
Application of Reinforcement Learning to

Requirements Engineering: Requirements Tracing

Hakim Sultanov

University of Kentucky

Lexington, KY, USA

hakim.sultanov@uky.edu

Jane Huffman Hayes

University of Kentucky

Lexington, KY, USA

hayes@uky.edu

Abstract— We posit that machine learning can be applied to

effectively address requirements engineering problems.

Specifically, we present a requirements traceability method based

on the machine learning technique Reinforcement Learning

(RL). The RL method demonstrates a rather targeted generation

of candidate links between textual requirements artifacts (high
level requirements traced to low level requirements, for

example). The technique has been validated using two real -world

datasets from two problem domains. Our technique

demonstrated statistically significant better results than the

Information Retrieval technique.
Index Terms— machine learning, reinforcement learning,

information retrieval; requirements traceability; software

engineering; Ubiquitous Grand Challenge, Research Project 2 of

Grand Challenges of Traceability

I. INTRODUCTION

The value of tracing requirements through all phases of the

Software Development Life Cycle (SDLC) can be appreciated

by the customers who request and expect delivery of certain

system features and by the developer who failed to deliver the

product according to the specifications. Overlooked software

requirements can have a profound effect. For example, a

software flaw resulted in a product multiplying stock trades

which caused Knight Capital Group to lose more than $440

million dollars [1].

To ensure high quality requirements and their proper

implementation throughout the phases of the SDLC, a number

of steps can be taken. Requirements tracing ensures that

requirements are properly addressed in the resulting software

artifacts, i.e., use cases, test cases, etc. In recent years, interest

in this area has intensified as demonstrated by the amount of

work on automating the process of requirement tracing

[2][3][4][5]. It should be noted that even the automated

traceability techniques require some human analyst

involvement. It is important to improve the quality of

requirements to ease automation of tracing and other

requirements-related techniques as well as to ease the burden of

human analysts working with requirements and/or the output of

requirements tools.

In the past several years, there has been growing interest in

machine learning techniques applied to requirements

engineering. Machine learning techniques can help establis h

knowledge or rules from requirements engineering artifacts

[6][7]. The reinforcement learning technique is a machine

learning algorithm that is based on computational agents

selecting actions to maximize some long term reward. We

introduce a reinforcement learning-based method for tracing

textual pairs of requirements artifacts. The presented technique

has been validated on two sets of software requirements from

real projects in two domains, comparing the results to those of

a typical information retrieval (IR) tracing technique. We

found that our technique demonstrated statistically significant

better results than the IR technique.

 The paper is organized as follows. Section 2 provides

background on reinforcement learning. Section 3 discusses

requirements tracing. Section 4 discusses our approach to

tracing using the reinforcement learning method. Section 5

presents the validation of the technique on two datasets.

Section 6 discusses the results and analysis. Section 7 presents

related work. Section 8 concludes and addresses future work.

II. REINFORCEMENT LEARNING

In reinforcement learning (RL), agents probe and change

the environment though a discrete sequence of steps and

actions over time t, where t = 0, 1, 2, 3, etc. At each step t, the

agent evaluates the state st ∈ S, where S is a set of all possible

states. Based on the state st, the agent selects an action at ∈ A

(st), where A is a set of possible actions available to the agent in

state st. As the result of the action taken at the moment t, the

agent gains reward rt+1, and moves to the state st+1. Figure 1

displays the interaction between the agent and environment.

Fig. 1. The interaction of the agent and the environment in reinforcement

learning.

978-1-4673-5765-4/13/$31.00 c© 2013 IEEE RE 2013, Rio de Janeiro, Brasil
Research Track

52

As shown in Figure 1, the agent receives the state st as an

input and produces action at as an output. The mapping of the

states into actions is determined by a policy πt. Since each state

st can present a set of possible actions A(st), the policy πt

denotes the probabilities of selecting one of the possible actions

determined by the state st. The mapping of states to actions is

represented as πt(s,a), the probability of selecting action a =at,

when state s=st. The agent’s goal is to maximize the total

rewards acquired in the long run.

The reward the agent collects depends upon the actions it

takes. To estimate the desirability of a state, the RL technique

uses the notion of a value function. Formally, the value

function is represented as:

where Rt is the sum of all rewards obtained after time step t.

The value Eπ{} is the expected reward value given to the

agent that follows the policy π. The discount coefficient γ∈

[0,1] places greater weight on immediate or future rewards. If

γ approaches 0, the immediate rewards are assigned the most

value. When γ approaches 1, the future rewards and immediate

rewards are valued equally.

Bellman’s equation [8] provides another way to express the

value of a state s:

where P
a
ss ̀ is the probability of reaching state s` from s if

action a is taken; R
 a

ss ̀is the reward associated with reaching

state s` from s by taking action a.

A policy that maximizes expected return for all states is

called an optimal policy π*. Formally, π* ≥ π`, if and only if,

Vπ*(s) ≥ Vπ`(s) for any s ∈ S. Alternatively, we can define V*

as

One way to determine an optimal policy is to use the Value

Iteration algorithm [8]. The Value Iteration algorithm is an

iterative backup operation. The algorithm combines an

immediate policy improvement for the current state and the

values of states reachable from the current state in the

following form:

 (4)

where P
a
ss and R

 a
ss ̀ bear the same meaning as defined in

Equation 2. The value of state s is maximized across all actions

a available at s. The pseudo code for the Value Iteration

algorithm is shown below:

Initialize V(s) =0, for all s ∈ S

Repeat

 ∆ ←0

 For each s ∈ S

 V ←V(s)

 V(s) ←maxa∑s`Pss` [Rss`+γV(s`)]

 ∆←max(∆,|v-V(s)|)

 Until ∆<ε (ε a small positive number)

Output a deterministic policy, π, such that

π(s)=argmaxa ∑s`P
a
ss`[R

a
ss`a+γV(s`)]

To apply the reinforcement learning-based approach to the

traceability problem, we construct a search space, i.e., an

environment. After the states, actions, and rewards are

established, the value iteration algorithm is executed. The value

iteration algorithm outputs actions for each state. The actions

established for the states determine the navigation heuristics for

the agents.

The idea of building a path from the source node to the

destination node resonates well with the activity of establishing

candidate links in the requirements traceability process.

III. REQUIREMENTS TRACING

Requirements tracing is defined as “the ability to describe

and follow the life of a requirement, in both a forwards and

backwards direction” [9]. A typical process used for tracing

natural language artifacts, manual or automated, generally

consists of a number of steps: document parsing, candidate

link generation, candidate link evaluation, and traceability

analysis [9]. For example, if a requirements document is being

traced to a set of use cases, document parsing extracts elements

from the two artifacts resulting in uniquely identified

requirements elements and uniquely identified use case

elements. At this point, a human analyst or tool will find

relationships or links between the elements, perhaps by

selecting one requirement element and then performing string

searches (using important words or terms in that element) into

the collection of use case elements. If a tool is being used, it

may be the case that the human analyst or tool assigns

keywords to the requirements and use case elements and then

performs keyword matching in order to generate what are

called “candidate links.” Candidate link evaluation deals with

assessing the links to ensure that they are correct and

traceability analysis deals with deciding if the high level

artifact has been “satisfied” by the lower level artifacts (e.g.,

are there use cases that satisfy a given requirement?). In this

work, we concentrate on adapting the RL technique to the

candidate link generation problem.

A. Terminology

First, we define some terminology. The high and low level

textual elements are called documents. The documents contain

terms. The collection of all terms from all documents is called

the dictionary or vocabulary. The collection of all terms in a

53

document is called the document corpus. The inverted index is

a list of documents listing all documents where a particular

term occurs. Term frequency TF t,d

is the count of how many

times a particular term occurs in all documents. Inverse

document frequency, IDFt, is a calculated value:

where N is the total number of documents in the collection

and DFt is document frequency, i.e., number of documents

where a given term occurs.

To trace high level textual elements (say from a

requirements document) to low level textual elements (say

from a design document), we use computational agents that

traverse the collection of all documents and the vocabulary

shared by the documents.

B. Measurements

The tracing results can be evaluated using two

measurements: Recall and Precision [10].

Recall is evaluated as the total number of relevant retrieved

documents divided by the total number of relevant documents

in the whole collection:

 . (6)

Precision is evaluated as the total number of relevant

retrieved documents divided by the total number of retrieved

documents:

 . (7)

Precision and recall can be combined into a weighted

harmonic mean:

, where . (8)

When β
2
=1, precision and recall are balanced in the

measure, this is called F1 measure. When β
2
 = 2, recall has

more weight than precision, this is called F2 measure.

IV. METHODOLOGY

The search space in a reinforcement learning (RL) model

has three layers of data. The top level consists of the high level

documents. The middle level consists of all terms in all

documents. The bottom level consists of the low-level

documents.

A. Search Space Navigation

The agents traverse the search space starting from the top

level documents down to the low level documents by selecting

the terms in the middle layer that are common between the

selected documents. The main idea of the algorithm is to equip

the agents with some heuristics to navigate the search space

and choose the correct candidate links between the high and

low level documents.

To define a search space in terms of the RL model, we need

to define states, actions, transitions, and rewards. Figure 2 lists

states and the transitions between them. States are defined by

the agent’s position in the data space. The agents can be in any

of the following states:

- Top level document, HL

- A term in a high level document, termHL

- Low level document, LL

- A term in a low level document, termLL

- A synonym term in vocabulary, syn t

The agent’s states are the positions in the search space

where the agent can be located. The action the agent selects

determines the states in the search space to which the agent will

transition. Possible actions at states and transitions between the

states are shown in the Agent State Transition Diagram, Figure

2.

Fig. 2. RL Agent State Transition Diagram.

As we can see in Figure 2, when an agent is positioned at a

high level document, state HL, the agent starts by selecting a

term as the starting point for its journey (the heuristic of

selecting terms is described below). By selecting a term in a

high level document, the agent transitions to the state termHL.

From the state termHL the agent can choose a low level

document that contains either the term or a synonym of the

term.

54

By choosing a low level document, the agent transitions to

the state LL. From the state LL the agent should select a term

in the low level document. If the low level document contains

the term termHL in several positions, the agent needs to select a

position termLL within the low level document to maximize the

match between the neighborhoods in the high and low level

documents. A neighborhood is a textual segment located

around a linking term.

Alternatively, from state tHL, the agent can also choose to

explore the synonyms of the term. If the agent selects a

synonym, it transitions to the state s t. From the state s t, the

agent can only choose a low level document containing the

synonym term. Possible actions at states and transitions

between the states are summed up in Table I

TABLE I. AGENT ACTIONS

From Action To

Top Level Doc
HL

Select a term termHL

termHL
Select low level
doc or synonym

LL

termHL
Select low level
doc or synonym

syn

LL
Select a term termLL

Syn
Select low level
doc

LL

Each action listed in Table I can be in one of the three

behaviors: Random, Linear, or Quadratic.

In Random behavior the agent has an equal probability of

transitioning in any of the available next states. The formula for

the random behavior is as follows:

, (9)

where Si is a reachable state and N is the number of all

reachable states. For example, if the agent is in a “term- high-

level” state tHL and has ten possible low level documents, i.e.,

ten reachable LL states, the probability of transitioning into

each of the reachable states is only 0.1.

Linear behavior allocates the transitional probabilities to the

reachable states proportional to the numeric values or rewards

the reachable states possess. The formula for linear behavior is

as follows

, (10)

The probability of transitioning into the state Si is

proportional to the value in the state si, divided by the sum of

values of possible transition states. For example, if the ten

reachable LL states from the state tHL had the following values

associated with them: {20, 50, 30, 0, 0, 0, 0, 0, 0, 0}, the

probability of transitioning into the first LL state is 0.2, into the

second 0.5, the third 0.3. The remaining reachable states would

receive 0 transition probability. We describe the numeric state

values and rewards later.

When the agent selects the quadratic behavior, the transition

probabilities from the example above would be distributed

based on the following formula:

. (11)

The probability of transitioning into the state si is

proportional to the squared value in the state si divided by the

sum of squared values of possible transition states.

Consider the term ‘list.’ In the course of the reinforcement

learning algorithm, the state “A3-list” received the value 1.55.

The linear selection behavior raises the probability of such

transition to 0.17. The quadratic selection assigns the transition

from ‘A3’ to ‘A3-list’ the highest probability, 0.21.

Fig. 3. Term selection probability based on linear selection behavior.

Fig. 4. Term selection probability based on quadratic selection behavior.

It can be visually seen that the term ‘delet’ in Figure 4 is

significantly smaller compared to the terms ‘distribut,’ ‘list,’

and ‘pld.’ It is also worth mentioning that the proposed

algorithm differentiates between the different positions of a

term in a document. For example, the term ‘delet’ appears in

document A3 in two positions. Each position, or state “A3-

pos,’ receives different values based on values calculated

during the Value Iteration algorithm. Therefore, the positions

receive different transition probabilities.

A state “a term in low level document” termHL can have a

reward. This is a numeric value associated with transitioning

into the termHL state. The reward is calculated by comparing

the text segments in two neighborhoods: in high and low level

documents. The comparison evaluates how many common

terms the two segments share. The reward is estimated using

the following formula:

55

, (12)

where H is the collection of high level documents, L is the

collection of low level documents, and w1,w2 are the terms in H

and L documents, respectively.

The function δ(w1,w2) is calculated as follows:

. (13)

The multiplication coefficients range from 1 to 10: Chigh,Clow

∊{1,10} . The range of multiplication coefficients is a

calculated estimate of the similarity of the textual

neighborhoods. The higher values for the Chigh and Clow

coefficients imply that the matching terms are close to each

other in the neighborhood of the linking term.

The reward associated with transitioning into a position in a

low level document is propagated back to the high level

documents through the common linking terms. As described in

the background section (Section II), the agents choose the

behavior in the RL model, i.e., the search space navigation

policy, to maximize expected return. The expected return is

calculated by the formula:

, (14)

where rt is the reward received after t-th transition action.

The reinforcement learning algorithm for requirements

traceability listed below:

REINFORCEMENT LEARNING TRACELINKS (H, L)

 // Input High and Low level documents H and L

 // Output list of agent count (h,l,n) –

 //from h in l, where n is the count

1. // Create State Space

2. For each doc hl in high level collection H

3. States.Add(NewState(hl))

4. For each term t in high level doc h

5. i ← position of t in hl

6. States.Add(newState(hl_t))

7. // Iterate through low level doc linked via term t

8. For each doc ld in Vocabulary.GetDocsByTerm (t)

9. If ld is lowLevelDocument

10. For each position j of term t in ld

11. lLevelDocState← newState(ht_t_ld_posj)

12. Value=MatchingValue(hl,ld,i,j)

14. End For

15. Else // ld is a synonym

16. ld_2← Vocabulary.GetDocsByTerm (ld)

17. For each position j of term ld in ld_2

18. lLevelDocState←newState(ht_t_ld_posj)

19. Value=MatchingValue(hl,ld_2,i,j)

20.

21. End For

22. End if

23. End For

24. End For

25. // Calculate state values

26. For cycle 1 to 5

27. For each state s in States

28. argMaxValue ← 0

29. possibleSates ← s.Transitions

30. For each action a in Actions

31. possibleStates.TransitionProb(a)

32. For each ps in possibleStates

33. pValue← pValue+ps.Prob*ps.Value

34. If pValue > argMaxValue

35. bestAction ← a

36. s.Policy ← a

37. End if

38. End For //possible states

39. maxValue←Max(pValue, maxValue)

40. End For // Actions

41. s.Value← s.TransReward + maxValue

42. End For // states

43. // Traverse the Search Space

44. For each top level document hl

45. For each agent ant in colony

46. currentState ← States(hl)

47. While CurrentState != low level document

48. //use curState.Policy

49. //and curStates.Transitions

50. nextState ← currentState.SelectNextState

51. currentState← nextState

52. End While

53. End For

54. End For

The reinforcement learning algorithm determines an optimal

transition policy for each state by maximizing the expected

return. The transition policy will become the guiding heuristic

for the agents to traverse the search space.

B. Path Saturation

The agents choose to select certain states based on the space

traversal policy. When an agent is presented a choice of

possible next states S= {s 1, s2,… , sk}, the probability of

transitioning into the next state depends on the value the next

state holds. It is possible for one of the next states to have a

value which is much higher than the values of other possible

next states. In this case, the probability of transitioning into s i is

higher than the probability of transitioning into any other state:

Pr(si)>>Pr(sj), where s i , s j ∈ {s1, s2,… , sk} i≠j. (15)

It is possible to have a situation where the majority of agents

always select the state with the transition probability much

higher than other possible states. This scenario may limit the

search only to the states with high values. To address this

situation, we introduce the notion of path saturation.

56

Path saturation is a value added to define the number of

agents transitioning from state sA to state sB. As the saturation

value gets higher, the probability of transitioning from sA to sB

becomes smaller. The saturation value from s A to sB on the

transition path has the inverse effect on the transition

probability from sA to sB.

The candidate links are estimated by the agent count

gathered in the low level documents. A candidate link between

high level document HLdoc and the low level document LLdoc

gets a count of one if an agent starting from HLdoc has reached

the low level document LLdoc. After all counts on the candidate

links have been calculated, the candidate links are ranked by

the agent count. In order to validate the approach, we applied it

to two sets of requirements from software systems. The study

design and threats to validity are presented below

V. VALIDATION

This section will present the design of the study as well as

threats to validity.

A. Study Design

In order to validate the proposed approach, the RL based

technique was applied to two datasets. The first consists of 49

textual requirements and 51 textual use cases. The dataset is a

text-based email system, Pine, developed by the University of

Washington [10]. The Pine dataset contains 246 true links.

These links form the answer set, i.e., a collection of links

against which we can validate our findings. The second project

consists of 22 requirements documents and 53 design

documents in the NASA scientific instrument project CM1SUB

[11]. The project has 45 true links in the answer set.

The experiments were conducted using a Vector Space

Model with TF-IDF weighting (TF-IDF hereafter) and the

reinforcement learning (RL) method. The independent variable

in the study is the method (TFIDF, reinforcement learning).

The dependent variables are recall and precision. The

precision-recall graph and statistical analysis were used to

evaluate the results.

All textual documents were pre-processed, the agents

selected each high-level element one at a time and the agents

used the search space navigation heuristics established by the

RL based method. The output was captured in the form of a

candidate TM. The results were compared to the answer set to

calculate recall and precision (Equations (6) and (7)) defined

earlier.

To eliminate any possible threats to the validity of the

experiment several controls were implemented. Internal threats

to validity include possibly indicating a relationship between

the treatment methods and the outcome when in reality there is

no relationship. First, in our controlled experiment, we used the

same datasets in the same environment. This was done to

provide a fixed environment where it was possible to observe

the differences in the outcome only where the treatments are

different, i.e., where we apply different candidate link

generating algorithms.

To address the possible threat to internal validity due to

repeated testing, each method was run ten times and examined

using the mean recall and precision values. Each method

produced average recall and precision values with variances

ranging from 0.003 to 0.06. To protect the ability to draw valid

conclusions from the study, the same two datasets were

analyzed using similar treatments. In this experiment, both

datasets were analyzed using the TF-IDF and the RL methods.

Another possible threat identified was the effect of

experimenter bias on the ability to reach valid conclusions

based on the data. This threat was reduced by using datasets

where the answer sets were independently verified by more

than one analyst. In the case of CM1SUB dataset, more than

one research group was used.

There was additional potential for bias in that the answer

sets were created by human analysts familiar with the

traceability research domain. The vetted tool, RETRO.NET

[36], was used and adapted in order to properly implement the

RL techniques. The threats to validity were also reduced by

using standard information retrieval measures recall and

precision to evaluate effectiveness.

In addition to the internal threats to validity, threats to

external validity and the ability to properly generalize the

results were addressed by using two datasets for validation.

Though both datasets are real projects (not student projects),

they are small in size. Also, though the datasets do represent

two different domains, it is not possible to state that the study

sufficiently validated all domains or all projects [36]. The

results are discussed below.

VI. RESULTS AND ANALYSIS

Following the completion of the experiments, the RL

method and TF-IDF method were evaluated for the Pine and

CM1SUB datasets using the primary measures of recall and

precision. Subsection A presents the RL results for Pine.

Subsection B presents results for CM1SUB dataset. We share

our observations in Subsection C.

A. Pine Dataset

Figure 5 presents the precision-recall curve for the RL and

TF-IDF methods for the Pine dataset.

Fig. 5. Precision-Recall curves for TF-IDF and Reinforcement Learning
methods for the Pine Dataset .

57

The RL method demonstrates higher precision values than

TF-IDF for the same values of recall. The highest precision for

RL method is 0.84 at recall 0.24. As we can see in Figure 5, the

highest precision-recall value in RL is at the same position as

in TF-IDF.

By inspecting other values of the precision-recall graph, we

see the RL method produced a more focused result. The lowest

precision returned by the RL method is 0.65 at recall 0.52. The

comparable result for TF-IDF achieves precision 0.65 at recall

0.4. The quality of candidate links produced by the RL method

is better; the RL achieves higher precision than TF-IDF for the

same recall values.

For the Pine dataset, at recall of 0.42 the RL method

achieves precision of 0.73. As we can see from Table 2 in

Appendix A, the RL method filtered at 0.25 suggested 141

links. The number of correctly identified links was 103. The

total number of correct candidate links for the Pine dataset is

248. The 103 correctly suggested links out of a total of 248

equates to 0.42 recall. The TF-IDF method at 0.20 filtering on

the Pine dataset suggests 162 links; 106 links are correctly

identified (106 out 248 is 0.42 recall). Having similar recall

values, the two methods achieved different precision: the TF-

IDF method achieves 0.65 (0.65= 106/162); the RL method

achieves 0.73 (103/141). The RL method retrieves a higher

number of relevant documents compared to the TF-IDF

method.

To evaluate any statistical difference between the two

methods, the recall and precision numbers were compared on

the overlapping recall value range. For the Pine dataset, the TF-

IDF method covered recall values from 0 to 1, while the RL

method covered recall values from 0.23 to 0.52. Using the

recall point from the RL method, the precision values were

interpolated for the TF-IDF method. Twenty recall values and

twenty precision values for TF-IDF and RL were used to define

the null hypothesis and alternative hypotheses for the results:

H0: There is no difference between the precision values of

the TF-IDF interpolated precision-recall graph compared to the

precision values for the RL method’s precision-recall graph.

H1: There is a difference between the precision values of

the TF-IDF interpolated precision-recall graph compared to the

precision values for the RL method’s precision-recall graph.

The Wilcoxon Signed Ranked method was used to evaluate

the null hypothesis. The critical value for Zcritical tes t was

±1.96 at confidence level α = 0.05. The results of the

calculations produced the following values:

• W- = -205,

• W+ = 20,

• Z = -3.82.

Since Z < Zcritical, the null hypothesis was rejected. This

left the conclusion that there is a statistically significant

difference between the precision values of the two methods.

B. CM1SUB Dataset

The RL method applied on the CM1SUB dataset produced

results similar to the results obtained on the Pine dataset.

Figure 6 shows the precision-recall values for the RL method

compared to the precision-recall values for the TF-IDF method

using the CM1SUB dataset.

Fig. 6. Precision-Recall curves for TF-IDF and Reinforcement Learning

methods for the CM1SUB Dataset .

As shown in Figure 6, the points in the Precision-recall

plane for the RL method have higher precision values than the

points for the TF-IDF method. The RL method reaches a

precision of 0.61 at recall of 0.24; the TF-IDF method reaches

a precision of only 0.5 at a 0.24 recall value.

When comparing recall and precision values for the RL

method, recall values grow to 0.38 as precision drops to 0.39.

The RL method results also cluster in the area from recall 0.39

and precision 0.39 up to precision value 0.61 at recall 0.24. The

RL method does target the relevant candidate links.

For the CM1SUB dataset, the recall and precision numbers

were compared between the two overlapping recall to confirm

any statistical difference between the two methods. With values

similar to those for the Pine dataset, the RL method covers a

limited range of recall values 0.28 to 0.34.

The precision values for the TF-IDF method were

interpolated using 20 recall values and 20 precision values for

TF-IDF and RL. The null hypothesis and alternative

hypotheses were defined as follows:

H0: There is no difference between the precision values of

the TF-IDF interpolated precision-recall graph compared to the

precision values for the RL method’s precision-recall graph.

H1: There is a difference between the precision values of

the TF-IDF interpolated precision-recall graph compared to the

precision values for the RL method’s precision-recall graph.

The Wilcoxon Signed Ranked method was also used to

evaluate the null hypothesis as was done previously for the

Pine dataset. The critical value for Zcritical test was found to

be ±1.96 at confidence level α = 0.05. The calculations

produced the following values for W-, W+ and Z:

• W- = -153,

• W+ = 18.5,

• Z = -3.07.

58

Since our Z < Zcritical, as found previously for the Pine

dataset, the null hypothesis must also be rejected. This left us to

conclude that there is a statistically significant difference

between the precision values of the TF-IDF and RL methods

on CM1SUB.

C. Observations

In light of the results obtained from the experiments, we

make the following observations.

Typically, when we consider a precision-recall curve, we

observe: high recall values and low precision; high precision

and low recall; and values in between these two extremes [12],

[13], [2]. High precision and low recall implies that we

accurately retrieved a small fraction of the required documents,

but not most of them. Low precision and high recall implies

that we retrieved most of the required documents, but at the

same time, we retrieved more unrelated documents as well.

Ideally, when we issue a query, we would like to retrieve all

the correct documents and no unrelated items. This ideal

scenario should provide high recall and high precision values;

our precision-recall curve should reside in the upper right area

of the graph as shown in Figure 7. We would like our

precision-recall curve to resemble the ideal shape, i.e., move

the top right corner of the precision-recall graph and raise the

lower boundaries of recall and precision values. The closer we

can get to the ideal shape of the precision-recall curve, the

fewer links a human analyst will have to inspect.

For both datasets, the RL method demonstrated higher

precision values than the TF-IDF method for the same recall

values. For the Pine dataset, the RL method reached precision

value 0.65 at recall 0.52. The TF-IDF method only reached

precision value 0.52 at recall 0.52.

Fig. 7. Precision-Recall curves, Ideal vs. Typical.

We observed a similar difference in precision between the

RL and TF-IDF methods using the CM1SUB dataset. The RL

method reached precision 0.61 at recall of 0.24, while TF-IDF

reached precision 0.5 at recall of 0.24.

It should be noted that the RL method did not cover the

whole spectrum of recall or precision values. The minimum

recall for RL on Pine is 0.23; the maximum recall for RL on

Pine is 0.52. The minimum precision for RL on Pine is 0.65;

the maximum precision for RL on Pine is 0.84.

A precision-recall curve for the RL method using the

CM1SUB dataset was also limited by min/max values in recall

and precision. For CM1SUB, the minimum recall value for RL

is 0.24, the maximum recall was 0.38. The minimum precision

value for RL was 0.39, the maximum was 0.61.

The precision-recall data points for the RL method for both

datasets exhibited a more focused result in producing candidate

links compared to the TF-IDF method. However, the TF-IDF

method did reach values close to 1 in recall and precision.

At the same time, when TF-IDF recall reaches 1, precision

drops to almost 0. The same is true for precision: when

precision reaches 1, the recall drops close to 0. The RL method

recall does not drop below 0.23 for Pine and produces recall

higher than 0.24. Also, the lower boundaries for precision on

the RL method for the Pine and CM1SUB datasets were 0.37

and 0.39, respectively.

One explanation for the observed trends using the RL

method is that the common textual segments in two compared

documents contribute significantly to promoting a possible link

between the two documents. In other words, the candidate links

suggested by the RL method shared common textual segments.

This is why the higher precision results are produced in the RL

method for both datasets.

The upper boundary on precision for RL for both Pine and

CM1SUB datasets is 0.84 and 0.61, respectively. This indicates

that having common segments between textual documents is

not enough to establish a true link between them. If the RL

method links the documents with common segments, the upper

boundary on the precision indicates that some documents

sharing textual segments may not have a logical link between

them. Even though in many cases the wording of the segment

is the same in both documents, the information carried by this

common segment is not sufficient to link the documents. This

suggests that no t all common textual segments are “created

equal.”

At the same time, the lower boundary on the RL method’s

precision for Pine and CM1SUB datasets does not fall below

0.65 and 0.39, respectively. This fact suggests that the common

segments play an important role in identifying correct

candidate links between high and low level documents. The

portion of the relevant documents returned by the RL method

did not fall below 0.65 and 0.39 for Pine and CM1SUB

datasets, respectively.

With the lower boundaries on precision, the RL method

reaches the upper boundaries for recall (0.52 and 0.38). This

indicates that the common textual segments may not

necessarily uncover all possible ways of linking the documents.

Next, we compare our work to prior art.

VII. RELATED WORK

We address related work in the areas of traceability link

generation and machine learning techniques below.

59

A. Candidate Link Generation/Text Analysis

A number of researchers have successfully applied

information retrieval techniques to the candidate link

generation problem. Most have applied the vector space model

to generate traceability between various artifact pairs (such as

source code modules and manual pages, functional

requirements and source code) [11,13]. In general, high values

of recall are achieved (90 – 100%) with low precision (2 –

12%) [11,2,3]. As a result, work has focused on improving

precision. Approaches have ranged from phrasing to applying

rules to tagged artifacts [9, 13,14].

Mader and Gotel [3] presented an approach for automated

update of traceability relations between analysis and design

artifacts presented in UML. To update the relations, the method

needs to have a set of pre-established relations. The method

offers the recognition of the changes in UML diagrams and

then updates the relations of the changed diagram elements.

In general, the above techniques have been able to achieve

excellent recall [12] but often at the expense of precision that is

not acceptable or is only borderline acceptable. In our work,

we aim to keep both recall and precision high. The RL agents

navigate the search space to link documents. The agents’

traversal heuristic links high level documents to related low

level counterparts. We use the VSM as a baseline against

which to compare the performance of our method.

Ziftci and Krueger [14] correctly point out one of the

weaknesses of the traditional IR method: low precision at a

high recall. The authors use a notion called “feature marker” to

establish traces between functional requirements and test cases.

The proposed method does achieve precision-recall values

above 90%. The extra burden for the method is due to the use

of an execution tracing tool, aka a profiler. The profiler lists the

methods and classes called during execution of test cases. By

articulating the aim of achieving precision-recall above 90%,

the authors emphasize the target goals for requirements

traceability research. On the other hand, the shortcoming of

their proposed method is the restricted range of options: the

execution traces can be obtained only after the source code has

been compiled. The method cannot be applied when the

requirements need to be traced to design elements .

B. Machine Learning Techniques

Cleland-Huang, Czauderna, Gibiec, and Emenecker present

two machine learning approaches to improve traces between

regulatory codes and product requirements [15]. The terms in

requirements are assigned probabilistic scores with respect to a

regulatory code. To classify the requirements, the manually

created traces were used for cross training and testing. The

second approach, web based, was used to retrieve indicator

terms from the Internet for a specific regulatory code. Only in

this second case, the machine learning classification took place

based on the web-mined documents.

Establishing links between documents can be based on

related textual segments. Hatziavasilloglu, Klavans, and Eskin

present the composite similarity metric to measure the semantic

distance between a pair of small textual segments [16]. The

authors use a machine learning approach to select the potential

optimal features between documents. The potential matches are

established through word co-occurrence. This approach

resonates well with our technique. We also use common terms

and the terms located close to linking term in the text.

Using the similarities between textual documents, i.e.,

common textual segments, and establishing the logical links

based on these segments is the main focus of our research

work. The work presented by Menczer and Belew lists many

features similar to our work [17]. The authors describe how

autonomous agents make decisions to automate the web

document search and discovery process. The agents in the

work of Mencer and Belew have a heuristic behavior by which

the agents select links to follow. In our work, the autonomous

agents also discover a heuristic to traverse the search space,

i.e., select a link to follow.

An agent in Mencer and Belew’s work senses the “current

neighborhood” by analyzing the text where the agent is

situated. That matching feature is similar to the concept of term

neighborhood that we use. The agents in Mencer and Belew’s

work use reinforcement learning (RL) to modify the behavior

to follow the “best link” possible. In our work, we use the RL

technique to enable agents to traverse the s earch space and

establish the candidate links between the documents.

Even with so many similarities between the agents in

Menczer and Belew’s work and ours, there exist three notable

differences. The links between documents in the work of

Menczer and Belew’s are web links. In our work, the links

between documents are established via common terms. The

agents of Menczer and Belew receive user feedback on the

suggested links; in our work the agents do not receive

feedback. The agents in Menczer and Belew’s work are

created with “initial reservoir of ‘energy’ [17].” The agents in

our research do not utilize any energy measurements for the

search space traversal.

Summing up related work, we can state the following:

- It is useful to link documents by treating them as a

collection of phrases, not a bag of words [16].

- Small textual segments and their similarity can be

evaluated based on semantic distance [17].

- Text around the linking term provides good location

data on compared textual segments [16] [17].

The machine learning approach, in general, and

reinforcement learning, in particular, proved to be useful

computational agents to modify and select an optimal search

space behavior [16] [17] [18].

VIII. CONCLUSIONS AND FUTURE WORK

Comparing RL to TF-IDF, which links the documents

based on all common terms and their weight, the RL method

promotes the links between documents with common terms

located close to each other. In other words, the RL method

identifies common textual segments between documents and

suggests links between such documents. By doing so, the RL

method outperforms the TF-IDF method for the same recall

values. RL’s higher precision at the same recall rate provides a

human analyst with a more compact and focused collection of

candidate links.

60

Considering the encouraging results from the RL method,

future work can be directed to incorporate the advantages that

the RL method offers. Future work will incorporate a feedback

mechanism similar to the one in Mencer’s work [17]. Feedback

may improve the accuracy of the generated candidate links.

Also, a parts of speech tagging or noun-verb phrase

technique [19] can be considered in future work. By

classifying terms in textual documents, we can amplify the

importance of one type of textual segment over the others.

Evaluating how the human analyst can use the focused

results suggested by the RL algorithm is also a future work

direction.

ACKNOWLEDGMENT

This work was funded in part by the National Science

Foundation under NSF grant CCF-0811140. We thank Dr. Judy

Goldsmith for advice on the RL method.

REFERENCES

[1] S. Ruhle, C. Harper, and N. Mehta, “Knight Trading Loss Said

to Be Linked to Dormant Software,” Bloomberg. [Online].

Available: http://www.bloomberg.com/news/2012-08-14/knight-

software.html. [Accessed: 11-Jan-2013].

[2] J. Hayes, A. Dekhtyar, S. Sundaram, E. Holbrook, S.

Vadlamudi, and A. April, “REquirements TRacing On target
(RETRO): improving software maintenance through traceability

recovery,” Innovations in Systems and Software Engineering,

vol. 3, no. 3, pp. 193–202, 2007.

[3] P. MäDer and O. Gotel, “Controversy Corner: Towards

automated traceability maintenance,” J. Syst. Softw., vol. 85, no.

10, pp. 2205–2227, Oct. 2012.

[4] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software

traceability with topic modeling,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -

Volume 1, New York, NY, USA, 2010, pp. 95–104.

[5] E.-V. Chioasca, “Using machine learning to enhance automated

requirements model transformation,” in 2012 34th International

Conference on Software Engineering (ICSE), 2012, pp. 1487 –

1490.

[6] A. S. d’ Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer,

“Combining abductive reasoning and inductive learning to
evolve requirements specifications,” Software, IEE Proceedings

-, vol. 150, no. 1, pp. 25 – 38, Feb. 2003.

[7] G. Spanoudakis, A. d’ Avila-Garces, and A. Zisman, Revising

Rules to Capture Requirements Traceability Relations: A

Machine Learning Approach. 2003.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction. The MIT Press, 1998.

[9] J. Matthias, “Requirements Tracing,” Communications of the

ACM, vol. 41, no. 12, 1998.

[10] “Pine Email System,” 19:03:51. [Online]. Available:

http://www.washington.edu/pine/. [Accessed: 19-Feb-2010].

[11] M. D. P. Website, CM -1 Project. .

[12] S. T. Dumais, G. W. Furnas, T. K. Landauer, and S. Deerwester,
“Using latent semantic analysis to improve information

retrieval,” 1988, pp. 281–285.

[13] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information

Retrieval. ACM Press, Addison-Wesley, 1999.

[14] C. Ziftci and I. Krueger, “Tracing requirements to tests with

high precision and recall,” in Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software

Engineering, Washington, DC, USA, 2011, pp. 472–475.

[15] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker,

“A machine learning approach for tracing regulatory codes to
product specific requirements,” in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering -

Volume 1, New York, NY, USA, 2010, pp. 155–164.

[16] V. Hatzivassiloglou, J. L. Klavans, and E. Eskin, “Detecting

Text Similarity over Short Passages: Exploring Linguistic

Feature Combinations via Machine Learning,” in IN

PROCEEDINGS OF THE 1999 JOINT SIGDAT
CONFERENCE ON EMPIRICAL METHODS IN NATURAL

LANGUAGE PROCESSING AND VERY LARGE

CORPORA, 1999, pp. 203–212.

[17] F. Menczer and R. K. Belew, “Adaptive information agents in

distributed textual environments,” in Proceedings of the second

international conference on Autonomous agents, New York,

NY, USA, 1998, pp. 157–164.

[18] Y.-W. Seo and B.-T. Zhang, “A reinforcement learning agent for
personalized information filtering,” in Proceedings of the 5th

international conference on Intelligent user interfaces, New

York, NY, USA, 2000, pp. 248–251.

[19] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving

automated requirements trace retrieval: a study of term-based

enhancement methods,” Empir Software Eng, vol. 15, no. 2, pp.

119–146, Jul. 2009.

61

