
Inherent Characteristics of Traceability Artifacts
Less is More

Jane Huffman Hayes

Computer Science

University of Kentucky

Lexington, USA

hayes@cs.uky.edu

Giulio Antoniol, Bram Adams, Yann-Gaël Guéhéneuc

GIGL, Polytechnique Montreal

Montreal, Canada

giuliano.antoniol@polymtl.ca, bram.adams@polymtl.ca,

yann-gael.gueheneuc@polymtl.ca

Abstract—This paper describes ongoing work to characterize

the inherent ease or “traceability” with which a textual artifact

can be traced using an automated technique. Software traceabil-

ity approaches use varied measures to build models that automat-

ically recover links between pairs of natural language documents.

Thus far, most of the approaches use a single-step model, such as

logistic regression, to identify new trace links. However, such

approaches require a large enough training set of both true and

false trace links. Yet, the former are by far in the minority, which

reduces the performance of such models. Therefore, this paper

formulates the problem of identifying trace links as the problem

of finding, for a given logistic regression model, the subsets of

links in the training set giving the best accuracy (in terms of G-

metric) on a test set. Using hill climbing with random restart for

subset selection, we found that, for the ChangeStyle dataset, we

can classify links with a precision of up to 40% and a recall of up

to 66% using a training set as small as one true candidate link

(out of 33) and 41 false links. To get better performance and

learn the best possible logistic regression classifier, we must “dis-

card” links in the trace dataset that increase noise to avoid learn-

ing with links that are not representative. This preliminary work

is promising because it shows that few correct examples may

perform better than several poor ones. It also shows which in-

herent characteristics of the artifacts make them good candidates

to learn efficient traceability models automatically, i.e., it reveals

their traceability.

Index Terms—Traceability, machine learning, model, logistic

regression, artifact characteristics.

I. INTRODUCTION

Traceability is defined as “the ability to follow the life of a

requirement, in both a backward and forward direction" [1].

Researchers have explored ways to automatically or semi-

automatically recover traceability information [2], [3], [4], [5],

[6] from numerous and diverse artifact pairs—source code,

requirements, design, bug reports, to name a few. Many ad-

vances have been made and a vibrant community has been es-

tablished, largely anchored by the Center of Excellence for

Software and Systems Traceability (COEST) and through the

tools and datasets that it provides freely.

Still, traceability information is not routinely generated as a

first class citizen of the development lifecycle. Also, when

traceability information is generated, it is often not used to its

fullest potential andor is not kept up to date. Further, the trac-

ing task is still largely manual andor requires that a human

analyst performs assurance of generated links or approaches.

The overarching goal of reducing the work of the human ana-

lyst is not yet fully realized [7].

Recently, a number of researchers have begun applying

machine learning techniques and other approaches from soft-

ware analytics and artificial intelligence to recover traceability

information. We concur that such techniques could be used to

reduce the work of the analyst, but we wonder if (and to what

degree) it is possible to determine the inherent “traceability” of

software development artifacts, i.e., how easy (or hard) is it for

an automated trace technique to recover links from the artifacts?

To explore this question, we revisited an unexplored idea from

early in our work on traceability [8].

The rest of the paper is organized as follows. Section II de-

fines the inherent characteristics of traceability information that

we study. Section III describes the research approach and pro-

gress to date on modeling. Section IV describes our findings to

date on traceability, Section V presents related work, and Sec-

tion VI concludes.

II. INHERENT TRACEABILITY

While traceability has been defined previously as some-

thing that is not classified together with standard “–ilities”,

such as portability, reliability, maintainability, etc., we wonder

if there should not also be a definition of traceability as a prop-

erty or inherent characteristic of software artifacts. A tracea-

ble artifact would imply that it can easily be traced using auto-

mated tools, just as a testable artifact lends itself to easy verifi-

cation via software testing. For such artifacts, developers and

analysts could spend less time on manual traceability, while

artifacts that are not as traceable would require much more

manual effort to specify or recover trace links.

As the original definition of traceability has not gained

widespread use, we wonder if a new name is necessitated for

the quality that makes an artifact traceable. We are considering:

essential traceability, traceability essence, and traceability. We

use the term traceability1 in italics in the remainder of the pa-

per to distinguish it from, yet still relate it to, the typical con-

cept of traceability in the literature. Regardless of the moniker,

we want to discover whether inherent characteristics of soft-

ware artifacts can describe the ease with which artifacts can be

traced automatically.

1 “traceability” is italicized to differentiate it from potentially incorrect uses of

the term and to denote our use of it.

Our initial notes from years ago on the traceability of arti-

facts showed that our work stalled due to a lack of data, in two

ways. The first way was due to the low volume of available

data sets, preventing us from having a sufficiently rich set of

case studies that would enable generalization of our findings.

This problem essentially has been solved, as a major contribu-

tion of the COEST and our international research community is

a compilation of many data sets for tracing.

However, the second way in which our earlier work failed

still prevails, i.e., the inherent problem that out of the full set of

possible trace links between pairs of artifacts (in the worst case

quadratic in the number of artifacts), only a minority of the

links actually make sense. This creates an imbalance between

the number of correct and incorrect links, complicating the task

of traceability.

Given that tools and datasets have become readily available,

now appears to be the right time for studying the impact of

unbalanced data on the traceability of software artifacts.

III. RESEARCH APPROACH

To understand whether we can characterize the traceability

of software artifacts, we ask these research questions:

 Can we learn anything interesting from applying machine

learning techniques to various trace datasets?

Can we, for example, learn a model that can be ap-

plied to a different dataset to predict a link?

 Can we discover the attributes of a dataset (or an artifact

pair) that cause it to work well (or not) with automated

tracing methods?

 Can we uncover interesting trends such that we can predict

trace links accurately if a human user gives us some level

of “training” data?

 Can we minimize the training data required?

To address these questions, we undertook four steps. First,

we gathered a number of well-used datasets. The current col-

lection of datasets includes: CM-1, MODIS, ChangeStyle, and

Etour. Next, we used the RETRO.NET tool [9] and generated

candidate trace links (using VSM with tf-idf weighting) for

artifact pairs. These candidate links (which consisted of the

high-level requirement ID, low-level requirement ID, text of

each requirement, and relevance weight of the pair, i.e., the

similarity of the given artifacts as computed by the VSM),

joined with the answer sets for each dataset, became our input

dataset.

 Second, we considered ways to characterize the traceability

of our input dataset. Based on our earlier work in maintenance

and software maintainability [10], for this preliminary work,

we felt that readability and understandability of text might play

an important role. Thus, we studied a number of readability

measures that could be obtained from natural-language artifacts.

To collect size-based measures such as number of unique

words per artifact, we wrote Python scripts. We then consid-

ered measures that could be obtained by applying parts of

speech (POS) tagging to the artifacts: number of nouns per

artifact and number of verbs per artifact.

 Finally, we collected readability measures as calculated by

a Web app available on-line2 . The measures collected are

shown in Table I. Our hypotheses for the readability / under-

standability measures were generally: as grade level increases

(reading ease decreases), understandability and traceability

decrease; as reading ease increases, traceability increases; as

the number of words, sentences or complex words increases,

traceability increases. We further surmised that if a text ele-

ment would be too small (few words, few sentences, few sylla-

bles), it would be hard to trace. We then took each of the

aforementioned measures, whose values were in separate files,

and used shell scripts to build a single Weka ARFF file for our

input dataset.

In the third step, we applied various WEKA classifiers us-

ing 10-fold cross-validation (an evaluation method used when

the available data set is small) to assess the recall and precision

for predicting True and False links. Precision is the percentage

of links suggested by a classifier that are correct (the higher,

the less false alarms), while recall is the percentage of all exist-

ing correct links that eventually were found by a classifier. Ide-

ally, both values should be high, yet a high value of one usually

comes at the expense of a lower value for the other, hence a

trade-off must be found.

In general, the number of True links is much lower than the

number of False links ("unbalanced data"), which means that

when building a classifier for True links, WEKA cannot study

enough True links to make a high-performing model, causing

the model to identify True links only poorly. On the other hand,

a model to find False links would perform much better; in fact

just by randomly guessing that a link is False, one would be

correct most of the time.

To counter unbalanced data, we tried re-balancing the data

by a combination of oversampling (i.e., repeating) True links in

our training set and undersampling (i.e., leaving some out)

False positive links in our training set. Such re-balancing is

common in data mining and aims at having a distribution closer

to 50-50 of both kinds of links in the training sets. This resulted

in an increase in recall for the True link entries of about 5% but

at a cost of dropping precision by about 3%.

 At that point, we moved to step four of our approach, which

involves statistically investigating the data using R. We care-

fully studied the ChangeStyle input dataset through an explora-

tory analysis. ChangeStyle has 31 high-level artifacts (these are

requirements) and 17 low-level artifacts (test cases). There are

527 total candidate links, of which 33 are True links. The rele-

vance weight for the True links, computed by RETRO.NET

using VSM, is not always high. In fact, there is one True link

with a relevance weight of 0.0 and four with one below 0.01.

Our exploration of the ChangeStyle input dataset involved

applying feature selection in R to build a logistic regression

classifier. We used automatic stepwise variable reduction fol-

lowed by manual variable pruning to build the most parsimoni-

ous logistic regression model to predict true links. The model

that was learned on the entire data set of 527 candidate trace

2 http://read-able.com/

links, for which we knew the correct links, showed that the

trace relevance weight was by far the most important character-

istic of the artifacts. The next most important characteristics

were, for the low-level artifacts, the Flesch-Kincaid Reading

Ease (low_fkre), the Flesch-Kincaid Grade Level (low_fkgl),

the number of words (low_now), the number of complex words

(low_nocw) and, for the high-level artifacts, the Coleman-Liau

Index.

TABLE I. READABILITY MEASURES

Abbreviation Readability Measure Description/Indication

fkre Flesch Kincaid
Reading Ease

Ease with which a

text can be read,

higher means easier to
read

fkgl Flesch Kincaid

grade level

Grade level of a text,

higher means harder

to read

gfsc Gunning Fog Score Grade level of a text,

higher means harder
to read

smi smog index Estimates years of

education needed to

read text, higher
means harder to read

cli Coleman Liau Index Alternative way to

measure grade level

of a text, higher

means harder to read

ari Automated Reada-

bility Index

Alternative way to

measure grade level

of a text, higher
means harder to read

nos No. of sentences Complex text ele-

ments have many

sentences, higher
means harder to read

now No. of words Complex text ele-

ments have many

words, higher means
harder to read

nocw No. of complex

words

Complex words have

many syllables, high-

er means harder to
read

pocw Percent of complex
words

Complex words have

many syllables, high-

er means harder to

read

awps Average word per

sentence

Complex sentences

have many words,

higher means harder
to read

aspw Average syllables

per word

Complex words have

many syllables, high-

er means harder to
read

gl grade level Alternative way to

measure grade level

of a text, higher

means harder to read

Having established that we could obtain a sound logistic re-

gression model, we still faced the problem that there are far

fewer True links than False links, something that the rebalanc-

ing could only slightly deal with. To solve this problem, we

first divided the set of candidate links into a training set (1/3 to

1/5 of candidate links) and a test set (complement of the train-

ing). We then formulated the problem of learning a model on

the training set as the problem of finding, for a given logistic

regression structure, the subsets of links in the training set giv-

ing the best accuracy, measured as G-metric on the test set.

The G-metric or G-measure is the harmonic mean of recall and

specificity (i.e., the percentage of False links found).

We then implemented the link subset selection optimization

problem as a hill climbing approach with random restart. At

each move, the hill climbing attempts to improve the accuracy

(measured as G-metric) by removing a (randomly selected)

training datum, moving it into the test set, and (1) learning a

new logistic classifier and (2) evaluating the logistic classifier

on the test set. The logistic classifier is implemented with fixed

structure described above and a simple threshold of 0.5. Proba-

bilities above 0.5 are considered True links. At each step, the

search is guided only by the G-metric, although the search for

the best possible combination is performed on a pruned set of

candidate links: we discard all candidate links with a relevance

weight lower than 0.001, as these links seldom correspond to

correct links. When after a certain number of moves the solu-

tion is not improved, the Hill climbing with random restarts

saves the current solution and starts a new search from a new

initial random solution in order to avoid local optima.

We found that for the ChangeStyle input dataset, we could

classify links with a precision of up to 83% and a recall of up to

42% using a training set as small as nine True candidate links

(out of 33 correct links, 27%) and 136 False links (out of 503

false links). However, if we accepted a recall of 50% and a

precision of 40%, two True links and 27 False links suffice.

Thus, we conclude that, to get better performance and learn

the best possible logistic regression model, we must “discard”

artifacts in the trace dataset that increase noise (links with low

relevance weight) to avoid learning on links that are not really

representative of the actual true links in the data set. Next, we

discuss the ties between these results and traceability.

IV. INHERENT CHARACTERISTICS OF ARTIFACTS

This section examines the measures of interest in our model

to answer our questions and understand traceability.

To understand the artifacts’ traceability, we run several ex-

periments using the hill climbing search. We configured the hill

climbing with random restart in the following way. In each

experiment, the algorithm performs 50 restarts. Each search

starts from an initial solution made up by, at most, one third of

the trace links; the actual number is randomly chosen between

one and one third of the True and False links. At each step, for

a given solution, the algorithm attempts 20 times to improve

the solution moving one datum, randomly chosen, from train-

ing to test; if no improvement is found, the search is restarted

from a newly generated random solution. Thus each experi-

ment produces 50 pairs of training and test data sets, sets of

various sizes and with different trace link classification accura-

cy. We run 20 experiments and then collect and inspect the data

for an overall of 1000 set pairs.

Figure 1 (shown at the end of the paper to permit a full page

depiction) shows paired scatterplots of the variables included

in the obtained logistic models (relevance_weight, low_fkre,

low_fkgl, low_now, low_nocw, and high_cli). Each box

plots one variable against the other. The upper right box de-

picts relevance_weight against high_cli. The grey dots are the

False links, the red dots and green dots are True links. The

figure shows a special subset of found solutions: solutions

containing only one or two True links where the G-measure is

over 60. These are quite puzzling solutions as just a handful of

True candidate links (one or two green dots) performs better

(sometimes much better) than solutions containing many more

True links. In Fig. 1, true positive links never selected as part

of the training set are colored in red, green dots are those True

links that were retained as part of the training set. Surprisingly,

for these special cases, the selected true candidate links are

links that do not have the highest possible relevance weight.

However, they tend to have a high value of low_fkre: they

should be easy to understand. The algorithm seems to prefer

solutions with average values of high_cli and low_now (and

low_nocw), see lower right quadrant of Fig. 1.

It appears at first glance that relevance_weight, low_now,

and high_cli separate the two types of data (False and True

links). Further, it seems that a preliminary conclusion from the

plots for low_fkre is that for artifacts to be traceable, their fkre

values should be above 48.45, i.e., "easily understood by 15- to

21-year-old students."3 This is confirmed by data reported in

Table II. Table II reports the values for three “green” data

points of Fig. 1. It appears that the best way to predict a trace

link is to select true candidate links that do not have a high rel-

evance weight but a low_fkre of 48.9 or higher and avoid ex-

treme values of low_now or low_nocw.

Translating this observation into guidelines for artifacts’ au-

thors, increased fkre, i.e., reading ease, increases traceability.

Oddly, high relevance weight does not necessarily imply

traceability. A small or very high number of words in the

low-level artifacts decrease traceability, as expected. The

same guideline is true for complex words in the low-level arti-

facts. A moderately high reading level leads to good tracea-

bility, but if it is too high/low, traceability decreases. This

makes sense because a text written at, say, a 3rd grade-reading

level will likely use simple, common words and may trace to

everything while a text written at a post-graduate level may be

too complex and thus hard to trace.

There are many threats to the validity of our work; most no-

table at present are the external threats, as we only report on

one small dataset in one domain and for one project. Our work

is preliminary and we plan to evaluate other datasets in varied

domains. In addition, our ongoing work will include stringent

empirical validation of our ideas.

3

http://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Fl
esch_Reading_Ease

V. RELATED WORK

There was no prior work on traceability of artifacts, yet

maintainability and testability provide excellent analogies.

Maintainability is the “ease with which maintenance can be

performed” [11]. Welker defined a model for measuring main-

tainability of source code called the maintainability index (MI)

[12]. This model, built using regression analysis, combines

various static measures, such as McCabe’s cyclomatic com-

plexity [13] and Halstead’s software science measures [14] to

indicate how easy it will be to maintain code. Yu et al. [11]

discuss sources of data for measuring maintainability of open-

source projects, specifically data from defect tracking systems,

change logs, and source code. They also point out challenges

in trying to use such data to measure maintainability. Voas

described a dynamic method for estimating the testability of

source code (ease with which faults can be detected) using

propagation, infection, and execution [15]. Khan and Mustafa

identified a set of metrics for object-oriented code that can pre-

dict the testability of classes; they found that their model could

identify problem areas, thus improving the quality of the prod-

uct and decreasing the required testing effort [16].

 In related traceability work, Guo et al. proposed the notion

of a domain-specific traceability solution where they model the

high-level reasoning undertaken by a human analyst [17]. The

work features a rule set for extracting action units from the

artifacts being traced, a knowledge base of semantic concepts

for the domain, and link creation heuristics. The work is simi-

lar to ours in that it models the artifacts to be traced and seeks

to make avail of semantic concepts. It differs from our work in

that we model characteristics of the artifacts that we believe to

contribute to ease of tracing with an automated tool.

VI. CONCLUSIONS

This is initial and ongoing work, but it shows promise: few

correct examples may perform better than several poor exam-

ples. This work is a proof of concept that a few manually la-

beled true trace links (in the extreme case one or two) and a

moderate number of false trace links (few dozens) are enough

to obtain acceptable preliminary results (on about 500 links).

Our current answers to our research questions, based on just

one dataset, are:

 Can we learn anything interesting from applying machine

learning techniques to various traceability datasets? Can

we learn a model that can be applied to a different dataset

to predict a link? The early finding on this is yes, we can

learn interesting things and we can possibly predict links.

We have yet to apply our model to different datasets.

 Can we discover the attributes of a dataset (or an artifact

pair) that cause it to work well (or not) with automated

tracing methods? Yes, early results indicate (for one da-

taset) that relevance_weight, low_fkre, low_fkgl, low_now,

low_nocw, and high_cli are attributes that impact the

traceability of an artifact.

 Can we uncover interesting trends such that we can pre-

dict trace links accurately if a human user gives us some

level of “training” data? Yes, our latest results indicate

that we are able to achieve decent results (recall of 42%

TABLE II. THREE DATAPOINTS WITH G-MEASURE OVER 60

relevance_

weight

high_tot_

words

high_uniq_

words

link low_tot_

words

low_uniq_

words

low_

gl

low_

fkre

low_

fkgl

low_g

fsc

low_s

mi

low_cli

0.091701 13 11 yes 176 116 14 48.9 13.8 14.8 10.6 12.6

0.002842 7 7 yes 137 91 8 67 7.1 7.7 6.5 11.3

0.091037 12 12 yes 176 116 14 48.9 13.8 14.8 10.6 12.6

low_ari low_nos low_now low_nocw low_pocw low_awps high_

gl

high_

fkre

high_fkgl high_gfsc high_

smi

16.2 6 179 20 11.17 29.83 9 63.5 7.6 5.2 8.3

6.6 11 140 13 9.29 12.73 6 54.7 6.6 1.6 4.4

16.2 6 179 20 11.17 29.83 10 46.6 9.7 8.1 10.1

high_cli high_ari high_nos high_

now

high_

nocw

high_pocw high_

awps

high_noun_

count

high_verb_

count

low_noun_count low_verb_count

15.9 10.4 1 13 2 15.38 13 6 0 71 8

12.8 3.5 2 8 1 12.5 4 3 2 71 7

14.1 8.5 1 12 3 25 12 4 0 71 8

and precision of 83%) with nine links (27% of the true

links) and 136 false links provided by the human user, for

one dataset.

 Can we minimize the training data required? Possibly, we

found that with just two True links (6%) and 27 False links,

a recall of 50% and a precision of 40% can be achieved.

Future work will be focused on identifying those sets of

features leading to selection of the best possible representative

elements in a link dataset to build the most accurate and parsi-

monious model without the need to evaluate the model on the

test set.

ACKNOWLEDGMENT

We thank NASA and NSF for prior partial funding of ideas

presented here under grants NAG5-1173 and CCF-0811140.

REFERENCES

[1] O. Gotel and A. Finkelstein, “Extended Requirements

Traceability: Results of an Industrial Case Study,” in

Proceedings of the 3rd IEEE International Symposium on

Requirements Engineering (RE’97), 1997, p. 169.

[2] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,

“Recovering Traceability Links between Code and

Documentation,” IEEE Trans. Softw. Eng., vol. 28, no. 10, pp.

970–983, 2002.

[3] A. Marcus and J. Maletic, “Recovering Documentation-to-

Source Code Traceability Links using Latent Semantic

Indexing,” in Proceedings of the Twenty-Fifth International

Conference on Software Engineering, ICSE 2003, 2003, pp.

125–135.

[4] J. Cleland-Huang, C. K. Chang, G. Sethi, K. Javvaji, H. Hu, and

J. Xia, “Automating speculative queries through event-based

requirements traceability,” in Proceedings of the IEEE Joint

International Requirements Engineering Conference (RE ’02),

2002, pp. 289–296.

[5] J. H. Hayes, A. Dekhtyar, and J. Osborne, “Improving

Requirements Tracing via Information Retrieval,” in

International Conference on Requirements Engineering,

Monterey, California, 2003, pp. 151–161.

[6] Yadla, Suresh, Hayes, Jane Huffman, and Dekhtyar, Alex,

“Tracing requirements to defect reports: an application of

information retrieval techniques,” ISSE, vol. 1, no. 2, pp. 116–

124, 2005.

[7] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and

Systems Traceability. London: Springer London, 2012.

[8] J. H. Hayes, A. Dekhtyar, S. Sundaram, and S. Howard,

“Helping Analysts Trace Requirements: An Objective Look,” in

International Conference on Requirements Engineering

(RE’2004), 2004.

[9] J. Hayes, A. Dekhtyar, S. Sundaram, E. Holbrook, S. Vadlamudi,

and A. April, “REquirements TRacing On target (RETRO):

improving software maintenance through traceability recovery,”

Innov. Syst. Softw. Eng., vol. 3, no. 3, pp. 193–202, Sep. 2007.

[10] J. H. Hayes and J. Offutt, “Recognizing Authors: An

Examination of the Consistent Programmer Hypothesis,” Softw

Test Verif Reliab, vol. 20, no. 4, pp. 329–356, Dec. 2010.

[11] L. Yu, S. R. Schach, and K. Chen, “Measuring the

maintainability of open-source software,” in 2005 International

Symposium on Empirical Software Engineering, 2005, 2005, p.

7 pp.–.

[12] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development

and Application of an Automated Source Code Maintainability

Index,” J. Softw. Maint., vol. 9, no. 3, pp. 127–159, May 1997.

[13] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw.

Eng., vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[14] M. H. Halstead, Elements of Software Science. Elsevier, 1977.

[15] J. M. Voas, “PIE: A Dynamic Failure-Based Technique,” IEEE

Trans Softw Eng, vol. 18, no. 8, pp. 717–727, Aug. 1992.

[16] R. A. Khan and K. Mustafa, “Metric Based Testability Model

for Object Oriented Design (MTMOOD),” SIGSOFT Softw Eng

Notes, vol. 34, no. 2, pp. 1–6, Feb. 2009.

[17] J. Guo, N. Monaikul, C. Plepel, and J. Cleland-Huang, “Towards

an Intelligent Domain-specific Traceability Solution,” in

Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering, New York, NY, USA, 2014,

pp. 755–766.

Fig. 1. Scatterplot for ChangeStyle dataset

