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Abstract—Assisted requirements tracing is a process in
which a human analyst validates candidate traces produced
by an automated requirements tracing method or tool. The
assisted requirements tracing process splits the difference
between the commonly applied time-consuming, tedious, and
error-prone manual tracing and the automated requirements
tracing procedures that are a focal point of academic studies.
In fact, in software assurance scenarios, assisted requirements
tracing is the only way in which tracing can be at least partially
automated. In this paper, we present the results of an extensive
12 month study of assisted tracing, conducted using three
different tracing processes at two different sites. We describe
the information collected about each study participant and
their work on the tracing task, and apply statistical analysis
to study which factors have the largest effect on the quality of
the final trace.
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I. INTRODUCTION

A large non-disclosable financial corporation, NDFC,

finds that it has a number of pressing issues: 1) it is being as-

sessed fines for failure to adequately comply with Sarbanes-

Oxley Act (SOX) [1] with respect to a traceability trail for

its software that handles client stock transactions; 2) a recent

scare has caused senior management to hire an independent

assessment team from an outside firm to perform an audit to

ensure that malicious code/trap doors/back doors do not exist

in critical code applications; 3) a rash of software failures

are being rapidly repaired as a new app, iTradeu, is being

readied for its initial launch; the developers are struggling

to debug and then retest the app in a timely manner. What

do these three scenarios have in common? Traceability.

A traceability process and/or tool could be applied to

the audit trail information to assist with SOX compliance

(issue #1). The same process/tool could be used to trace

all code back to requirements. If code exists that does not

trace back to a requirement, it should be examined to ensure

that it is not malicious code (issue #2). With a traceability

process/tool, the iTradeu (issue #3) developers could trace

failures (source artifact) to requirements (target artifact),

design, and/or features to help locate the code faults, debug

the code, and then use the trace information to determine

what tests to rerun. With all the advantages that tracing could

offer to NDFC, why are they not using such a tool/process?

First, many organizations undertake manual tracing, per-

haps with the assistance of a word processing tool or

spreadsheet. Such a process is boring, tedious, and time-

consuming. As a result, it is also error prone [11]. Second,

once traceability is established for a project, the project arti-

facts quickly change, thus necessitating traceability updates.

Third, there is a lack of an industry-accepted tracing tool.

Automation of the tracing process, as studied previously

[2], [19], [11], [23], [21], [20], [9], [22], could go a long

way toward addressing many of the drawbacks mentioned

above. Consider a process for tracing using a software tool

versus a manual tracing process as described in Table I.

In both scenarios, the human analyst plays a large, but

qualitatively different, role in the tracing process. Each step

in Table I will be performed faster in the tracing using

a software tool scenario: software will deliver a candidate

trace1 much faster than a human analyst can read through

a pair of artifacts of non-trivial size. In step three, when

tracing using a software tool, the analyst is expected to

mostly validate the suggestions provided by the automated

method. Analyst effort on this step is expected to depend on

the specifics of the software tool: how well the tool finds

true links, how many false positive candidate links the tool

retrieves, how much analyst effort is required to accept/reject

a candidate link using the tool, etc. However, research shows

that analysts working with a software tool based on any of

the existing automated tracing methods [2], [19], [11], [23],

[21] will examine significantly fewer candidate links than

an analyst performing manual tracing [2], [11].

In this paper, we use the term assisted requirements

tracing or assisted tracing to refer to a tracing process

in which a human analyst engages with an automated

requirements tracing software tool to perform the assigned

tracing task. In the software processes discussed above,

assisted tracing can provide the best of both worlds, allowing

1Traces, traceability matrices (TMs), and links are candidate until a
human analyst vets them
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Table I
SCENARIOS FOR MANUAL TRACING AND TRACING WITH A SOFTWARE TOOL

Step Tracing with software tool Manual tracing

Step 1 Human launches tool to trace a pair of Analyst reads the text of a source artifact/document
artifacts to each other

Step 2 The tool returns a candidate traceability matrix (TM) The analyst reads the text of a target artifact/document
between the artifacts

Step 3 The human vets each link in the candidate traceability The human reads the first source element, searches
matrix and renders a decision the target artifact for matches and records the matches
This is repeated until all candidate target elements This loop continues until all source elements have
retrieved for every source element have been reviewed been processed

both humans and tracing software to do what they do best.

We are interested in what constitutes a good assisted tracing

process as well as ways to evaluate such a process.

Automated tracing methods are usually evaluated using

precision and recall which measure the overall accuracy of

the recovered traceability matrix (TM). Research in auto-

mated traceability [2], [19], [11], [23], [21] concentrates on

improving precision and recall over methods studied earlier,

and has as its ultimate goal reaching the ”Holy Grail” of

100% precision and 100% recall.

The study of assisted tracing adds a wrinkle to the tradi-

tional evaluation methodology. While we are still interested

in trace accuracy as measured by precision and recall, it

is the accuracy of the traceability matrix submitted by

the human analyst (also called the final TM) that matters.

Cuddeback et al. [6] reported on the results of a preliminary

study of assisted traceability, focused exclusively on making

hypothetical observations on what caused specific participant

performance. In that study, 26 participants in two sites were

given candidate TMs of varying quality for vetting. Sur-

prisingly, the best improvement in accuracy (comparing the

vetted TM to the starting TM) was seen by the participants

who were given TMs of the lowest accuracy [6].

The study described in this paper is a significant expansion

of Cuddeback et al.’s study [6] We have conducted additional

studies of assisted tracing, using two more tracing proce-

dures (one manual and one involving a different software

tool) at two experimental sites for a total of 84 participants2.

This paper undertakes a statistical analysis to formally deter-

mine what affects human performance the most. Specifically,

this paper contributes: a) two additional rounds of assisted

traceability experiments at two experimental sites, b) a

multi-variate analysis of 11 independent variables describ-

ing participant experience with the tracing experiment to

identify statistically significant factor(s) affecting analyst

performance, and c) a formal statistical re-examination of

the (informal) findings from earlier work [6] studying the

effect of the accuracy of the candidate traceability matrices

provided to the analysts on their performance. Specifically,

we study these questions:

Q1. Is the effect of the accuracy of the initial TM on the

2Including the 26 participants from Cuddeback et al. [6].

Table II
AN OVERVIEW OF PARTICIPANTS DURING THE THREE TRACEABILITY

EXPERIMENTS

Cohort Date Location # of participants Tool used

1 Dec 09 University A 16 Retro

1 Dec 09 University B 10 Retro

1 Apr 09 University B 7 Retro

All 1 A and B 33 Retro

2 Nov 10 University A 38 Manual

3 Dec 10 University A 8 RETRO.net

3 Dec 10 University B 5 RETRO.net

All 3 A and B 13 RETRO.net

accuracy of the final TM statistically significant?

Q2. Are the effects of any observed independent variables

on the accuracy of the final TM statistically significant

(when controlled by the initial TM accuracy)?

Q3. Which group of independent variables has a higher

effect on the accuracy of the final TM: the variables

measuring accuracy of the initial TM or the observed

independent variables?

The rest of the paper is organized as follows. Section II

provides background and related work on assisted tracing

and introduces basic traceability concepts and measures.

Section III describes the experiments. Section IV presents

the statistical analysis and results. Section V concludes.

II. BACKGROUND AND RELATED WORK

Requirements traceability is defined as the “ability to

describe and follow the life of a requirement, in both a

forwards and backwards direction” [8]. The output of the

tracing process is a requirements traceability matrix (RTM

or TM) which specifies the connections between elements of

two artifacts. Multiple studies applied information retrieval

techniques to automatically generate TMs [10], [2], [3], [11],

[19]. In these studies, the quality of the TM was measured

primarily using precision, recall, and f -measure (see below).

Most of the methods studied were able to achieve high recall,

but with low precision.

A. Measures

Consider a tracing process consisting of a set of high-level

elements H of size M and a set of low-level elements D

of size N . For a particular requirement q ∈ H , let nq be
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the number of candidate links between q and the elements

in D that a tracing process returns. Let rq be the number of

correct links and Rq be the actual number of correct links

(from an expert-prepared answer set).

Recall is defined as the percentage of correct links that

are found, while precision is the percentage of retrieved

candidate links that are correct [11]:

recall =

∑

q∈H

rq

∑

q∈H

Rq

; precision =

∑

q∈H

rq

∑

q∈H

nq

(1)

F-measure is the harmonic mean of precision and recall,

defined formally below. In this definition, b represents the

balance between precision and recall where b < 1 favors

precision and b > 1 favors recall.

fb =
1 + b2

b2

recall
+ 1

precision

(2)

Contemporary studies of automated tracing methods im-

plicitly equate TM accuracy (as calculated by precision,

recall, and F-measure) with TM quality [10], [2], [3], [11],

[19]. However, in mission-critical software assurance, a TM

produced by an automated system must be validated by a

human analyst responsible for the assurance guarantees.

B. Study of the Analyst During Tracing

In earlier work [13], [15], Hayes and Dekhtyar asked

whether it is, in fact, true that more accurate initial can-

didate TMs lead to more accurate analyst-validated TMs.

While their initial study [13] involved only four analysts, it

provided anecdotal evidence that this may not be the case.

Our traceability research group has conducted a number

of studies to further investigate analyst behavior during the

tracing process and reported initial results [6], [5]. Two of

the most important trends observed were: 1) participants

were unable to recover the true TM or reach a consensus

of what that TM should be, and 2) participants given the

highest quality candidate TMs to validate almost uniformly

degraded the TM accuracy, while participants given the

lowest quality candidate TMs almost uniformly improved

the accuracy greatly.

A similar recent study, conducted by Egyed et al. [7],

while primarily focusing on human analyst effort, supports

our overall observation that human analysts are fallible in

their work with candidate traceability matrices. Our present

study goes one step further and establishes that the level of

human fallibility is somewhat predictable.

III. EXPERIMENTAL DESIGN

In this section, we discuss the experimental design, the

data collected, and threats to validity.

A. How we collected data

We conducted a series of experiments examining analyst

performance in assisted tracing tasks (see Table II). The ini-

tial experiment [6] involved 26 subjects performing a tracing

task using REquirements TRacing On-target (RETRO) [12],

a special-purpose requirements tracing tool written in Java.

Cuddeback’s thesis [5] includes an extra cohort of seven

subjects who used the same tracing process. We conducted

two follow-up experiments, one using an improved and

simplified version of RETRO called RETRO.net (written

to address usability and stability issues with the original

RETRO but does not differ in functionality), and the other

asking the analysts to validate the TM manually using hard-

copy artifacts without software assistance. In what follows

we refer to these experiments as the RETRO experiment, the

RETRO.net experiment and the manual experiment.

The RETRO and RETRO.net experiments were conducted

at two sites: California Polytechnic State University and Uni-

versity of Kentucky. The manual study was only conducted

at one of the universities; we hope to repeat it at the other

site in the future. All participants in the studies were students

enrolled in software engineering courses. All were provided

a short introduction to requirements tracing. Most of the

participants were junior, senior, or graduate students.

In RETRO and RETRO.net experiments, a pre-experiment

survey was given to the participants in order to gauge prior

experience and overall comfort with tracing. The research

team utilized the responses to separate participants into

two groups, an experienced group and a group that lacked

tracing experience. In each group, participants were assigned

starting TMs in a way that ensured that TMs with different

accuracy were evenly distributed among participants with

both levels of experience. The manual study had no pre-

experiment survey, but most of the questions from it were

asked in the post-experiment survey, so the same information

was collected. The manual study took place in an entry-

level software engineering course, and thus we did not

expect (and did not observe) significant levels of tracing

experience among the participants, and did not need to use

pre-experiment survey data to assign starting TMs.

In all three cohorts, participants were asked to review a

candidate TM, referred to as the initial or starting TM, with

pre-defined precision and recall values. The assignment of

the TM was made by the researchers. After completing the

tracing task, participants were asked to submit their final TM

and complete a post-experiment survey that asked for their

reactions to tracing (how prepared they were for the task,

how difficult it was, if they would prefer tracing manually or

with a tool, etc. [5]). Two questions in the post-survey asked

the participants to identify how much effort they spent on

the two main types of activities we expected: (a) validating

candidate links found in the initial TM, and (b) searching

for links that were missing from the initial TM. For the
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Table III
BASELINE INDEPENDENT VARIABLES

Variable Abbreviation Scale

Initial Precision SPrec [0,1]

Initial Recall SRec [0,1]

Initial F2 SF2 [0,1]

Initial Quadrant SQuadrant {Q1, Q2, Q3, Q4}

RETRO and RETRO.net experiments, the participants were

also asked to submit a log of their actions. In the RETRO

study, the log was a hardcopy document manually created

and maintained by participants. RETRO.net software imple-

mented automatic activity logging and the participants were

asked to submit the generated log file.

All three studies utilized the same dataset, a BlueJ plu-

gin Java code formatter named ChangeStyle. This dataset

contains 32 requirements and 17 system tests. The research

team generated and validated the golden standard TM which

contains 23 links from requirements to tests [6]3. This

dataset was chosen for the experiments because: (a) the

domain is easily understood by participants, and (b) its size

makes the validation task achievable in about one hour.

In this paper, we concentrate on analyzing common infor-

mation collected from the experiments. Some of the aspects

of our RETRO.net experiment, which involved tracking

analyst behavior, are reported elsewhere [16].

B. What data we collected

For all studies, we assembled a rich set of meta-

information from the pre- and post-experiment surveys as

well as information concerning initial and final TMs for each

analyst. Tables III, IV, and V provide an overview of the

information that we collected, broken into three categories:

1) Baseline independent variables. (Table III). These

variables specify the accuracy of the initial TM.

2) Observed independent variables. (Table IV). These

variables contain is information about the experiment

participants and their work on the tracing task. This

information was either part of the experimental design

(location, software used) or collected from the pre- and

post-experiment surveys. Of the 11 variables collected,

one (Time) is continuous; the remaining 10 are either

nominal or ordinal (see Type column in Table IV).

3) Response (a.k.a. dependent) variables. (Table V).

Our dependent variables measure the accuracy of

the final TMs submitted by the participants. These

variables fall into two groups: measures of the absolute

accuracy of the final TM and ”Delta” variables that

measure the change between the initial and final TM.

3The validation process for the golden standard is discussed in detail
elsewhere [6], [5]. In short, a candidate golden standard (answerset) was
assembled from the artifacts of the software engineering course which
implemented ChangeStyle; that candidate TM was then examined, link-
by-link, by multiple researchers from our research group, until consensus
was reached on each link.

Table V
RESPONSE (DEPENDENT) VARIABLES

Variable Abbreviation Scale

Final Precision FinPrec [0,1]

Final Recall FinRec [0,1]

Final F2 FinF2 [0,1]

Delta Precision ∆Prec [-1,1]

Delta Recall ∆Rec [-1,1]

Delta F2 ∆F2 [-1,1]

In earlier work [6], the main focus was on how the

baseline variables impact the dependent variables (albeit, no

statistical analysis was presented). In this paper, we expand

that work by: (a) presenting the results of the statistical

analysis, and (b) comparing the effect of the baseline in-

dependent variables and the observed independent variables

on the values of the dependent variables.

C. Threats to validity

Our study was subject to a number of threats to validity.

We addressed the threat to conclusion validity by ensuring

that all data assumptions for the statistical techniques were

met and perfoming our analysis with the assistance of an

experienced statistician. A threat to internal validity would

be the use of a golden standard traceability matrix developed

by a subset of the authors. This is standard practice in

traceability studies as actual or true traceability matrices are

rarely available. Examples of this practice can be seen in

a number of previous papers in this conference (Huang et

al. built answer sets for three datasets, for example [4]).

There are precedents for student-built datasets in traceability

research (Waterloo dataset, iTrust dataset, for example) [14],

[18]. Another threat to internal validity would be the limited

time given to participants to perform the task. We were

constrained in the amount of time we had to undertake the

experiment. We felt that it was best to use a small dataset

that could be traced in the class period for this initial work.

The dataset is similar in size to those used by Egyed et al. [7]

(bearing in mind that their subjects had 90 minutes to work

versus 60 minutes in our case). Dependent variable issues

that threaten construct validity were reduced by the use

of standard Information Retrieval measures. Our work with

student participants represented a threat to external validity.

However, Host et al. note that students can perform small

tasks of judgement the same as professionals with no signifi-

cant differences [17]. Also, it has been observed by Tichy et

al. [24] that students can serve well for determining trends, if

appropriately trained. There is also precedence in traceability

work: other traceability studies have used students with low

levels of industry experience to represent new people joining

a company [7]. Motivation of the participants is also a threat

to external validity found in all our experiments. Students

were given extra credit for participating in the experiment,

but the points awarded were not tied to the quality of their
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Table IV
OBSERVED INDEPENDENT VARIABLES

Variable Abbreviation Scale Type Scale Details

Procedure used Procedure {Retro, Manual, Nominal tracing procedure used by participant
RETRO.net}

Location Location {CP, UK} Nominal Cal Poly or University of Kentucky

Software Engineering Experience SEExp {0, 1, 2} Ordinal based on number of SE courses and industry experience

Tracing Experience TRExp {0, 1} Nominal reported use of tracing in coursework or industry

Time to preform tracing task Time # minutes Cont. number of minutes it took to complete the task

Grade Level Grade {F, Soph, J, S, G} Nominal participant grade level

Confidence with tracing TrConf 1 – 5 Ordinal self-reported level (1: lowest, 5: highest)

Opinion on Tool vs. Manual Opinion {Man, SW} Nominal participant’s (post-task) preferred way of tracing

Effort on searching for omitted links MissingEff 0 – 5 Ordinal self-reported (0: never, 5: almost every link)

Effort on validating offered links ValidEff 0 – 5 Ordinal self-reported (0: never, 5: every link)

How prepared the analyst felt Prepared 1 – 5 Ordinal Self-reported post-task (1: not at all, 5: very prepared)
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Figure 1. Results from our three studies: (a) used RETRO, (b) traced manually, (c) used RETRO.net.

work. Had researchers provided points based on quality

of work, a different threat to validity would have been

introduced (requiring mitigation of the threat versus reward

dynamic). An additional external threat deals with our use

of only one small, student-built dataset. Our findings may

not be the same if we were to use a different dataset. The

only way to overcome this threat is to repeat the work on a

real project, which remains as future work.

IV. RESULTS AND ANALYSIS

We present information on analyst performance, statistical

analysis undertaken, and observed results.

A. Analyst Performance

Earlier work [6] presented a collection of graphs illustrat-

ing the results of the experiment. Here, we present some of

these graphs for the entire body of our experiment. The main

visualization method employed in Cuddeback et al. [6] is to

render, for each participant, the initial and the final TMs in

the precision–recall space, and to draw a vector from the

initial to the final TM.

Figure 1 presents the results of our three studies broken

down by experiment. Figure 1(a) depicts the RETRO exper-

iment [5], 1(b) shows the results of the manual experiment,

and 1(c) shows the results of the RETRO.net experiment.

Figure 2 shows the same results in two ways: graphs

2(a) and 2(d) plot the locations of all starting and final

TMs, respectively. The remaining graphs show the analyst

performance, for ease of visualization, by the quadrant of

the initial candidate TM.

Cuddeback et al. [6] made the following observations:

• Analysts given low-precision, low-recall TMs drasti-

cally improved their accuracy.

• Analysts given low-precision, high-recall TMs tended

to improve precision at the price of lower recall.

• Analysts given high-precision, low-recall TMs tended

to improve recall, but usually at the cost of lowering

precision.

• Analysts given high-precision, high-recall TMs tended

to slightly decrease the overall accuracy of the TM, but

they could do it in a number of different ways.

• Analysts appeared to possess good intuition about the

actual size of the golden standard TM.

• No analyst recovered the golden standard TM.

As can be seen from Figures 1 and 2, with the exception of

a few outliers (present in each experiment), analyst behavior

observed in earlier work [6] is informally confirmed in

this study. Participants in the manual and RETRO.net ex-

periments appear, based on these graphs, to have exhibited

essentially the same behavior as participants in the RETRO

study. In 84 observed attempts, no participant recovered the

true trace; however, every true link was found by at least

one participant. We move now to formal confirmation.
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Figure 2. Results of our traceability study: (a), (d): distribution of assigned and submitted TMs. (b),(c),(e),(f): performance of individual participants by
accuracy of assigned TM.

B. Statistical Analysis

To better understand what went on in our experiments,

we conducted multivariate statistical analysis designed to

discover the key factors influencing the accuracy of the final

TM and asked the questions found at the end of Section I.

Baseline independent variables (Q1). Table VI shows the

influence of the pair of independent variables Initial Preci-

sion and Initial Recall on each of our response variables

using multiple regression. We report the adjusted R-square

value, R2

adj , the F -value, and the significance level (p-

value) for each model. As can be seen from the table, the

initial accuracy of the traceability matrix has a statistically

significant effect on the precision of the final TM, as well

as on changes in precision, recall, and F2-measure4. There

is no statistically significant effect on recall and F2-measure

of the final TM.

We can use the Initial F2-measure as a one-dimensional

surrogate for the intial precision and initial recall. We studied

the influence of the Initial F2-measure on our response

variables using linear regression. The results are summarized

in Table VII. As can be seen from the table, initial F2-

measure statistically significantly influences final precision,

the change in recall, and the change in precision and the

F2-measure. It does not statistically significantly influence

4We used significance level α = 0.05, bolded items are statistically
significant

final recall, final F2-measure and the change in precision.

Finally, we broke all our initial TMs by quadrant using

values of 50% precision and 50% recall as boundaries. Since

Initial Quadrant is a categorical variable, we used one-

way ANOVA to study its relationship with each of our

response variables. Table VIII shows the results of this

analysis. In the table, QI is the low-precision, low-recall

quadrant, QII is the low-precision, high-recall quadrant,

QIII is the high-precision, low-recall quadrant, and QIV

is the high-precision, high-recall quadrant. We report the

mean and standard deviation for each response variable for

each quadrant, as well as R2

adj , F -value, and p-value of

the model. As can be seen from the table, the means for

the quadrants are statistically significantly different for four

of our six response variables: the final precision, and the

changes in precision, recall, and F2-measure. We illustrate

the differences in the means for final TM precision and

recall for each quadrant and the differences in changes in

precision and recall in Figure 3(a) and Figure 3(b). Changes

in precision and recall are illustrated as a single vector

(mean(∆Rec), mean(∆Prec)) plotted from the center of

each quadrant.

Observed independent variables (Q2). For the second

question, we wanted to see how our observed independent

variables (Table IV) related to the response variables. For

each observed independent variable, to prevent systematic

bias and reduce error variance within groups, we controlled
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Table VI
INFLUENCE OF INITIAL PRECISION AND INITIAL RECALL ON RESPONSE

VARIABLES (DEGREES OF FREEDOM: 2, 81)

Response Variable R2

adj
F-value Sig. (pval)

FinPrec 0.120 6.659 0.002

FinRec -0.004 0.842 0.434

FinF2 0.0 1.012 0.368

∆Prec 0.454 35.548 0.0001

∆Rec 0.444 34.115 0.0001

∆F2 0.288 17.761 0.0001

Table VII
INFLUENCE OF INITIAL F2-MEASURE ON RESPONSE VARIABLES

(DEGREES OF FREEDOM: 1, 82)

Response Variable R2

adj
F-value Sig. (pval)

FinPrec 0.056 5.913 0.017

FinRec 0.037 3.117 0.081

FinF2 0.053 4.604 0.035

∆Prec 0.036 3.02 0.086

∆Rec 0.312 37.227 0.0001

∆F2 0.238 25.672 0.0001

for two baseline independent variables: initial precision and

initial recall. That is, we statistically adjusted the dependent

variable means to what they would have been if all groups

had started out with equal distribution of initial precision

and recall.

Of the eleven observed independent variables, only time

to complete the tracing task (Time) is continuous. We used

multiple linear regression analysis for it. The remaining 10

variables are categorical; we used one-way ANCOVA to

analyze them. Table IX shows the results of the analyses.

For each model, we report the R2

adj , the F -value, and the

p-value. We also report the baseline R2

adj value from Table

VI for each response variable’s effect with initial precision

and initial recall. As can be seen from the table, only

one observed independent variable, ValidEff, has statistically

significant effect on any of our response variables.

When performing tracing tasks, participants spent their

time engaging in two different types of activities: vetting

candidate links from the initial TM, or searching the artifacts

for missing links. Variable ValidEff quantifies the amount

of effort participants put into vetting candidate links from

the initial TM. This information was collected in the post-

experiment survey on a 0 – 5 scale, where 0 meant ”never

performed this type of activity” and 5 meant ”performed

this type of activity for every single link.” When looking

at the performance of participants based on the value of

ValidEff variable, the key reason for the statistically sig-

nificant influence on final recall and change in recall can

be seen from Table X. Of 84 participants, 62 specified

values of 0, 1, 2, or 3 in response to the post-experiment

question. Thirteen participants gave a response of 4 and

one participant gave a response of 55. As can be seen from

5The remaining participants did not provide an answer.

Table VIII
INFLUENCE OF STARTING QUADRANT ON RESPONSE VARIABLES

(DEGREES OF FREEDOM: 3, 80).

QI QII QIII QIV Statistics
N 10 26 14 34

FinPrec x̄ 64.46 52.94 61.03 72.96 R2

adj
= 0.138

s 18.2 20.88 22.89 16.43 F = 5.434
p= 0.002

FinRec x̄ 64.58 60.90 52.68 64.34 R2

adj
= 0.004

s 18.14 21.96 29.4 16.42 F = 1.113

p= 0.349

FinF2 x̄ 64.27 57.71 51.08 65.09 R2

adj
= 0.038

s 16.00 19.40 25.79 16.62 F = 2.083
p= 0.109

∆Prec x̄ 38.14 21.03 −14.53 −2.49 R2

adj
= 0.402

s 20.24 17.49 27.83 18.85 F = 19.586

p= 0.0001

∆Rec x̄ 33.75 −11.06 23.81 −7.35 R2

adj
= 0.341

s 18.78 24.91 30.42 18.44 F = 15.344

p= 0.0001

∆F2 x̄ 35.5 6.32 11.1 −6.97 R2

adj
= 0.253

s 17.64 21.52 32.09 17.56 F = 10.356

p= 0.0001

Table X, the average recall for those whose response was 4

or 5 is 20.5% less than the average recall of those whose

responded 0—3. We also noted that those who responded 4

or 5 were the only group of participants whose mean change

in recall was negative: an overwhelming−24.22%. In Figure

3(c), we plot the performance of the participants who gave

responses of 4 or 5. As can be seen from the graph, the

majority of participants received initial TMs with relatively

high recall and varying precision, and most of them wound

up significantly reducing recall. This behavior is consistent

with the self-reported effort spent on validating candidate

links: participants did almost nothing but link validation,

but they wound up making many incorrect judgment calls,

which lead to many true links being rejected.

Comparing the influences (Q3). Based on the analyses

shown above, we conclude that the accuracy of the initial

TM in our experiments was the best predictor for the change

in the TM accuracy. Initial precision and initial recall jointly

account for over 40% of variability of each of ∆Prec,
∆Rec, and ∆F2 response variables. In fact, even the

much coarser, Starting quadrant of the initial TM accounts

for 33%—39% variability for these response variables. Of

the 11 observed independent variables in our study (see

Table IX), only ValidEff had statistically significant effect

on ∆Rec and ∆F2, explaining an additional 7–8% of

variability – much less than our baseline variables.

As can be seen from Figure2(d), the majority of final TMs

submitted by the study participants have precision and recall

between 50% and 70%. Our study found that except for

ValidEff, the effort spent validating candidate links, no other

independent variable (baseline or observed) had significant

effect of the final TM recall. In fact, ValidEff itself shows
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Table IX
ANALYSIS FOR OBSERVED INDEPENDENT VARIABLES CONTROLLING FOR INITIAL TM PRECISION AND RECALL

Response Location Procedure SEExp TRExp Time Grade TrConf Opinion MissingEff ValidEff Prepared

FinPrec R2

adj
0.12 0.109 0.107 0.121 0.127 0.148 0.083 0.129 0.049 0.116 0.102

R2

adj
= 0.12 F 1.012 0.510 0.876 2.034 1.025 1.668 0.045 1.111 0.091 1.02 1.003

p 0.318 0.602 0.421 0.158 0.315 0.166 0.833 0.335 0.965 0.413 0.423

FinRec R2

adj
0.006 0.001 -0.001 0.002 -0.012 0.017 -0.022 -0.017 -0.016 0.115 -0.053

R2

adj
= −0.004 F 1.789 1.18 1.028 1.306 0.126 1.423 0.001 0.373 0.847 2.810 0.34

p 0.185 0.313 0.362 0.257 0.724 0.234 0.978 0.690 0.522 0.023 0.887

FinF2 R2

adj
-0.006 0.01 0.019 0.016 -0.008 -0.025 -0.022 0.0 -0.024 0.153 -0.022

R2

adj
= 0.0 F 0.496 1.383 1.765 0.2.284 0.013 0.503 0.077 0.784 0.717 3.428 0.741

p 0.483 0.257 0.178 0.135 0.910 0.734 0.782 0.46 0.613 0.008 0.595

∆Prec R2

adj
0.461 0.448 0.466 0.475 0.475 0.472 0.460 0.462 0.427 0.465 0.459

R2

adj
= 0.454 F 1.012 0.510 0.876 2.034 1.025 1.668 0.045 1.111 0.191 1.02 1.003

p 0.318 0.602 0.421 0.158 0.315 0.166 0.833 0.335 0.965 0.413 0.423

∆Rec R2

adj
0.449 0.446 0.443 0.445 0.416 0.455 0.445 0.413 0.444 0.493 0.424

R2

adj
= 0.444 F 1.789 1.18 1.028 1.306 0.126 1.423 0.001 0.373 0.847 2.810 0.34

p 0.185 0.313 0.362 0.257 0.724 0.234 0.978 0.69 0.522 0.023 0.887

∆F2 R2

adj
0.284 0.297 0.322 0.297 0.243 0.270 0.291 0.245 0.265 0.326 0.268

R2

adj
= 0.288 F 0.541 1.565 2.53 1.17 0.021 0.521 0.001 0.571 0.598 2.582 0.653

p 0.464 0.216 0.086 0.283 0.885 0.721 0.98 0.568 0.702 0.034 0.66
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Figure 3. Graphs showing: (a) means and standard devisions of final recall and precision by Initial Quadrant; (b) mean changes in final recall and precision
by Initial Quadrant, and (c) performance of participants who spent much effort validating candidate links (values ”4” or ”5” for variable ValidEff).

statistically significant difference only between those who

put all their effort into link validation (and rejected many

true links) and those who did not. For final precision, initial

TM accuracy provided some predictive power, accounting

for about 12% of the variability.

C. Discussion

Two of the observed independent variables, Procedure and

Location, represent where and how participants took the

study. As can be seen from Table IX, neither variable has a

statistically significant effect on the response variables. That

is, participants in both locations and in all three experiments

(RETRO, manual, RETRO.net) performed in roughly the

same way when controlled by the initial TM accuracy. This

means that the results we observed were repeatable in our

studies between two locations and between three procedures

used for tracing.

A number of observed variables assess ”personal quali-

ties” of study participants: software engineering experience,

prior tracing experience, grade level, confidence level, pre-

paredness level, and opinion on whether manual tracing is

better than tracing with a software tool. As can be seen

from Table IX, none of these variables have statistically

significant effect on any response variables. This means that

in our experiments, the final TM accuracy was not affected

in any major way by the prior experiences of the participants

or by their opinions. This is an interesting observation: in

general, one expects more experienced analysts to perform

better on various tasks than those with less experience. In

our experiments, this did not happen.

Returning to the questions of interest, based on these

studies, the answers are:

Q1. Yes. The effect of the accuracy of the initial TM on the

accuracy of the final TM, and especially on the change in

the accuracy is statistically significant.

Q2. Of all the examined variables, only one, self-reported

effort validating offered links, was in statistical significance
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with four of our response variables.

Q3. The variables measuring accuracy of the initial TM have

a higher effect on the change in the TM accuracy than

any observed independent variable. The most interesting

observed result is that low initial TM accuracy lead to the

best overall improvement in accuracy.

This result (Q3) begs the question ”why?” It might seem

intuitive that starting with a low initial quality TM provides

ample opportunities for improvement – removing incorrect

links and finding missing links. It should be noted that

these ”mistakes” in the TM are not necessarily so easy

to detect. Follow–on work to this study has shown that

many participants incorrectly confirmed false links (often the

same problematic links) as well as incorrectly added links to

the TM [16]. Though our investigation into ”why” is very

preliminary, it appears that all participants had periods of

work where many correct decisions were made in a row:

the difference in participants was how long it took them

to get to that ”constructive” period of work and how long

that period lasted. This clearly could be tied to the data set,

though data captured with our logging tool indicated that

many participants did not work in a sequential order (rather,

they ”jumped around” in the dataset). Further study must be

undertaken with additional datasets in order to understand

”why” low intial TM accuracy leads to the best overall

improvement in accuracy.

Initial TM accuracy had statistically significant, although

weaker and only partial, effect (on final precision but not on

the final recall) on the accuracy of the final TM. We observe

that the lack of significant effect on the final recall is chiefly

due to the fact that the majority of final TMs had recall in the

50%–70% range. The only significant interaction with final

recall came from the 14 participants who reported spending

much of effort on link validation: they were the only group

with a significantly lower recall.

V. CONCLUSIONS AND FUTURE WORK

Initial examination of data from the Cuddeback et al.

study [6] led us to observe that: (a) participants failed to

recover the true TM, (b) participants given lower accuracy

TMs tended to show more significant improvement, and (c)

regardless of starting TM accuracy and size, participants

tended to guess the size of the true TM. This was a surprising

finding that led to 12 months of continued experimental

studies as well as statistical analysis to understand why.

This paper presents a look at 11 independent variables

which may account for the change in final TM accuracy.

Interestingly enough, statistical analyses show that analyst’s

tracing experience, amount of effort applied to look for

missing links, comfort level with tracing, etc. do not affect

final TM accuracy. Rather, the initial TM accuracy is the

most important factor impacting final TM accuracy. The only

other factor that had a statistically singificant interaction with

Table X
INFLUENCE OF VALIDEFF ON RESPONSE VARIABLES

Response 0–3 4–5

N 62 14

FinRec x̄ 65.25 44.72
s 19.98 23.28

FinF2 x̄ 62.36 45.66
s 17.98 22.25

∆Rec x̄ 5.18 −24.22

s 26.71 30.73

∆F2 x̄ 7.06 −14.55

s 22.33 23.59

final TM accuracy was the amount of time an analyst spent

vetting links provided by the tool.

In the introductory example, NDFC lacks tracing pro-

cesses that could assist with their three looming issues.

If they select a fully manual process, errors and analyst

discontent will surely ensue. If a totally automated solution

is selected, a large number of false positive links in the TM

could lead to dismissal of the tool as faulty. Assisted tracing,

an analyst working with the results of an automated tool,

suits their needs the best. In applying such a process, NDFC

would probably like to know how to select analysts for

the job (years of software engineering experience, years of

tracing experience, comfort level with the tool, etc.). Imagine

their surprise to learn that the only statistically significant

factor that impacts the quality of the final TM in assisted

tracing is the initial quality (which has negative correlation)

and the amount of time spent vetting links. The analyst’s

experience, effort applied, etc. do not matter.

Our key, formally confirmed finding that lower initial TM

accuracy leads to better analyst performance significantly

alters our overall approach to assisted tracing. We can no

longer rely on the automated tracing methods to produce

high-accuracy results and expect these results to translate

into even higher-accuracy ones in assisted tracing settings.

While we still consider the quest for high-precision, high-

recall automated tracing methods important, we must ac-

knowledge that it will not provide a panacea for assisted

tracing. We have established that analysts performing as-

sisted tracing tasks are fallible and predictably so. Assisted

tracing procedures must account for this. As such, we plan

to run a follow-on experiment using data from a real project

to further understand this behavior.
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