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Abstract— We posit that machine learning can be applied to 

effectively address requirements engineering problems. 

Specifically, we present a requirements traceability method based 

on the machine learning technique Reinforcement Learning 

(RL). The RL method demonstrates a rather targeted generation 

of candidate links between textual requirements artifacts (high 
level requirements traced to low level requirements, for 

example). The technique has been validated using two real -world 

datasets from two problem domains.  Our technique 

demonstrated statistically significant better results than the 

Information Retrieval technique. 
Index Terms— machine learning, reinforcement learning,  

information retrieval; requirements traceability; software 

engineering; Ubiquitous Grand Challenge, Research Project 2 of 

Grand Challenges of Traceability 

I. INTRODUCTION  

The value of tracing requirements through all phases of the 

Software Development Life Cycle (SDLC) can be appreciated 

by the customers who request and expect delivery of certain 

system features and by the developer who failed to deliver the 

product according to the specifications.  Overlooked software 

requirements can have a profound effect.  For example, a 

software flaw resulted in a product multiplying stock trades 

which caused Knight Capital Group to lose more than $440 

million dollars [1]. 

To ensure high quality requirements and their proper 

implementation throughout the phases of the SDLC, a number 

of steps can be taken. Requirements tracing ensures that 

requirements are properly addressed in the resulting software 

artifacts, i.e., use cases, test cases, etc. In recent years, interest 

in this area has intensified as demonstrated by the amount of 

work on automating the process of requirement tracing 

[2][3][4][5]. It should be noted that even the automated 

traceability techniques require some human analyst 

involvement.  It is important to improve the quality of 

requirements to ease automation of tracing and other 

requirements-related techniques as well as to ease the burden of 

human analysts working with requirements and/or the output of 

requirements tools. 

In the past several years, there has been growing interest in 

machine learning techniques applied to requirements 

engineering. Machine learning techniques can help establis h 

knowledge or rules from requirements engineering artifacts 

[6][7].  The reinforcement learning technique is a machine 

learning algorithm that is based on computational agents 

selecting actions to maximize some long term reward.   We 

introduce a reinforcement learning-based method for tracing 

textual pairs of requirements artifacts. The presented technique 

has been validated on two sets of software requirements from 

real projects in two domains, comparing the results to those of 

a typical information retrieval (IR) tracing technique.  We 

found that our technique demonstrated statistically significant 

better results than the IR technique. 

     The paper is organized as follows.  Section 2 provides 

background on reinforcement learning. Section 3 discusses 

requirements tracing. Section 4 discusses our approach to 

tracing using the reinforcement learning method.  Section 5 

presents the validation of the technique on two datasets.  

Section 6 discusses the results and analysis.  Section 7 presents 

related work.  Section 8 concludes and addresses future work. 

II. REINFORCEMENT LEARNING  

In reinforcement learning (RL), agents probe and change 

the environment though a discrete sequence of steps and 

actions over time t, where t = 0, 1, 2, 3, etc. At each step t, the 

agent evaluates the state st ∈ S, where S is a set of all possible 

states. Based on the state st, the agent selects an action at  ∈ A 

(st), where A is a set of possible actions available to the agent in 

state st. As the result of the action taken at the moment t, the 

agent gains reward rt+1, and moves to the state st+1. Figure 1 

displays the interaction between the agent and environment. 

 

Fig. 1.  The interaction of the agent and the environment in reinforcement 

learning. 
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As shown in Figure 1, the agent receives the state st as an 

input and produces action at as an output. The mapping of the 

states into actions is determined by a policy πt. Since each state 

st can present a set of possible actions A(st), the policy πt 

denotes the probabilities of selecting one of the possible actions 

determined by the state st. The mapping of states to actions is 

represented as πt(s,a), the probability of selecting action a =at, 

when state s=st. The agent’s goal is to maximize the total 

rewards acquired in the long run.  

The reward the agent collects depends upon the actions it 

takes. To estimate the desirability of a state, the RL technique 

uses the notion of a value function. Formally, the value 

function is represented as:  

 

where Rt is the sum of all rewards obtained after time step t.  

The value Eπ{}  is the expected reward value given to the 

agent that follows the policy π.  The discount coefficient γ∈ 

[0,1]  places greater  weight on immediate or future rewards. If 

γ approaches 0, the immediate rewards are assigned the most 

value. When γ approaches 1, the future rewards and immediate 

rewards are valued equally.  

Bellman’s equation [8] provides another way to express the 

value of a state s:   

 

where P
a
ss  ̀ is the probability of reaching state s` from s if 

action a is taken; R
 a

ss  ̀is the reward associated with reaching 

state s` from s by taking action a.  

A policy that maximizes expected return for all states is 

called an optimal policy π*. Formally, π* ≥  π`, if and only if, 

Vπ*(s) ≥ Vπ`(s) for any s  ∈ S. Alternatively, we can define V* 

as  

 

One way to determine an optimal policy is to use the Value 

Iteration algorithm [8]. The Value Iteration algorithm is an 

iterative backup operation.  The algorithm combines an 

immediate policy improvement for the current state and the 

values of states reachable from the current state in the 

following form: 

    

  (4) 

 

where P
a
ss and R

 a
ss  ̀ bear the same meaning as defined in 

Equation 2. The value of state s is maximized across all actions 

a available at s. The pseudo code for the Value Iteration 

algorithm is shown below:  

 

Initialize  V(s) =0, for all s  ∈ S 

Repeat 

 ∆ ←0 

  For each s  ∈ S 

  V ←V(s) 

  V(s) ←maxa∑s`Pss` [Rss`+γV(s`)] 

                      ∆←max(∆,|v-V(s)|) 

  Until ∆<ε (ε a small positive number) 

Output a deterministic policy, π, such that  

π(s)=argmaxa ∑s`P
a
ss`[R

a
ss`a+γV(s`)] 

 

To apply the reinforcement learning-based approach to the 

traceability problem, we construct a search space, i.e., an 

environment. After the states, actions, and rewards are 

established, the value iteration algorithm is executed. The value 

iteration algorithm outputs actions for each state. The actions 

established for the states determine the navigation heuristics for 

the agents.  

The idea of building a path from the source node to the 

destination node resonates well with the activity of establishing 

candidate links in the requirements traceability process. 

III. REQUIREMENTS TRACING 

Requirements tracing is defined as “the ability to describe 

and follow the life of a requirement, in both a forwards and 

backwards direction” [9].  A typical process used for tracing 

natural language artifacts, manual or automated, generally 

consists of a number of steps:  document parsing, candidate 

link generation, candidate link evaluation, and traceability 

analysis [9].  For example, if a requirements document is being 

traced to a set of use cases, document parsing extracts elements 

from the two artifacts resulting in uniquely identified 

requirements elements and uniquely identified use case 

elements.  At this point, a human analyst or tool will find 

relationships or links between the elements, perhaps by 

selecting one requirement element and then performing string 

searches (using important words or terms in that element) into 

the collection of use case elements.  If a tool is being used, it 

may be the case that the human analyst or tool assigns 

keywords to the requirements and use case elements and then 

performs keyword matching in order to generate what are 

called “candidate links.”  Candidate link evaluation deals with 

assessing the links to ensure that they are correct and 

traceability analysis deals with deciding if the high level 

artifact has been “satisfied” by the lower level artifacts (e.g., 

are there use cases that satisfy a given requirement?).  In this 

work, we concentrate on adapting the RL technique to the 

candidate link generation problem.  

A. Terminology 

First, we define some terminology. The high and low level 

textual elements are called documents. The documents contain 

terms. The collection of all terms from all documents is called 

the dictionary or vocabulary. The collection of all terms in a 
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document is called the document corpus. The inverted index is 

a list of documents listing all documents where a particular 

term occurs. Term frequency TF t,d 
 
is the count of how many 

times a particular term occurs in all documents. Inverse 

document frequency, IDFt, is a calculated value: 

 

where N is the total number of documents in the collection 

and DFt is document frequency, i.e., number of documents 

where a given term occurs.  

To trace high level textual elements (say from a 

requirements document) to low level textual elements (say 

from a design document), we use computational agents that 

traverse the collection of all documents and the vocabulary 

shared by the documents.  

B. Measurements 

The tracing results can be evaluated using two 

measurements: Recall and Precision [10].  

Recall is evaluated as the total number of relevant retrieved 

documents divided by the total number of relevant documents 

in the whole collection: 

   . (6) 

 

Precision is evaluated as the total number of relevant 

retrieved documents divided by the total number of retrieved 

documents: 

     . (7) 

 

Precision and recall can be combined into a weighted 

harmonic mean: 

, where  .  (8)  

 

When β
2
=1, precision and recall are balanced in the 

measure, this is called F1 measure. When β
2
 = 2, recall has 

more weight than precision, this is called F2 measure. 

IV. METHODOLOGY 

The search space in a reinforcement learning (RL) model 

has three layers of data. The top level consists of the high level 

documents. The middle level consists of all terms in all 

documents. The bottom level consists of the low-level 

documents. 

A. Search Space Navigation 

The agents traverse the search space starting from the top 

level documents down to the low level documents by selecting 

the terms in the middle layer that are common between the 

selected documents.  The main idea of the algorithm is to equip 

the agents with some heuristics to navigate the search space 

and choose the correct candidate links between the high and 

low level documents.    

To define a search space in terms of the RL model, we need 

to define states, actions, transitions, and rewards.  Figure 2 lists 

states and the transitions between them. States are defined by 

the agent’s position in the data space. The agents can be in any 

of the following states:  

- Top  level document, HL 

- A term in a high level document, termHL 

- Low level document, LL 

- A term in a low level document, termLL 

- A synonym term in vocabulary, syn t 

The agent’s states are the positions in the search space 

where the agent can be located.  The action the agent selects 

determines the states in the search space to which the agent will 

transition. Possible actions at states and transitions between the 

states are shown in the Agent State Transition Diagram, Figure 

2. 

 
Fig. 2.  RL Agent  State  Transition Diagram. 

 

As we can see in Figure 2, when an agent is positioned at a 

high level document, state HL, the agent starts by selecting a 

term as the starting point for its journey (the heuristic of 

selecting terms is described below). By selecting a term in a 

high level document, the agent transitions to the state termHL. 

From the state termHL the agent can choose a low level 

document that contains either the term or a synonym of the 

term.  
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By choosing a low level document, the agent transitions to 

the state LL. From the state LL the agent should select a term 

in the low level document. If the low level document contains 

the term termHL in several positions, the agent needs to select a 

position termLL within the low level document to maximize the 

match between the neighborhoods in the high and low level 

documents. A neighborhood is a textual segment located 

around a linking term. 

Alternatively, from state tHL, the agent can also choose to 

explore the synonyms of the term. If the agent selects a 

synonym, it transitions to the state s t. From the state s t, the 

agent can only choose a low level document containing the 

synonym term. Possible actions at states and transitions 

between the states are summed up in Table I 

TABLE I.  AGENT ACTIONS 

From Action To 

Top Level Doc 
HL 

Select a term termHL 

termHL 
Select low level 
doc or synonym 

LL 

termHL 
Select low level 
doc or synonym 

syn 

LL 
Select a term termLL 

Syn 
Select low level 
doc 

LL 

 

Each action listed in Table I can be in one of the three 

behaviors: Random, Linear, or Quadratic.  

In Random behavior the agent has an equal probability of 

transitioning in any of the available next states. The formula for 

the random behavior is as follows: 

,  (9) 

where Si is a reachable state and N is the number of all 

reachable states. For example, if the agent is in a “term- high-

level” state  tHL and has ten possible low level documents, i.e., 

ten reachable  LL states, the probability of transitioning into 

each of the reachable states is only 0.1.  

Linear behavior allocates the transitional probabilities to the 

reachable states proportional to the numeric values or rewards 

the reachable states possess. The formula for linear behavior is 

as follows 

,  (10) 

The probability of transitioning into the state Si is 

proportional to the value in the state si, divided by the sum of 

values of possible transition states. For example, if the ten 

reachable LL states from the state tHL had the following values 

associated with them: {20, 50, 30, 0, 0, 0, 0, 0, 0, 0}, the 

probability of transitioning into the first LL state is 0.2, into the 

second 0.5, the third 0.3. The remaining reachable states would 

receive 0 transition probability. We describe the numeric state 

values and rewards later. 

When the agent selects the quadratic behavior, the transition 

probabilities from the example above would be distributed 

based on the following formula: 

.   (11) 

The probability of transitioning into the state si is 

proportional to the squared value in the state si divided by the 

sum of squared values of possible transition states.  

Consider the term ‘list.’ In the course of the reinforcement 

learning algorithm, the state “A3-list” received the value 1.55. 

The linear selection behavior raises the probability of such 

transition to 0.17. The quadratic selection assigns the transition 

from ‘A3’ to ‘A3-list’ the highest probability, 0.21. 

 

 
Fig. 3.  Term selection probability based on linear selection behavior.  

 

Fig. 4.  Term selection probability based on quadratic selection behavior. 

It can be visually seen that the term ‘delet’ in Figure 4 is 

significantly smaller compared to the terms ‘distribut,’ ‘list,’ 

and ‘pld.’ It is also worth mentioning that the proposed 

algorithm differentiates between the different positions of a 

term in a document. For example, the term ‘delet’ appears in 

document A3 in two positions. Each position, or state “A3-

pos,’ receives different values based on values calculated 

during the Value Iteration algorithm. Therefore, the positions 

receive different transition probabilities. 

A state “a term in low level document” termHL can have a 

reward. This is a numeric value associated with transitioning 

into the termHL state. The reward is calculated by comparing 

the text segments in two neighborhoods: in high and low level 

documents. The comparison evaluates how many common 

terms the two segments share. The reward is estimated using 

the following formula: 
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,  (12) 

where H is the collection of high level documents, L is the 

collection of low level documents, and w1,w2 are the terms in H 

and L documents, respectively. 

The function δ(w1,w2) is calculated as follows: 

.  (13) 

The multiplication coefficients range from 1 to 10: Chigh,Clow  

∊{1,10} . The range of multiplication coefficients is a 

calculated estimate of the similarity of the textual 

neighborhoods. The higher values for the Chigh  and Clow 

coefficients imply that the matching terms are close to each 

other in the neighborhood of the linking term. 

The reward associated with transitioning into a position in a 

low level document is propagated back to the high level 

documents through the common linking terms. As described in 

the background section (Section II), the agents choose the 

behavior in the RL model, i.e., the search space navigation 

policy, to maximize expected return.  The expected return is 

calculated by the formula: 

,  (14) 

where rt is the reward received after t-th transition action. 

The reinforcement learning algorithm for requirements 

traceability listed below:  

REINFORCEMENT LEARNING TRACELINKS (H, L) 

       // Input High and Low level documents H and L  

      // Output list of agent count (h,l,n) – 

       //from h in l, where n is the count 

1. // Create State Space  

2. For each doc  hl in high level collection H   

3.     States.Add(NewState(hl)) 

4.      For each term  t in high level doc h 

5.        i ← position of t in hl 

6.        States.Add(newState(hl_t)) 

7.    // Iterate through low level doc linked via term t 

8.  For each doc ld in  Vocabulary.GetDocsByTerm (t) 

9.            If ld is lowLevelDocument 

10.             For each position j  of term t in ld 

11.               lLevelDocState← newState(ht_t_ld_posj)              

12.                   Value=MatchingValue(hl,ld,i,j) 

 

14.              End For 

15.            Else  // ld is a synonym 

16.               ld_2← Vocabulary.GetDocsByTerm (ld) 

17.               For each position j  of term ld in ld_2 

18.                    lLevelDocState←newState(ht_t_ld_posj)              

19.                    Value=MatchingValue(hl,ld_2,i,j) 

20.                 

21.            End For 

22.         End if 

23.  End For 

24. End For  

25.  // Calculate state values  

26. For cycle 1 to 5 

27.      For each state s in States  

28.             argMaxValue ← 0 

29.             possibleSates ← s.Transitions 

30.              For each action a in Actions  

31.                   possibleStates.TransitionProb(a) 

32.              For each ps in possibleStates  

33.                       pValue← pValue+ps.Prob*ps.Value 

34.                   If pValue > argMaxValue 

35.                         bestAction ← a 

36.                         s.Policy ← a 

37.                    End if 

38.               End For //possible states  

39.                 maxValue←Max(pValue, maxValue) 

40.             End For // Actions   

41.             s.Value← s.TransReward + maxValue 

42.      End For // states   

43.  // Traverse the Search Space 

44.  For each top level document hl 

45.          For each agent ant in colony 

46.           currentState ← States(hl) 

47.           While CurrentState != low level document 

48.             //use curState.Policy  

49.                      //and curStates.Transitions 

50.             nextState ← currentState.SelectNextState 

51.             currentState← nextState 

52.           End While            

53.       End For 

54. End For 

 

The reinforcement learning algorithm determines an optimal 

transition policy for each state by maximizing the expected 

return. The transition policy will become the guiding heuristic 

for the agents to traverse the search space. 

B. Path Saturation 

The agents choose to select certain states based on the space 

traversal policy. When an agent is presented a choice of 

possible next states S= {s 1, s2,… , sk}, the probability of 

transitioning into the next state depends on the value the next 

state holds. It is possible for one of the next states to have a 

value which is much higher than the values of other possible 

next states. In this case, the probability of transitioning into s i is 

higher than the probability of transitioning into any other state: 

 

Pr(si)>>Pr(sj), where s i , s j ∈ {s1, s2,… , sk}   i≠j.  (15) 

 

It is possible to have a situation where the majority of agents 

always select the state with the transition probability much 

higher than other possible states. This scenario may limit the 

search only to the states with high values. To address this 

situation, we introduce the notion of path saturation. 
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Path saturation is a value added to define the number of 

agents transitioning from state sA to state sB. As the saturation 

value gets higher, the probability of transitioning from sA to sB 

becomes smaller. The saturation value from s A to sB on the 

transition path has the inverse effect on the transition 

probability from sA to sB. 

The candidate links are estimated by the agent count 

gathered in the low level documents. A candidate link between 

high level document HLdoc and the low level document LLdoc 

gets a count of one if an agent starting from HLdoc has reached 

the low level document LLdoc.  After all counts on the candidate 

links have been calculated, the candidate links are ranked by 

the agent count.  In order to validate the approach, we applied it 

to two sets of requirements from software systems.  The study 

design and threats to validity are presented below 

V. VALIDATION 

This section will present the design of the study as well as 

threats to validity.  

A. Study Design 

In order to validate the proposed approach, the RL based 

technique was applied to two datasets.  The first consists of 49 

textual requirements and 51 textual use cases. The dataset is a 

text-based email system, Pine, developed by the University of 

Washington [10]. The Pine dataset contains 246 true links. 

These links form the answer set, i.e., a collection of links 

against which we can validate our findings.  The second project 

consists of 22 requirements documents and 53 design 

documents in the NASA scientific instrument project CM1SUB 

[11]. The project has 45 true links in the answer set. 

The experiments were conducted using a Vector Space 

Model with TF-IDF weighting (TF-IDF hereafter) and the 

reinforcement learning (RL) method.  The independent variable 

in the study is the method (TFIDF, reinforcement learning). 

The dependent variables are recall and precision. The 

precision-recall graph and statistical analysis were used to 

evaluate the results.  

All textual documents were pre-processed, the agents 

selected each high-level element one at a time and the agents 

used the search space navigation heuristics established by the 

RL based method.  The output was captured in the form of a 

candidate TM. The results were compared to the answer set to 

calculate recall and precision (Equations (6) and (7)) defined 

earlier.     

To eliminate any possible threats to the validity of the 

experiment several controls were implemented.  Internal threats 

to validity include possibly indicating a relationship between 

the treatment methods and the outcome when in reality there is 

no relationship. First, in our controlled experiment, we used the 

same datasets in the same environment.  This was done to 

provide a fixed environment where it was possible to observe 

the differences in the outcome only where the treatments are 

different, i.e., where we apply different candidate link 

generating algorithms. 

To address the possible threat to internal validity due to 

repeated testing, each method was run ten times and examined 

using the mean recall and precision values. Each method 

produced average recall and precision values with variances 

ranging from 0.003 to 0.06.  To protect the ability to draw valid 

conclusions from the study, the same two datasets were 

analyzed using similar treatments. In this experiment, both 

datasets were analyzed using the TF-IDF and the RL methods.  

Another possible threat identified was the effect of 

experimenter bias on the ability to reach valid conclusions 

based on the data.  This threat was reduced by using datasets 

where the answer sets were independently verified by more 

than one analyst.  In the case of CM1SUB dataset, more than 

one research group was used.   

There was additional potential for bias in that the answer 

sets were created by human analysts familiar with the 

traceability research domain. The vetted tool, RETRO.NET 

[36], was used and adapted in order to properly implement the 

RL techniques. The threats to validity were also reduced by 

using standard information retrieval measures recall and 

precision to evaluate effectiveness.  

In addition to the internal threats to validity, threats to 

external validity and the ability to properly generalize the 

results were addressed by using two datasets for validation.  

Though both datasets are real projects (not student projects), 

they are small in size. Also, though the datasets do represent 

two different domains, it is not possible to state that the study 

sufficiently validated all domains or all projects [36]. The 

results are discussed below. 

VI. RESULTS AND ANALYSIS 

Following the completion of the experiments, the RL 

method and TF-IDF method were evaluated for the Pine and 

CM1SUB datasets using the primary measures of recall and 

precision. Subsection A presents the RL results for Pine. 

Subsection B presents results for CM1SUB dataset. We share 

our observations in Subsection C.  

A. Pine Dataset 

Figure 5 presents the precision-recall curve for the RL and 

TF-IDF methods for the Pine dataset.   

 

Fig. 5.  Precision-Recall curves for TF-IDF and Reinforcement Learning 
methods for the Pine Dataset . 
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The RL method demonstrates higher precision values than 

TF-IDF for the same values of recall.  The highest precision for 

RL method is 0.84 at recall 0.24. As we can see in Figure 5, the 

highest precision-recall value in RL is at the same position as 

in TF-IDF. 

By inspecting other values of the precision-recall graph, we 

see the RL method produced a more focused result. The lowest 

precision returned by the RL method is 0.65 at recall 0.52.  The 

comparable result for TF-IDF achieves precision 0.65 at recall 

0.4. The quality of candidate links produced by the RL method 

is better; the RL achieves higher precision than TF-IDF for the 

same recall values.  

For the Pine dataset, at recall of 0.42 the RL method 

achieves precision of 0.73. As we can see from Table 2 in 

Appendix A, the RL method filtered at 0.25 suggested 141 

links. The number of correctly identified links was 103. The 

total number of correct candidate links for the Pine dataset is 

248. The 103 correctly suggested links out of a total of 248 

equates to 0.42 recall. The TF-IDF method at 0.20 filtering on 

the Pine dataset suggests 162 links; 106 links are correctly 

identified (106 out 248 is 0.42 recall). Having similar recall 

values, the two methods achieved different precision: the TF-

IDF method achieves 0.65 (0.65= 106/162); the RL method 

achieves 0.73 (103/141). The RL method retrieves a higher 

number of relevant documents compared to the TF-IDF 

method. 

To evaluate any statistical difference between the two 

methods, the recall and precision numbers were compared on 

the overlapping recall value range. For the Pine dataset, the TF-

IDF method covered recall values from 0 to 1, while the RL 

method covered recall values from 0.23 to 0.52. Using the 

recall point from the RL method, the precision values were 

interpolated for the TF-IDF method. Twenty recall values and 

twenty precision values for TF-IDF and RL were used to define 

the null hypothesis and alternative hypotheses for the results: 

H0: There is no difference between the precision values of 

the TF-IDF interpolated precision-recall graph compared to the 

precision values for the RL method’s precision-recall graph. 

H1: There is a difference between the precision values of 

the TF-IDF interpolated precision-recall graph compared to the 

precision values for the RL method’s precision-recall graph. 

The Wilcoxon Signed Ranked method was used to evaluate 

the null hypothesis. The critical value for Zcritical tes t was 

±1.96 at confidence level α = 0.05. The results of the 

calculations produced the following values:  

• W- = -205,  

• W+ = 20,  

• Z = -3.82.  

Since Z < Zcritical, the null hypothesis was rejected. This 

left the conclusion that there is a statistically significant 

difference between the precision values of the two methods. 

B. CM1SUB Dataset 

The RL method applied on the CM1SUB dataset produced 

results similar to the results obtained on the Pine dataset. 

Figure 6 shows the precision-recall values for the RL method 

compared to the precision-recall values for the TF-IDF method 

using the CM1SUB dataset. 

 

Fig. 6.  Precision-Recall curves for TF-IDF and Reinforcement Learning 

methods for the CM1SUB Dataset . 

As shown in Figure 6, the points in the Precision-recall 

plane for the RL method have higher precision values than the 

points for the TF-IDF method. The RL method reaches a 

precision of 0.61 at recall of 0.24; the TF-IDF method reaches 

a precision of only 0.5 at a 0.24 recall value.  

When comparing recall and precision values for the RL 

method, recall values grow to 0.38 as precision drops to 0.39. 

The RL method results also cluster in the area from recall 0.39 

and precision 0.39 up to precision value 0.61 at recall 0.24. The 

RL method does target the relevant candidate links. 

For the CM1SUB dataset, the recall and precision numbers 

were compared between the two overlapping recall to confirm 

any statistical difference between the two methods. With values 

similar to those for the Pine dataset, the RL method covers a 

limited range of recall values 0.28 to 0.34.  

The precision values for the TF-IDF method were 

interpolated using 20 recall values and 20 precision values for 

TF-IDF and RL. The null hypothesis and alternative 

hypotheses were defined as follows: 

H0: There is no difference between the precision values of 

the TF-IDF interpolated precision-recall graph compared to the 

precision values for the RL method’s precision-recall graph. 

H1: There is a difference between the precision values of 

the TF-IDF interpolated precision-recall graph compared to the 

precision values for the RL method’s precision-recall graph. 

The Wilcoxon Signed Ranked method was also used to 

evaluate the null hypothesis as was done previously for the 

Pine dataset. The critical value for Zcritical test was found to 

be ±1.96 at confidence level α = 0.05. The calculations 

produced the following values for W-, W+ and Z: 

 

• W- = -153,  

• W+ = 18.5,  

• Z = -3.07.  
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Since our Z < Zcritical, as found previously for the Pine 

dataset, the null hypothesis must also be rejected. This left us to 

conclude that there is a statistically significant difference 

between the precision values of the TF-IDF and RL methods 

on CM1SUB. 

C. Observations 

In light of the results obtained from the experiments, we 

make the following observations.  

Typically, when we consider a precision-recall curve, we 

observe: high recall values and low precision; high precision 

and low recall; and values in between these two extremes [12], 

[13], [2].  High precision and low recall implies that we 

accurately retrieved a small fraction of the required documents, 

but not most of them. Low precision and high recall implies 

that we retrieved most of the required documents, but at the 

same time, we retrieved more unrelated documents as well.  

Ideally, when we issue a query, we would like to retrieve all 

the correct documents and no unrelated items. This ideal 

scenario should provide high recall and high precision values; 

our precision-recall curve should reside in the upper right area 

of the graph as shown in Figure 7. We would like our 

precision-recall curve to resemble the ideal shape, i.e., move 

the top right corner of the precision-recall graph and raise the 

lower boundaries of recall and precision values. The closer we 

can get to the ideal shape of the precision-recall curve, the 

fewer links a human analyst will have to inspect.  

For both datasets, the RL method demonstrated higher 

precision values than the TF-IDF method for the same recall 

values.  For the Pine dataset, the RL method reached precision 

value 0.65 at recall 0.52. The TF-IDF method only reached 

precision value 0.52 at recall 0.52. 

 

Fig. 7.  Precision-Recall curves, Ideal vs. Typical. 

We observed a similar difference in precision between the 

RL and TF-IDF methods using the CM1SUB dataset.  The RL 

method reached precision 0.61 at recall of 0.24, while TF-IDF 

reached precision 0.5 at recall of 0.24.  

It should be noted that the RL method did not cover the 

whole spectrum of recall or precision values. The minimum 

recall for RL on Pine is 0.23; the maximum recall for RL on 

Pine is 0.52. The minimum precision for RL on Pine is 0.65; 

the maximum precision for RL on Pine is 0.84. 

A precision-recall curve for the RL method using the 

CM1SUB dataset was also limited by min/max values in recall 

and precision. For CM1SUB, the minimum recall value for RL 

is 0.24, the maximum recall was 0.38. The minimum precision 

value for RL was 0.39, the maximum was 0.61.  

The precision-recall data points for the RL method for both 

datasets exhibited a more focused result in producing candidate 

links compared to the TF-IDF method. However, the TF-IDF 

method did reach values close to 1 in recall and precision.  

At the same time, when TF-IDF recall reaches 1, precision 

drops to almost 0. The same is true for precision: when 

precision reaches 1, the recall drops close to 0. The RL method 

recall does not drop below 0.23 for Pine and produces recall 

higher than 0.24. Also, the lower boundaries for precision on 

the RL method for the Pine and CM1SUB datasets were 0.37 

and 0.39, respectively.  

One explanation for the observed trends using the RL 

method is that the common textual segments in two compared 

documents contribute significantly to promoting a possible link 

between the two documents. In other words, the candidate links 

suggested by the RL method shared common textual segments.  

This is why the higher precision results are produced in the RL 

method for both datasets.  

The upper boundary on precision for RL for both Pine and 

CM1SUB datasets is 0.84 and 0.61, respectively. This indicates 

that having common segments between textual documents is 

not enough to establish a true link between them. If the RL 

method links the documents with common segments, the upper 

boundary on the precision indicates that some documents 

sharing textual segments may not have a logical link between 

them. Even though in many cases the wording of the segment 

is the same in both documents, the information carried by this 

common segment is not sufficient to link the documents. This 

suggests that no t all common textual segments are “created 

equal.”  

At the same time, the lower boundary on the RL method’s 

precision for Pine and CM1SUB datasets does not fall below 

0.65 and 0.39, respectively. This fact suggests that the common 

segments play an important role in identifying correct 

candidate links between high and low level documents. The 

portion of the relevant documents returned by the RL method 

did not fall below 0.65 and 0.39 for Pine and CM1SUB 

datasets, respectively. 

With the lower boundaries on precision, the RL method 

reaches the upper boundaries for recall (0.52 and 0.38). This 

indicates that the common textual segments may not 

necessarily uncover all possible ways of linking the documents. 

Next, we compare our work to prior art. 

 

VII. RELATED WORK 

We address related work in the areas of traceability link 

generation and machine learning techniques below. 
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A.  Candidate Link Generation/Text Analysis 

A number of researchers have successfully applied 

information retrieval techniques to the candidate link 

generation problem.  Most have applied the vector space model 

to generate traceability between various artifact pairs (such as 

source code modules and manual pages, functional 

requirements and source code) [11,13].  In general, high values 

of recall are achieved (90 – 100%) with low precision (2 – 

12%) [11,2,3].  As a result, work has focused on improving 

precision.  Approaches have ranged from phrasing to applying 

rules to tagged artifacts [9, 13,14].   

Mader and Gotel [3] presented an approach for automated 

update of traceability relations between analysis and design 

artifacts presented in UML. To update the relations, the method 

needs to have a set of pre-established relations. The method 

offers the recognition of the changes in UML diagrams and 

then updates the relations of the changed diagram elements.  

In general, the above techniques have been able to achieve 

excellent recall [12] but often at the expense of precision that is 

not acceptable or is only borderline acceptable.  In our work, 

we aim to keep both recall and precision high. The RL agents 

navigate the search space to link documents. The agents’ 

traversal heuristic links high level documents to related low 

level counterparts.   We use the VSM as a baseline against 

which to compare the performance of our method. 

Ziftci and Krueger [14] correctly point out one of the 

weaknesses of the traditional IR method: low precision at a 

high recall.  The authors use a notion called “feature marker” to 

establish traces between functional requirements and test cases. 

The proposed method does achieve precision-recall values 

above 90%. The extra burden for the method is due to the use 

of an execution tracing tool, aka a profiler. The profiler lists the 

methods and classes called during execution of test cases. By 

articulating the aim of achieving precision-recall above 90%, 

the authors emphasize the target goals for requirements 

traceability research. On the other hand, the shortcoming of 

their proposed method is the restricted range of options: the 

execution traces can be obtained only after the source code has 

been compiled. The method cannot be applied when the 

requirements need to be traced to design elements . 

B. Machine Learning Techniques 

Cleland-Huang, Czauderna, Gibiec, and Emenecker present 

two machine learning approaches to improve traces between 

regulatory codes and product requirements [15].  The terms in 

requirements are assigned probabilistic scores with respect to a 

regulatory code. To classify the requirements, the manually 

created traces were used for cross training and testing.  The 

second approach, web based, was used to retrieve indicator 

terms from the Internet for a specific regulatory code. Only in 

this second case, the machine learning classification took place 

based on the web-mined documents.  

Establishing links between documents can be based on 

related textual segments. Hatziavasilloglu, Klavans, and Eskin 

present the composite similarity metric to measure the semantic 

distance between a pair of small textual segments [16]. The 

authors use a machine learning approach to select the potential 

optimal features between documents. The potential matches are 

established through word co-occurrence. This approach 

resonates well with our technique. We also use common terms 

and the terms located close to linking term in the text.  

Using the similarities between textual documents, i.e., 

common textual segments, and establishing the logical links 

based on these segments is the main focus of our research 

work.  The work presented by Menczer and Belew lists many 

features similar to our work [17]. The authors describe how 

autonomous agents make decisions to automate the web 

document search and discovery process.  The agents in the 

work of Mencer and Belew have a heuristic behavior by which 

the agents select links to follow. In our work, the autonomous 

agents also discover a heuristic to traverse the search space, 

i.e., select a link to follow.  

An agent in Mencer and Belew’s work senses the “current 

neighborhood” by analyzing the text where the agent is 

situated. That matching feature is similar to the concept of term 

neighborhood that we use.  The agents in Mencer and Belew’s 

work use reinforcement learning (RL) to modify the behavior 

to follow the “best link” possible. In our work, we use the RL 

technique to enable agents to traverse the s earch space and 

establish the candidate links between the documents.  

Even with so many similarities between the agents in 

Menczer and Belew’s work and ours, there exist three notable 

differences. The links between documents in the work of 

Menczer and Belew’s are web links. In our work, the links 

between documents are established via common terms. The 

agents of Menczer and Belew receive user feedback on the 

suggested links; in our work the agents do not receive 

feedback.  The agents in Menczer and Belew’s work are 

created with “initial reservoir of ‘energy’ [17].” The agents in 

our research do not utilize any energy measurements for the 

search space traversal.  

Summing up related work, we can state the following:  

- It is useful to link documents by treating them as a 

collection of phrases, not a bag of words [16].   

- Small textual segments and their similarity can be 

evaluated based on semantic distance [17]. 

- Text around the linking term provides good location 

data on compared textual segments [16] [17]. 

The machine learning approach, in general, and 

reinforcement learning, in particular, proved to be useful 

computational agents to modify and select an optimal search 

space behavior [16] [17] [18]. 

VIII. CONCLUSIONS AND FUTURE WORK 

Comparing RL to TF-IDF, which links the documents 

based on all common terms and their weight, the RL method 

promotes the links between documents with common terms 

located close to each other. In other words, the RL method 

identifies common textual segments between documents and 

suggests links between such documents. By doing so, the RL 

method outperforms the TF-IDF method for the same recall 

values. RL’s higher precision at the same recall rate provides a 

human analyst with a more compact and focused collection of 

candidate links. 
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Considering the encouraging results from the RL method, 

future work can be directed to incorporate the advantages that 

the RL method offers. Future work will incorporate a feedback 

mechanism similar to the one in Mencer’s work [17]. Feedback 

may improve the accuracy of the generated candidate links.  

Also, a parts of speech tagging or noun-verb phrase 

technique [19] can be considered in future work.  By 

classifying terms in textual documents, we can amplify the 

importance of one type of textual segment over the others.  

Evaluating how the human analyst can use the focused 

results suggested by the RL algorithm is also a future work 

direction. 
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