
Fault-Based Analysis: How History Can Help Improve Performance

and Dependability Requirements for High Assurance Systems

Jane Huffman Hayes

Elizabeth Ashlee Holbrook

Inies Raphael C.M.

University of Kentucky Dept. of Computer Science

hayes@cs.uky.edu, {ashlee|irchem2}@uky.edu

David M. Pruett

Geocontrol Systems

Incorporated
david.m.pruett1@jsc.nasa.gov

Abstract

Performance and dependability requirements are

key to the development of high assurance systems.

Fault-based analysis has proven to be a useful tool

for detecting and preventing requirement faults

early in the software life cycle. By tailoring a

generic fault taxonomy, one is able to better

prevent past mistakes and develop requirements

specifications with fewer overall faults. Fewer

faults within the software specification, with

respect to performance and dependability

requirements, will result in high assurance systems

of improved quality.

1. Introduction

 One needs only look to the increasing
importance of computer systems in our society and
the increasingly trusted roles that they play to

understand how important it is to ensure that high
assurance systems are correctly built. For example,
power generation has largely become digital
(instrumentation and control systems for nuclear

power plants are becoming increasingly digital) as
well as aviation (autopilot and other important
systems of large, commercial aircraft are now
digital). Clearly we need these software systems to

be dependable. Performance also plays an
important role in many software systems (many
functions are time critical).
 In order to ensure that high assurance software

systems possess the necessary performance and
dependability qualities, it is essential that their
requirements are specified correctly. Though
performance and dependability are non-functional

requirements, they are still requirements and hence
can potentially be improved using methods and
techniques that have been proven to have general
applicability to the requirements domain. In this

paper, we argue that a process called fault-based
analysis can be applied to performance and
dependability requirements for high assurance
systems.
 The paper is organized as follows. Section 2
presents an overview of fault-based analysis.

Related work is discussed in Section 3. Our
position is outlined in Section 4 as well as some
preliminary results. Finally, conclusions and future

work round out the paper in Section 5.

2. Fault-based analysis

 “The IEEE standard definition of an error is a
mistake made by a developer. An error may lead to
one or more faults [13]. To understand Fault-
Based Analysis (FBA), a look at a related

technique, Fault-Based Testing (FBT), is in order.
Fault-based testing generates test data to
demonstrate the absence of a set of pre-specified
faults. There are numerous FBT techniques. These

use a list of potential faults to generate test cases,
generally for unit- and integration-level testing
[20,3]. Research has been performed in the area of
software safety fault identification [20, 6],
including research into numerous fault analysis
techniques such as Petri-net safety analysis [16,17],
Failure Mode, Effects, Criticality Analysis
(FMECA) [19], and criticality analysis [29].” [10]

Similar to FBT, FBA identifies static techniques,
such as traceability analysis, and specific activities
within those techniques that should be performed to
ensure that a set of pre-specified faults do not exist.

Fault-based analysis is risk-driven, and attempts to
select V&V techniques to apply in order to best
achieve a project’s goals. In performing FBA, one
targets the strongest fault class or classes [12]. A
more extensive survey of related work, such as
orthogonal defect classification [4] can be found in
[8].
 Fault-based analysis, as applied to requirement

faults, can help prevent and/or detect faults early in
the software lifecycle, resulting in significant cost
savings [1]. In earlier work by Hayes [8], a generic
fault taxonomy was selected as the basis for

requirements FBA, requirements faults were
examined, and a method for extending a taxonomy
was developed and implemented. Historical data
can be used to determine the fault types that are

most likely to be introduced and risk analysis can

Generic fault

taxonomy

NASA project
requirements
faults/problem reports

Class A fault
taxonomy (e.g.,
Manned Exploration

Manned Missions)

Class B fault
taxonomy (e.g.,
Aerospace, Earth
Science, Space
Science projects)

Class C fault
taxonomy (e.g.,
Biological/Physical
projects)

Class D fault taxonomy
(e.g., Other projects
which do not fall into

Class A, B, or C)

Class-project to extend a fault taxonomy

for a software project class

Project-process to extend a taxonomy for a

project

Fault taxonomy
for a specific
project

CI and problem
report
information

CI-process to identify fault distribution across

subsystems

Fault distribution

-- Data

-- Process

Figure 1: High level process for extending fault taxonomies.

be performed to determine the fault types that

would be most devastating if overlooked.
 We can identify techniques that help reduce the
risk of, prevent, and detect prevalent or targeted
fault types. These techniques are then applied as
part of the V&V (Verification and Validation)
and/or IV&V (Independent Verification and
Validation)effort [8]. To provide a requirements-
based fault analysis approach, an overall
methodology was defined [5]: (i) build a
requirement fault taxonomy and a process for
tailoring it; (ii) build a taxonomy of V&V
techniques and build a matrix of their validated

fault detection capabilities; and (iii) develop
guidance to V&V agents and software projects for
use of the fault-based analysis methodology and
assist in its adoption. Just as project quality

improves when one prioritizes requirements [7],
quality increases when a mechanism is in place to
prioritize fault countermeasures and choose the
most effective fault detection and prevention
methods.
 Note that we require defect reports related to
requirements. This is the starting point for the
FBA process. If starting a new release for an

existing system (writing requirements for the new

release), one looks at the historical trends of

requirements defect reports from the previous
releases. If beginning development of a new
product, one may look at the historical trends from
that organization on earlier products or from related
organizations (with personnel overlap, such as
management).

3. Tailoring of fault-based analysis

 Our position is that FBA can be applied to
improve dependability and performance
requirements. Improved performance and
dependability requirements will result in high

assurance systems of improved quality. The US
spends approximately $59.5 billion each year on
software errors, according to a 2002 Study by the
National Institute of Standards (NIST). Lack of

software requirements as well as incorrect
requirements contributes heavily to this problem

[15].

 We base our position on prior work with FBA,

as applied on various computer software
capabilities of the International Space Station [14],
a manned flight system and thus high assurance
[11].

 In developing FBA, we developed a process that
can be tailored or applied to: various levels of the

software architecture, to historical “slices” of time,
etc. Let us examine a few examples of such
“tailoring.” FBA can be applied at a generic level

to collections of related projects, or domains.
Given defect information for a collection of

projects, the FBA process is applied (as discussed
in Section 2) and the result is a tailored taxonomy

Table 1: Configuration item (CI) process for tailoring a taxonomy.

(fault frequency occurrence) that helps to
characterize the domain as a whole. For example,
we examined the fault profiles for a number of high
assurance NASA systems, applied the FBA

process, and created a tailored fault taxonomy for
NASA Class A systems (NASA’s term for high
assurance systems) [11]. Next, we wanted to apply
FBA to a specific project. We took the Class A

taxonomy, project specific information, and applied
our process. The result was a taxonomy tailored to
the International Space Station software systems.
If historical data is not available, due to the novelty

of an application area, one may rely on similar
projects or may begin the tailoring process on
subsequent maintenance phases of the project.
Information extracted from end-users as well as

testing reports may be used to benefit fault-based
analysis.

4. Position

 We are confident that our process can be applied
to focus on non-functional requirements such as
performance and dependability. To illustrate how
our process is applied, one can examine the process

used to generate a taxonomy and historical data for
the requirements of International Space Station
Computer Software Configuration Items (CSCI).
 Our process for tailoring a taxonomy is

presented in Table 1. Table 2 shows the project

categorization percentage data for the International
Space Station as a whole. By examining available
data and performing trend analysis, we are able to
tailor taxonomy to prioritize the particular fault

areas that have been historically significant. Table
3 shows our tailored taxonomy for the particular
configuration items we have examined [8].
 Once we have obtained the historical fault

profile, we meet with engineers to determine why
the trends have occurred. This begins with a
discussion that revisits the timeline of development
(possibly for multiple configuration items) and

encourages the engineers to think of reasons or
causes for the visible trends. One such recent
analysis for ISS uncovered several findings related
to requirement elicitation between requirements

engineers and “specialty engineers.” We provide
one such example here: “The engineers felt that
several of the prominent fault categories could be
explained by one phenomenon: the occurrence of

incomplete (category 1.1), omitted or missing (1.2),
incorrect (1.3), or ambiguous (1.4) requirements is
indicative of a lack of engineers, knowledgeable in
the thermal, power, environmental, etc. systems,

working on these particular requirements” [9].
 After discussions with project engineers and
examination of previous problem reports, we then
developed a common cause tree. A common cause

tree is similar to a fault analysis tree, and presents
root causes of requirement faults as well as actions

Entry Criteria Activities Exit Criteria

1. All inputs are available
2. NASA has authorized

use of project data

3. NASA has authorized
the taxonomy extension
project

1. Select project-specific requirement fault
taxonomy

2. Select a CI from the list of project CIs

3. Categorize the fault for the CI according to the
project-specific fault taxonomy

4. Determine the frequency of faults for the CI
5. Identify the crucial fault categories for the CI
6. Repeat Steps 2 through 5 for all other CIs

1. A CI-specific requirement
fault taxonomy has been
developed

Inputs Process Controls/Metrics Outputs

1. Project-specific fault
taxonomy

2. Requirement
faults/problem reports

for the CIs
3. CI-specific information

(goals priorities for all
CIs

Process Controls:
1. Maintenance of configuration control of

taxonomy
2. Maintenance and management of NASA CI

data by project
Metrics:
1. Person hours for effort
2. Number of CIs

3. Number of faults
4. Historic probability of occurrence
5. Fault exposure values

1. Frequency counts of faults
2. Crucial fault categories for

the CI
3. Prioritized fault list for the

CI

that may be taken to prevent or detect these faults.
In the common cause tree, mitigations and

corrective actions have been pre-defined to assist a
manager in taking measures to improve the
requirement specification processes. In the case of
ISS, three common causes are of note:
noncompliant process, lack of understanding, and
human error. Countermeasures were determined
for each common cause. For example, faults
caused by noncompliant processes may be

remedied through formal process certification,
effective question and answer processes, more
managerial involvement, and trained staff at each
certification level.

Table 2: ISS Project categorization

percentage data.

Table 3: Tailored taxonomy for the ISS CIs.

5. Conclusions and future work

 Our approach yields a number of benefits: a)
historical information on the types of problems or
faults is available; b) this can lead to “lessons
learned” that can help improve requirement
writing; c) the development of a common cause
tree helps identify remedial and proactive actions
that can be taken for short and long term
improvement; d) historical discussions with

engineers give insight into interactions of parallel
configuration item developments that may lead to
problems; and e) when performing trend analysis
on historical data, interaction between development

team members and the requirements specification
team allows the requirements specification team
members to gain further insight into areas where
faults have arisen in past projects. By discussing
past faults, requirements specification becomes a
learning process by which faults may be avoided.
 As we have tailored our process to many
different dimensions of the software lifecycle,

architecture, etc., we are confident that the process
can be tailored to functional and non-functional
requirements, specifically the non-functional
requirements of dependability and performance.

 In conclusion, we posit that fault-based analysis
approach can help improve the quality of
performance and dependability requirements for
high assurance systems. We have shown our
ability to tailor our approach to a number of
different aspects of a software system or project
and have thus demonstrated the ease of tailoring of
our approach to dependability and performance

requirements [11]. There may be some work
involved to realize this application. For example,
in order to apply FBA to performance and
dependability requirements, it will be necessary to

be able to identify such requirements. We have
had some success in building a classifier to
categorize requirement related defect reports
according to our taxonomy. We envision using

similar techniques to categorize textual
requirements that relate to performance or
dependability. Additionally, we plan to examine
our process to see if it should be modified in order

to tailor by requirement type at either a high level
(functional and non-functional requirements) or at
a lower level (performance, dependability, etc.).

6. Acknowledgments

 Our work is funded by NASA under grant
NNG04GA38G. Our thanks to Pete Cerna, Kenny
Todd, Mike Norris, Bill Gerstenmaier, Bill Panter,

Marcus Fisher, and the International Space Station
project. We thank Andrea Hunt, Tyler Mueller,
and Olga Dekhtyar for their assistance.

Major Fault % of ISS Faults by

Category
.1 Incompleteness 0.209

.2 Omitted/Missing 0.329

.3 Incorrect 0.239

.4 Ambiguous 0.061

.5 Infeasible 0.014

.6 Inconsistent 0.047

.7 Over-specification 0.063

.8 Not Traceable 0.014

.9 [Reserved for future] ---

.10 Non-Verifiable 0.005

.11 Misplaced 0.007

.12 Intentional Deviation 0.007

.13 Redundant/Duplicate 0.005

Major Fault % of CI Faults by

Category
.1 Incompleteness 0.233

.2 Omitted/Missing 0.108

.3 Incorrect 0.301

.4 Ambiguous 0.130

.5 [Reserved for future] ---

.6 Inconsistent 0.130

.7 Over-specification 0.011

.8 Not Traceable 0.023

.9 [Reserved for future] ---

.10 [Reserved for future] ---

.11 Misplaced 0.011

.12 Intentional Deviation 0.023

.13 Redundant/Duplicate 0.023

7. References

[1] Boehm, B. Software Engineering Economics.

Prentice-Hall, Inc., 1981.

[2] Cha, S. S., Leveson, N. G., and Shimeall, T. J.
1988. Safety Verification in Murphy Using

Fault Tree Analysis. In Proc. of the 10th
International Conference on Software
Engineering (Singapore, April 11 - 15, 1988).
International Conference on Software

Engineering. IEEE Computer Society Press,

Los Alamitos, CA, 377-386.

[3] Chen, T. and Lau, M., “Test Suite Reduction
and Fault Detecting Effectiveness: An

Empirical Evaluation,” Lecture Notes in
Computer Science, Volume 2043, Springer-
Verlag, pp. 253 – 265.

[4] Chillarege, R., Bhandafi, I., Chaar, J.,
Halliday, M., Moebus, D., Ray, B., and Wong,
M. "Orthogonal Defect Classification A
Concept for In-Process Measurements," 1EEE

TSE, vol. 18, no. 11 (Nov. 1992), pp. 943-956.

[5] Davis, A. Software Requirements: Analysis
and Specification. Prentice-Hall, Inc., New

York, 1990.

[6] Firesmith, D.G, “Engineering Safety-Related

Requirements for Software-Intensive
Systems,” tutorial H6 at the 27th International
Conference on Software Engineering in Saint

Louis, Missouri, 15-21 May 2005.

[7] Firesmith, D.G, “Prioritizing Requirements,”
in Journal of Object Technology, vol. 3, no. 8,
September - October 2004, pp. 35-47.
http://www.jot.fm/issues/issue_2004_09/colum

n4.

[8] Hayes, J.H. “Building a Requirement Fault
Taxonomy: Experiences from a NASA
Verification and Validation Research Project,”

Proceedings of the International Symposium
on Software Reliability Engineering, ISSRE
2003, pp. 49 – 59, Denver, CO, November

2003.

[9] Hayes, J.H., Holbrook, A., UKY and Science
Applications International Cooperation. “Final
Report for Fault-Based Analysis: Improving
Independent Verification and Validation (IV &

V) through Requirements Risk Reduction.”

UK-05005. 30 September 2005.

[10] Hayes, J.H, UKY and Science Applications
International Cooperation. “Final Report for

Fault-Based Analysis: Improving Independent
Verification and Validation (IV & V) through

Requirements Risk Reduction.” UK-04001.
31 October 2004.

[11] Hayes, J.H, Raphael, I.C.M., Pruett, D.,
Holbrook, A. A Case History of International

Space Station Requirement Faults. October

2005. (TR 634-05).

[12] Kuhn, D.R. Fault classes and error detection
capability of specification-based testing. ACM
Transactions on Software Engineering and
Methodology (TOSEM) Volume 8 , Issue 4

 (October 1999).

[13] IEEE Standard Glossary of Software
Engineering Terminology. IEEE Std. 610.12-

1990, 1990.

[14] National Aeronautics and Space
Administration International Space Station.

http://spaceflight.nasa.gov/station/.

[15] Laplante, P.A. Software Engineering for Image

Processing Systems. CRC Press, New York:

2003.

[16] Leveson, N., and Stolzy, J., Safety Analysis
Using Petri Nets, IEEE Transactions on

Software Engineering, SE-13(3), 1987.

[17] Leszak, M, Perry, D.E., and Stoll, D. A Case
Study in Root Cause Defect Analysis,
Proceedings of the 22nd International

Conference on Software Engineering (ICSE),
Limerick, Ireland, 2000, pp.428-437.

[18] Lutz, R. "Analyzing Software Requirements
Errors in Safety-Critical, Embedded Systems",

Proc. RE'93: First 1EEE International
Symposium on Requirements Engineering,

January 1993, 126-133.

[19] MIL-STD-1629A, Notice 2, Military Standard,

Procedures for Performing a Failure Modes
Effects and Criticality Analysis, Department of
Defense, Washington, D.C., November 28,

1984.

[20] MIL-STD-2167A, Military Standard, Defense
System Software Development, Department of
Defense, Washington, D.C., February 29,

1988.

[21] Mojdehbakhsh, Ramin, “Software Lifecycle
and Analysis Techniques for Safety-Critical
Computer-Controlled Systems,” Dissertation,

George Mason University, 1994.

[22] Morell, Larry, “Theoretical Insights into Fault-
based Testing,” Proceedings of the Second
Workshop on Software Testing, Verification,
and Analysis 1998, 19 – 21 July 1998, pp. 45 –

62.

[23] Munson, J.C., Nikora, A.P. Toward a
quantifiable definition of software faults. 13th
International Symposium on Software

Reliability Engineering, 2002, p. 388 –395.

[24] Offutt, J. and Hayes, J. H. "A Semantic Model
of Program Faults," In Proc. of the
International Symposium on Software Testing

and Analysis, pages 195-200, ACM, San

Diego, California, January 1996.

[25] Rothermel, G., Harrold, M.J., Analyzing
Regression Test Selection Techniques. IEEE

Transactions on Software Engineering, 22(8),

Aug. 1996.

[26] von Mayrhauser, A., J. Wang, M.C. Ohlsson
and C. Wohlin, Deriving a Fault Architecture

from Defect History, In Proc. of the
International Symposium on Software
Reliability Engineering, ISSRE99, pp. 295-
303, November 1999, Boca Raton, Florida,

USA.

[27] Wallace, D., and Fujii, R., Software
Verification and Validation: An Overview,

IEEE Software, Volume 6, No. 3, May 1989.

