree of negative correlation because ideally a pair of

requirements should not be both highly similar and

dissimilar (“highly” being defined as exceeding St and Dt).

For this, we compute the Pearson correlation coefficient

between the sets of values {S(NFRi, FRj)} and {D(NFRi,

FRj)} and verify that the value is in the range [-0.8, -0.2]. We

provide examples of using boxplots, Wilcox tests, and

negative correlation in the case study and validation sections.

Step 4: Generate empirical likelihood ratio functions

In Section 5 the likelihood ratio LR is defined by conditional

distributions like P[S(NFRi, FRj)] > St | Trace(NFRi, FRj)=1]

= 1 - P[S(NFRi, FRj)] ≤ St | Trace(NFRi, FRj)=1]. The right

hand side distribution function P[S(NFRi, FRj)] ≤ St |

Trace(NFRi, FRj)=1] can be approximated by creating the

empirical cumulative distribution function from the set T

defined in Step 3 above (this function is straightforward to

compute and packages such as R have excellent support).

We call this function T_edcf(x) and similarly create

NT_edcf(x) from the set NT. Now the similarity LR will be

approximately proportional to

slr(x) = (1-T_ecdf(x))/(1-NT_ecdf(x)). Then, the analogous

empirical dissimilarity LR function is generated, dlr(x).

Step 5: Determine MLE St, Dt threshold values

We plot slr(x) and visually estimate a range for the location

of the maximum value. We take care to ignore “spikes” and

look for a true maximum. Spikes occur from noise and

approximation gaps in the data. What we look for is a so-

called “stable” maximum where a small shift to the left or

right does not result in a large drop in value. Once we have

an estimated range, we use a numerical optimization function

to help narrow down this range. We may need to adjust the

search range or tolerance to avoid spikes. With a range in

hand, we set St to the maximum value in this range (if one

wishes to be conservative, or to the minimum value if more

tolerant of false positive trace detection). We repeat the

above with the function dlr(x) to determine Dt.

Step 6: Apply rule sets to generate investigation sets

We now have all the values needed to apply the rules listed

in Tables II,III. For each rule Ri, we create an investigation

set by filtering entries in NFR-FR (WRT Ri). Note that each

element can only satisfy one partition rule from Table III.

7. CASE STUDY: NFR PROMISE PROJECT 10

We present a case study performing the method steps 1-6 to

generate trace assurance investigation sets. Subsequently we

will discuss how effective the method was compared to a

manual trace assurance. The case study is taken from the

PROMISE NFR data set [9]. We selected this data for

several reasons – it is publically available (unlike JPL

requirements data), our analysis results can be posted to the

PROMISE repository for others to verify or replicate, and the

requirements require no specialized domain knowledge.

Project 10 (P10) specifies requirements for an online version

of a game like “Battleship” and we will not list them here as

they are easily accessed online. We selected P10 more or less

arbitrarily from the 15 projects in the NFR data set. The only

consideration was to ensure both NFRs and FRs were listed

and that the project seemed reasonably representative of the

requirements data found in NFR. P10 has 15 NFRs and 38

FRs and a manual NFR-FR requirements trace was generated

and is illustrated in Fig. 2 to provide an initial feel for the

complexity of the trace assurance task at hand.

Figure 2. P10 NFR-FR tracability graph.

Step1: P10 is contained in the text file nfr.arff, which is

conveniently loadable into a spreadsheet and edited. After

cropping out all non-P10 text, we exported the file as a CSV

and loaded it as a List object into R and then coerced it into a

corpus object. From here the tm package supplies all the

functions needed to perform the pre-processing desired (e.g.

stemming, stop-words, term-frequencies, etc.). An example

original and processed requirement is given below:

NFR1: The product shall simulate the look of ships at sea.

NFR1: simul look ship sea (processed NFR1)

From the frequency-term analysis we found the words

“system” and “game” to be generic and these were removed.

Step 2: The pre-processed corpus resulting from step 1 was

used to generate a term-document matrix (tdm) from which

the dissimilarity matrix
D<-tm.dissimilarity(tdm,method=”cosine”)

and similarity matrix
S<-similarity(tdm, method=”cosine”)

are generated. These are available on the PROMISE website.

Step 3: The boxplots for the T and NT similarity and

dissimilarity sets are shown in Fig. 3.

Figure 3. T, NT boxplots for simmilarty (left) and dissimilarty (right).

The two-sided Wilcox p-value between the similarity sets is

p=0.04599 indicating that we reject the null hypothesis that

median(T) = median(NT). Performing a one-sided Wilcox

test for the null hypothesis median(T) > median(NT) resulted

in p=.977 indicating the data is consistent with this

hypothesis. For the dissimilarity sets, the two-sided test had

p=0.0161 and the one-sided test had p=0.008 indicting that

we reject the null hypothesis median(T) > median(NT). This

is what we expect as anti-traces should be more dissimilar

than traces. The Pearson correlation coefficient between the

similarity and dissimilarity value pairs is -0.55, comfortably

negative and within the desired range. We are confident that

the data is not too noisy to extract meaningful information.

Step 4: The T and NT similarity and dissimilarity data sets

were used to generate the LR‟s using R‟s ecdf()function:

slr(x)=(1-ecdf(T)(x))/(1-ecdf(NT)(x))

dlr(x)=(1-ecdf(T)(x))/(1-ecdf(NT)(x))

Note that the sets T and NT are generated from S for slr(x)

and from D for dlr(x).

Step 5: Figure 4 shows the LR graphs for slr(x) and dlr(x).

Visually we estimate the maximum of slr(x) lies within the

0.6< x < 0.7 range. The maximum around x=7.5 is clearly a

noise spike. Using R‟s optimze() function we were able to

determine that the maximum within our estimated range

starts to drop after x=0.64 so we conservatively select

St=0.64 for our similarity threshold. A similar analysis of

dlr(x) provides Dt=0.98 for the dissimilarity threshold.

Figure 4. LR graphs for slr(x) and dlr(x)

Step 6: We apply the rules in Table III to generate

investigation sets (sets for Table II were empty or small, so

were skipped). It is straightforward to express the rules as list

(matrix) index selectors in R. Fig. 5 shows snippets of two

different ways to report the investigation sets (you are not

expected to read these tables, they are illustrative only). The

report on the left provides a compact view while the report

on the right uses the investigation sets to annotate the RTM

with color to help alert assurance staff of potential issues.

Figure 5. P10 NFR-FR partition investigation sets report examples

More results and trace sets are available through the

PROMISE repository [9].

8. EVALUATION

We begin with an independent assessment of the

investigation set accuracy. One author went through each set

element-by-element assessing the veracity for being in that

set (except “no info” sets which make no claims about the

requirements). Results are listed in Table IV where each

entry x\y is read, “x were found correct from y elements.” An

(a~b) entry means the assessor was unsure about b-a of the

elements. These could be correct, but there is some doubt.

TABLE III. Accuracy of investigation sets

R5 R7 R8 R9 R10 R11 R12

1\2 3\3 1\1 (8~11)\11 (7~9)\9 330\330 (91~101)\109

Our independent verification gives the investigation sets

95%-98% accuracy. The verification effort took 188

minutes. This is not surprising given that the assessor had to

review all but 107 of the 507 potential traces and anti-traces.

Next, we had a JPL assurance staff member perform a fully

manual P10 trace assurance by means usual to them. Table V

compares the results of this effort with the author‟s

assessment guided by the investigation sets generated.

TABLE IV. Comparison of manual and investigation set

 Effort Missing

Traces

False

Traces

Duplicates Verified

Traces

Verified

Anti-

Traces

Manual 227

mins

5 39 2 131 395

Inv-set 94

mins

11 99 2 159 301

Verified trace/anti-trace means that a trace/anti-trace was

reviewed and found correct. For the investigation set based

assurance, elements in the “low risk” sets R10 and R11 were

only “lightly” reviewed to achieve the verification. Here very

few elements in the low risk sets were found to be incorrect.

In comparison with the manual trace assurance, the set based

assurance effort took 58% less effort, found 120% more

“high risk” missing traces, and 154% more spurious traces

(not so risky, but resource wasteful). The verification rates

were comparable, but since any problem found reduces the

number of verified elements, it makes little sense to compare

the increase or decrease of these. The author‟s experience in

performing the set guided assurance felt more focused and

less tedious than the manual approach. While this is wholly

subjective, consider if the elements in the low-risk sets were

not reviewed at all. This would remove 59% of the

trace/anti-trace review size, and assuming a constant effort

per trace/anti-trace review, would result in a decrease in 41%

of the effort. Given that in this evaluation we saw a 58%

decrease in effort, there is likely further efficiencies present

than only reducing the number of items to review (and recall

that the author did not entirely eliminate review of the low-

… 11 12 13 …

21 R14 R11 R11 …

22 R9 R12 R13 …

23 R11 R12 R11 …

24 R10 R12 R11 …

…

risk elements). Neither the author nor the assessor was

familiar with P10 beforehand.

Manual trace assurance was performed on 10 of the 15

projects from the NFR PROMISE data set. These, along with

the complete details for the P10 evaluation above will be

made available there for review.

9. VALIDATION

For this proof-of-concept stage, study validation consists of

demonstrating that the method performs as expected under

predictable conditions. Later validation studies would

address meeting the seven success objectives listed

previously and other organization value-oriented criteria.

Here we perturb the data in P10 in some controlled manner

and compare our expected results from what is observed.

First, we use a random similarity matrix for P10. Here we

expect that data will no longer have sufficient information to

generate reliable investigation sets. The result we observed

was that the Wilcox test on T, NT sets had p-value=0.76

implying the data is consistent with the null hypothesis

median(T)=median(NT) giving the expected result.

Next, we use a random trace matrix for P10 for which we

again expect the data will no longer have sufficient

information. Here the Wilcox test had p-value=0.48 giving

the expected result.

Our last validation is to check that the empirical MLE is able

to identify an expected threshold value for St. For this we

generated random similarity values in the range [0.7-1.0] for

291 traces, and random similarity values in the range [-1.0-

1.0] for 279 anti-traces. In this case we expect a highly

significant difference between median(T) and median(NT).

The Wilcox test had a p-value=2.2e-16 strongly rejecting the

null hypothesis, as expected. Now, we expect that the

maximum for the LR in this case will occur near 0.7, and

indeed this is observed in the graph of slr(x) on the left side

of Figure 6. Numerical optimization places the maximum at

0.69, well within tolerance. It is also instructive to consider

the likelihood ratio L[T=1 | S < St]/ L[T=0 | S < St] which

represents the ratio of false negatives to true negatives. Here

we expect that the ratio will rapidly increase after the

threshold value 0.7, by design, because prior to this we know

there cannot be any traces and after this point we know there

will be more and more traces until at S=1 there are about an

equal number of them as all traces have S ≤ 1.

Figure 6. Empirical likelihood ratio function for 0.7 trace set

10. CONCLUSION

Our case study detailed numerous “manual” steps, yet it is

clear that much, if not all, of these steps can be automated.

Our case study is small, but representative, and observed no

inhibitors to scaling the method up to JPL sized projects. If

similar results for our case study hold, JPL will save

substantial effort, reduce cost, and increase trace assurance

effectiveness. As the method shows great promise for

meeting the seven objectives vital for success at JPL, we will

be initiating a pilot study on select JPL SQA engagements.

Acknowledgment

Our thanks to the experts in assurance from JPL‟s SQA

group (5125) for their participation, feedback, and support.

This work is funded in part by the National Science

Foundation under NSF grant CCF-0811140.

References

[1] S. Winkler and J. von Pilgrim, “A survey of traceability in
requirements engineering and model-driven development,”
Software and Systems Modeling, Dec. 2009.

[2] A. Goldberg, X. Zhu, and S. Wright, “Dissimilarity in graph-
based semisupervised classification,” Eleventh International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2007.

[3] J.H. Hayes and A. Dekhtyar, “Humans in the traceability
loop: can't live with 'em, can't live without 'em,” Proceedings
of the 3rd international workshop on Traceability in
emerging forms of software engineering, Long Beach,
California: ACM, 2005, pp. 20-23.

[4] J. Cleland-Huang, A. Dekhtyar, J.H. Hayes, G. Antoniol, B.
Berenbach, A. Egyed, S. Ferguson, J. Maletic, and A.
Zisman, “Grand challenges in traceability,” TR COET-GCT-
06-01-0.9, Center of Excellence for Traceability, 2006.

[5] A. Dekhtyar, J.H. Hayes, S.K. Sundaram, E.A. Holbrook, and
O. Dekhtyar, “Technique Integration for Requirements
Assessment,” RE, 2007, pp. 141-150.

[6] E.A. Holbrook, J.H. Hayes, and A. Dekhtyar, “Toward
Automating Requirements Satisfaction Assessment,”
Proceedings of the 2009 17th IEEE International
Requirements Engineering Conference, RE, IEEE Computer
Society, 2009, pp. 149-158.

[7] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc,
“Automated classification of non-functional requirements,”
Requir. Eng., vol. 12, 2007, pp. 103-120.

[8] J. Cleland-Huang, R. Settimi, O. BenKhadra, E.
Berezhanskaya, and S. Christina, “Goal-centric traceability
for managing non-functional requirements,” Proceedings of
the 27th international conference on Software engineering,
St. Louis, MO, USA: ACM, 2005, pp. 362-371.

[9] “Predictor Models in Software Engineering (Promise)
Software Engineering Repository.”
http://promise.site.uottawa.ca/SERepository

[10] Landauer, T. K., Foltz, P. W., & Laham, D. (1998).
Introduction to Latent Semantic Analysis. Discourse
Processes,25, 259-284.

[11] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E.
Merlo, “Recovering Traceability Links between Code and
Documentation,” IEEE Transactions on Software
Engineering/, vol. 28, 2002, pp. 970-983.

[12] A. Marcus and J. Maletic, “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing,” /Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, 2003, pp. 125-
135.

http://promise.site.uottawa.ca/SERepository

[13] “Recovering Traceability Links between

Code and Documentation,” IEEE Transactions on

Software Engineering/, vol. 28, 2002, pp. 970-

983.

[14] A. Marcus and J. Maletic, “Recovering

Documentation-to-Source Code Traceability

Links using Latent Semantic Indexing,”

/Proceedings of the Twenty-Fifth International

Conference on Software Engineering 2003, 2003,

pp. 125-135.

[15] Landauer, T. K., Foltz, P. W., & Laham,

D. (1998). Introduction to Latent Semantic

Analysis. Discourse Processes,25, 259-284.

Formatted: Normal

