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Abstract 

 
Performance and dependability requirements are 

key to the development of high assurance systems.  

Fault-based analysis has proven to be a useful tool 

for detecting and preventing requirement faults 

early in the software life cycle.  By tailoring a 

generic fault taxonomy, one is able to better 

prevent past mistakes and develop requirements 

specifications with fewer overall faults.  Fewer 

faults within the software specification, with 

respect to performance and dependability 

requirements, will result in high assurance systems 

of improved quality. 

 

1.  Introduction 
 
     One needs only look to the increasing 
importance of computer systems in our society and 
the increasingly trusted roles that they play to 

understand how important it is to ensure that high 
assurance systems are correctly built.  For example, 
power generation has largely become digital 
(instrumentation and control systems for nuclear 

power plants are becoming increasingly digital) as 
well as aviation (autopilot and other important 
systems of large, commercial aircraft are now 
digital).  Clearly we need these software systems to 

be dependable.  Performance also plays an 
important role in many software systems (many 
functions are time critical). 
     In order to ensure that high assurance software 

systems possess the necessary performance and 
dependability qualities, it is essential that their 
requirements are specified correctly.  Though 
performance and dependability are non-functional 

requirements, they are still requirements and hence 
can potentially be improved using methods and 
techniques that have been proven to have general 
applicability to the requirements domain.  In this 

paper, we argue that a process called fault-based 
analysis can be applied to performance and 
dependability requirements for high assurance 
systems. 
     The paper is organized as follows.  Section 2 
presents an overview of fault-based analysis.  

Related work is discussed in Section 3.  Our 
position is outlined in Section 4 as well as some 
preliminary results.  Finally, conclusions and future 

work round out the paper in Section 5. 
 

2.  Fault-based analysis 
 

    “The IEEE standard definition of an error is a 
mistake made by a developer.  An error may lead to 
one or more faults [13].  To understand Fault-
Based Analysis (FBA), a look at a related 

technique, Fault-Based Testing (FBT), is in order.  
Fault-based testing generates test data to 
demonstrate the absence of a set of pre-specified 
faults. There are numerous FBT techniques.  These 

use a list of potential faults to generate test cases, 
generally for unit- and integration-level testing 
[20,3].  Research has been performed in the area of 
software safety fault identification [20, 6], 
including research into numerous fault analysis 
techniques such as Petri-net safety analysis [16,17], 
Failure Mode, Effects, Criticality Analysis 
(FMECA) [19], and criticality analysis [29].” [10] 

Similar to FBT, FBA identifies static techniques, 
such as traceability analysis, and specific activities 
within those techniques that should be performed to 
ensure that a set of pre-specified faults do not exist.  

Fault-based analysis is risk-driven, and attempts to 
select V&V techniques to apply in order to best 
achieve a project’s goals.  In performing FBA, one 
targets the strongest fault class or classes [12].  A 
more extensive survey of related work, such as 
orthogonal defect classification [4] can be found in 
[8]. 
   Fault-based analysis, as applied to requirement 

faults, can help prevent and/or detect faults early in 
the software lifecycle, resulting in significant cost 
savings [1].  In earlier work by Hayes [8], a generic 
fault taxonomy was selected as the basis for 

requirements FBA, requirements faults were 
examined, and a method for extending a taxonomy 
was developed and implemented.  Historical data 
can be used to determine the fault types that are 

most likely to be introduced and risk analysis can 
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Figure 1:  High level process for extending fault taxonomies. 

 
be performed to determine the fault types that 

would be most devastating if overlooked.   
     We can identify techniques that help reduce the 
risk of, prevent, and detect prevalent or targeted 
fault types.   These techniques are then applied as 
part of the V&V (Verification and Validation) 
and/or IV&V (Independent Verification and 
Validation)effort [8].  To provide a requirements-
based fault analysis approach, an overall 
methodology was defined [5]: (i) build a 
requirement fault taxonomy and a process for 
tailoring it; (ii) build a taxonomy of V&V 
techniques and build a matrix of their validated 

fault detection capabilities; and (iii) develop 
guidance to V&V agents and software projects for 
use of the fault-based analysis methodology and 
assist in its adoption.  Just as project quality 

improves when one prioritizes requirements [7], 
quality increases when a mechanism is in place to 
prioritize fault countermeasures and choose the 
most effective fault detection and prevention 
methods. 
   Note that we require defect reports related to 
requirements.  This is the starting point for the 
FBA process.  If starting a new release for an 

existing system (writing requirements for the new 

release), one looks at the historical trends of 

requirements defect reports from the previous 
releases.  If beginning development of a new 
product, one may look at the historical trends from 
that organization on earlier products or from related 
organizations (with personnel overlap, such as 
management). 
 

3.  Tailoring of fault-based analysis 
 

     Our position is that FBA can be applied to 
improve dependability and performance 
requirements. Improved performance and 
dependability requirements will result in high 

assurance systems of improved quality.  The US 
spends approximately $59.5 billion each year on   
software errors, according to a 2002 Study by the 
National Institute of Standards (NIST).  Lack of 

software requirements as well as incorrect 
requirements contributes heavily to this problem  

[15]. 

     We base our position on prior work with FBA, 

as applied on various computer software 
capabilities of the International Space Station [14], 
a manned flight system and thus high assurance 
[11].   



     In developing FBA, we developed a process that 
can be tailored or applied to:  various levels of the 

software architecture, to historical “slices” of time, 
etc. Let us examine a few examples of such 
“tailoring.”  FBA can be applied at a generic level 

to collections of related projects, or domains.  
Given defect information for a collection of 

projects, the FBA process is applied (as discussed 
in Section 2) and the result is a tailored taxonomy  

 

Table 1:  Configuration item (CI) process for tailoring a taxonomy. 

 
 
(fault frequency occurrence) that helps to 
characterize the domain as a whole.  For example, 
we examined the fault profiles for a number of high 
assurance NASA systems, applied the FBA 

process, and created a tailored fault taxonomy for 
NASA Class A systems (NASA’s term for high 
assurance systems) [11].  Next, we wanted to apply 
FBA to a specific project.  We took the Class A 

taxonomy, project specific information, and applied 
our process.  The result was a taxonomy tailored to 
the International Space Station software systems.   
If historical data is not available, due to the novelty 

of an application area, one may rely on similar 
projects or may begin the tailoring process on 
subsequent maintenance phases of the project.  
Information extracted from end-users as well as 

testing reports may be used to benefit fault-based 
analysis.   
 

4.  Position  
 

     We are confident that our process can be applied 
to focus on non-functional requirements such as 
performance and dependability.  To illustrate how 
our process is applied, one can examine the process 

used to generate a taxonomy and historical data for 
the requirements of International Space Station 
Computer Software Configuration Items (CSCI).   
     Our process for tailoring a taxonomy is 

presented in Table 1.  Table 2 shows the project 

categorization percentage data for the International 
Space Station as a whole.  By examining available 
data and performing trend analysis, we are able to 
tailor taxonomy to prioritize the particular fault 

areas that have been historically significant.  Table 
3 shows our tailored taxonomy for the particular 
configuration items we have examined [8].   
     Once we have obtained the historical fault 

profile, we meet with engineers to determine why 
the trends have occurred.  This begins with a 
discussion that revisits the timeline of development 
(possibly for multiple configuration items) and 

encourages the engineers to think of reasons or 
causes for the visible trends.  One such recent 
analysis for ISS uncovered several findings related 
to requirement elicitation between requirements 

engineers and “specialty engineers.”  We provide 
one such example here:  “The engineers felt that 
several of the prominent fault categories could be 
explained by one phenomenon:  the occurrence of 

incomplete (category 1.1), omitted or missing (1.2), 
incorrect (1.3), or ambiguous (1.4) requirements is 
indicative of a lack of engineers, knowledgeable in 
the thermal, power, environmental, etc. systems, 

working on these particular requirements” [9].   
      After discussions with project engineers and 
examination of previous problem reports, we then 
developed a common cause tree.  A common cause 

tree is similar to a fault analysis tree, and presents 
root causes of requirement faults as well as actions 

Entry Criteria Activities Exit Criteria 

1. All inputs are available 
2. NASA has authorized 

use of project data 

3. NASA has authorized 
the taxonomy extension 
project 

1. Select project-specific requirement fault 
taxonomy 

2. Select a CI from the list of project CIs 

3. Categorize the fault for the CI according to the 
project-specific fault taxonomy 

4. Determine the frequency of faults for the CI 
5. Identify the crucial fault categories for the CI 
6. Repeat Steps 2 through 5 for all other CIs 

1.  A CI-specific requirement 
fault taxonomy has been 
developed 

Inputs Process Controls/Metrics Outputs 

1. Project-specific fault 
taxonomy 

2. Requirement 
faults/problem reports 

for the CIs 
3. CI-specific information 

(goals priorities for all 
CIs 

Process Controls: 
1. Maintenance of configuration control of 

taxonomy 
2. Maintenance and management of NASA CI 

data by project 
Metrics: 
1. Person hours for effort 
2. Number of CIs 

3. Number of faults 
4. Historic probability of occurrence 
5. Fault exposure values 

1. Frequency counts of faults 
2. Crucial fault categories for 

the CI 
3. Prioritized fault list for the 

CI 



that may be taken to prevent or detect these faults.  
In the common cause tree, mitigations and 

corrective actions have been pre-defined to assist a 
manager in taking measures to improve the 
requirement specification processes.  In the case of 
ISS, three common causes are of note: 
noncompliant process, lack of understanding, and 
human error.  Countermeasures were determined 
for each common cause.  For example, faults 
caused by noncompliant processes may be 

remedied through formal process certification, 
effective question and answer processes, more 
managerial involvement, and trained staff at each 
certification level.   

 

 

 
Table 2:  ISS Project categorization 

percentage data. 

 
Table 3:  Tailored taxonomy for the ISS CIs. 

 

5.  Conclusions and future work 
 

     Our approach yields a number of benefits:  a) 
historical information on the types of problems or 
faults is available; b) this can lead to “lessons 
learned” that can help improve requirement 
writing; c) the development of a common cause 
tree helps identify remedial and proactive actions 
that can be taken for short and long term 
improvement; d) historical discussions with 

engineers give insight into interactions of parallel 
configuration item developments that may lead to 
problems; and e) when performing trend analysis 
on historical data, interaction between development 

team members and the requirements specification 
team allows the requirements specification team 
members to gain further insight into areas where 
faults have arisen in past projects.  By discussing 
past faults, requirements specification becomes a 
learning process by which faults may be avoided.  
     As we have tailored our process to many 
different dimensions of the software lifecycle, 

architecture, etc., we are confident that the process 
can be tailored to functional and non-functional 
requirements, specifically the non-functional 
requirements of dependability and performance. 

     In conclusion, we posit that fault-based analysis 
approach can help improve the quality of 
performance and dependability requirements for 
high assurance systems.  We have shown our 
ability to tailor our approach to a number of 
different aspects of a software system or project 
and have thus demonstrated the ease of tailoring of 
our approach to dependability and performance 

requirements [11]. There may be some work 
involved to realize this application.  For example, 
in order to apply FBA to performance and 
dependability requirements, it will be necessary to 

be able to identify such requirements.  We have 
had some success in building a classifier to 
categorize requirement related defect reports 
according to our taxonomy.  We envision using 

similar techniques to categorize textual 
requirements that relate to performance or 
dependability.  Additionally, we plan to examine 
our process to see if it should be modified in order 

to tailor by requirement type at either a high level 
(functional and non-functional requirements) or at 
a lower level (performance, dependability, etc.). 
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Major Fault % of ISS Faults by 

Category 
.1 Incompleteness 0.209 

.2 Omitted/Missing 0.329 

.3 Incorrect 0.239 

.4 Ambiguous 0.061 

.5 Infeasible 0.014 

.6 Inconsistent 0.047 

.7 Over-specification 0.063 

.8 Not Traceable 0.014 

.9 [Reserved for future] --- 

.10 Non-Verifiable 0.005 

.11 Misplaced 0.007 

.12 Intentional Deviation 0.007 

.13 Redundant/Duplicate 0.005 

Major Fault % of CI Faults by 

Category 
.1 Incompleteness 0.233 

.2 Omitted/Missing 0.108 

.3 Incorrect 0.301 

.4 Ambiguous 0.130 

.5 [Reserved for future] --- 

.6 Inconsistent 0.130 

.7 Over-specification 0.011 

.8 Not Traceable 0.023 

.9 [Reserved for future] --- 

.10 [Reserved for future] --- 

.11 Misplaced 0.011 

.12 Intentional Deviation 0.023 

.13 Redundant/Duplicate 0.023 
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