
1

A Comparison of Stemming Techniques in Tracing

David Farrar, Jane Huffman Hayes
Computer Science Department

University of Kentucky
Lexington, Kentucky, USA

david.farrar@uky.edu, hayes@cs.uky.edu

Abstract – We examine the effects of stemming on the tracing
of software engineering artifacts. We compare two common
stemming algorithms to each other as well as to a baseline of no
stemming. We evaluate the algorithms on eight tracing datasets.
We run the experiment using the TraceLab experimental
framework to allow for ease of repeatability and knowledge
sharing among the tracing community. We compare the
algorithms on precision at recall levels of [0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0], as well as on mean average precision
values. The experiment indicated that neither the Porter
stemmer nor the Krovetz stemmer outperformed the other on
all datasets tested.

Keywords – traceability, stemming, empirical research

I. INTRODUCTION
Requirements tracing, also called traceability, is an

ongoing area of research in software engineering that affects
many different industries. An oft-used definition of
traceability is “the ability to describe and follow the life of a
requirement in both the forwards and backwards direction
[1].” Tracing is useful in many tasks in software engineering,
and for many artifacts beyond just requirements. Tracing is
beneficial in the verification and validation (V&V) and
independent verification and validation (IV&V) processes
[2]. Tracing has also shown its usefulness in performing
change analysis, especially in the case of large projects.

There has been ongoing work to formulate the tracing
problem as an information retrieval (IR) task [2]–[4]. By
formulating the tracing activities as an IR problem, we can
leverage the extensive research and knowledge acquired over
the years by that community. This approach showed
significant gains over prior techniques in terms of the
precision and recall.

Stemming has become a common part of the IR process
when attempting to correlate a query to documents in a
document collection. The process of stemming reduces
similar words to their morphological root or “stem.” This
reduction allows for simplified matching between similar
words. The Porter stemmer [5] appears to have become the
most prevalent stemming technique applied in information
retrieval.

This study focuses on how diverse stemming techniques
influence the performance of information retrieval applied to
requirements tracing. We compare two stemming
techniques, Porter [5] and Krovetz [6], against each other and
against a baseline of no stemming. The study attempts to
determine if the standard suffix stemming approach of the

Porter stemmer outperforms the morphologically focused
Krovetz stemmer in the domain of requirements tracing. The
experiment was undertaken using the TraceLab workbench
[7], aimed to assist in the development of tracing experiments
and in the transfer of tools for research reproduction and
further innovation. We leveraged an existing TraceLab
experimental package for this experiment and existing
TraceLab components were used where possible.

The experiment showed that for three of the eight
datasets, the tracing using no stemming outperformed either
stemming technique. On two of the datasets, the Krovetz
stemmer outperformed the other two methods. On the
remaining three datasets, the Porter stemmer outperformed
the other techniques.

We organize the paper as follows: Section II discusses
related work and helps pertinent background concepts.
Section III discusses the experimental design and the
execution of the experiment. Section IV analyzes the data
gathered from the experiment. Section V presents the
conclusions and future work.

II. RELATED WORK
This section provides information on work related to

tracing, IR, and stemming.

A. Tracing
Requirements tracing has been a focus of interest and

research for decades. Pierce [8] is commonly referenced in
regards to historical examples of the development of
traceability tools. Pierce developed “The Requirements
Tracing Tool” to assist with V&V and change analysis by
tracing requirements throughout the phases of software
development. The tool was initially used on a naval undersea
sensor system, and was then repurposed to support the Cruise
Missile Mission Planning Project. Pierce’s tool focused on
the construction of a database that leveraged keywords from
the requirements.

More recently, a variety of approaches to the
requirements tracing problem have been applied, including
keyword detection and matching [9], reference models [10],
and information retrieval [2], [3], [11]. As discussed above,
this work is targeting the enhancement of requirements
tracing using information retrieval techniques. The IR
approach is largely bring used for performing tracing after-
the-fact, as opposed to the upfront construction of
requirements tracing artifacts.

https://paperpile.com/c/qSIklK/VYaw
https://paperpile.com/c/qSIklK/BT3V+VYaw+ye8j
https://paperpile.com/c/qSIklK/WX5x
https://paperpile.com/c/qSIklK/ZlOE
https://paperpile.com/c/qSIklK/Ua9b
https://paperpile.com/c/qSIklK/NPve
https://paperpile.com/c/qSIklK/VIli
https://paperpile.com/c/qSIklK/Y8fH
https://paperpile.com/c/qSIklK/BT3V+VYaw+R0Ur

2

B. Information Retrieval
Information retrieval attempts to identify relevant

information from a large dataset generally composed of
natural language text. An IR problem is formulated such that
it is composed of a document collection and a query. The
document collection is a large dataset, or a representation of
the dataset, that a user wishes to query for relevant data. The
query is a representation of the information that the user
desires to locate in the document collection. Sanderson and
Croft [12] provide a history of information retrieval
beginning with librarianship, progressing through
computerization, and finishing with descriptions of
techniques used at the time of its publishing in 2012. The
paper discusses topics such as the move towards ranked
retrieval and the introduction of relevance feedback.
Sanderson and Croft also describe the important concept of
term weighting schemes such as term frequency-inverse
document frequency (tf-idf).

C. Stemming
Stemming, also referred to as suffixing, is a process of

reducing words to their morphological root or word stem.
The word stem may or may not be a “real” word, depending
upon the stemming approach used. The purpose of word
stemming in IR is to conflate words (combine into one) with
the same stems, assuming that they have like meanings. The
stemming technique may be as simple as removing
pluralization suffixes from words (such as s or es), or more
complicated approaches that attempt to maintain meanings
and incorporate dictionaries.

Lovins [13] developed one of the earliest documented
stemming algorithms in 1968. The Lovins stemming
algorithm focused on longest match stemming for the English
language. Martin Porter developed the Porter stemming
algorithm [5] in 1980. The Porter stemming algorithm
focuses on suffix removal to assist in the conflation of words.

In 1993, Robert Krovetz [6] described his work in
determining if there is benefit to using word morphology in
the stemming process. Krovetz attempted to maintain the
meaning of words throughout the stemming process to avoid
the over-stemming problem associated with strong stemmers,
such as the Porter stemmer, which can cause faulty conflation
of words. Krovetz incorporated a suffixing process that
focused on repetitive minimal suffixing alongside a machine-
readable dictionary. Throughout the repetitive suffixing
steps, the results are checked against a dictionary of
commonly mis-stemmed words. If a word is found in the
dictionary, it is either stemmed to a known root or instructed
to stop any further stemming. Krovetz’s work led to the
creation of what later became known as the Krovetz stemmer.
The Krovetz stemmer is considered a lightweight stemmer,
in that it is not as susceptible to over-stemming, but may
suffer from under-stemming of words.

Fig. 2. Precision-Recall curve for CCHIT.

III. STUDY
The goal of this experiment is to determine if there is a

difference in the performance of a tracing experiment when
the stemming technique is varied. We chose the Porter and
Krovetz stemming techniques for comparison as they are
prevalent stemming techniques use in information retrieval.
We evaluate the two stemming techniques against a baseline
where no stemming is performed in the requirements tracing
process.

A. Analysis Method
The standard metrics for evaluating information retrieval

techniques of precision, recall, and mean average precision
are used to compare the stemming techniques.

Precision indicates the quality of the links retrieved in the
information retrieval process. Precision is a measure in the
range of 0 to 1, calculated by:

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
|# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|

|# 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿| .

Recall indicates the quality of the links returned on a scale
of 0 to 1. Recall indicates the percentage of the total number
of true links returned out of the total

Fig. 3. Precision-Recall curve for CM1.

number of true links and is calculated by:

https://paperpile.com/c/qSIklK/NPRT
https://paperpile.com/c/qSIklK/GvSF
https://paperpile.com/c/qSIklK/WX5x

3

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
|# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|

|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 # 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿| .

Another method of evaluating information retrieval
techniques is the mean average precision (MAP), which is
popular among the TREC IR community [14]. MAP is
preferred in many cases, as it gives a clearer indication of
where on the list of retrieved links the correct links are
located. A higher MAP score indicates that more of the true
links returned are near the beginning of the list of links. MAP
is calculated on a scale of 0 to 1 by:

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)

|# 𝑜𝑜𝑜𝑜 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞| .

The MAP metric is the primary evaluation criteria, as it
provides an indication of the precision across the recall
levels. As this experiment does not focus on the quality of a
specific recall value, or number of links, MAP provides a
useful point of comparison between stemming techniques.

B. Hypotheses
Null Hypothesis (H0): There will be no difference

between the precision (P), recall (R), and mean average
precision (MAP) when different stemming techniques are
incorporated into the tracing process. The stemming
techniques compared will be no stemming (SN), Porter
stemming (SP), and the Krovetz stemmer (SK).

Null Hypothesis

1. H0: MAPSN = MAPSP = MAPSK

Alternate Hypothesis:

1. MAPSN > MAPSP > MAPSK

2. MAPSN > MAPSK > MAPSP

Fig. 4. Precision-Recall curve for GANTT.

3. MAPSK > MAPSN > MAPSP

4. MAPSK > MAPSN > MAPSP

5. MAPSK > MAPSP > MAPSN

6. MApSP > MAPSK > MAPSN

7. MAPSP > MAPSN > MAPSK

The independent variable for this experiment is the

stemming technique used in processing the source and target
tracing artifacts. The stemming techniques studied are:

1. No Stemming (SN)

2. Porter Stemmer (SP)

3. KStem/Krovitz Stemmer (SK)

The dependent variables evaluated are precision, recall,
and MAP. The tracing process is static, excluding the
varying of the stemming technique.

C. Datasets
We evaluate the stemming techniques on several existing

requirements tracing datasets. The datasets are available at
www.coest.org [15], with the addition of the Pine dataset
previously used in tracing studies at the University of
Kentucky [16]. The datasets vary in both size and application
domain.

The datasets include:

1. CCHIT [17] - A project from the healthcare domain
consisting of 116 World Vista requirements as source
artifacts, 1064 CCHIT healthcare regulatory codes as
target artifacts, and 587 true links.

2. CM-1 [2] - A NASA Instrument project consisting of
235 requirements as source artifacts, 220 design
elements as target artifacts, and 361 true links.

3. GANTT [18] - A software project to generate Gantt
charts consisting of 17 high level requirements as source
artifacts, 69

Fig. 5. Precision-Recall curve for ITrust.

low level requirements as target, and 68 true links.

4. ITrust [19] - Another healthcare related project
consisting of 124 use cases as source artifacts, 367 java
source files as target artifacts, and 400 true links.

5. Pine [16], [20] - An email program consisting of 49
requirements as source artifacts, 133 test cases as target
artifacts, and 247 true links.

6. SMOS [21] - A School Monitoring software project
consisting of 67 use cases as source artifacts, 100 code
modules as target artifacts, and 1044 true links.

7. WARC Functional Requirements Specifications (FRS)

https://paperpile.com/c/qSIklK/w1AK
https://paperpile.com/c/qSIklK/9oNj
https://paperpile.com/c/qSIklK/4W06
https://paperpile.com/c/qSIklK/KJso
https://paperpile.com/c/qSIklK/VYaw
https://paperpile.com/c/qSIklK/JpVj
https://paperpile.com/c/qSIklK/BT4X
https://paperpile.com/c/qSIklK/AyAc+4W06
https://paperpile.com/c/qSIklK/rxw7

4

to System Requirements Specifications (SRS) [22], [23]
- A web archive tool consisting of 42 source artifacts , 89
target artifacts, and 78 true links.

8. WARC Non Functional Requirements (NFR) to
Software Requirements Specifications (SRS) [22], [23] -
Web Archive Tool: 21 source artifacts, 89 target
artifacts, and 58 true links.

D. Setup
The experiment was designed to use the TraceLab

framework [7], [24], [15], developed to facilitate tracing
experimentation. The TraceLab community has created a
number of modular components that can be leveraged to
quickly setup and reproduce prior tracing experiments.
TraceLab comes with the majority of the components
necessary for this experiment. Existing components used in
this experiment include several tracing artifact import
components, a Porter stemmer component, a stopword
removal component, a vector space model using tf-idf tracing
component, and an export component.

Fig. 6. Precision-Recall curve for Pine.

The existing TraceLab component contained a Porter
stemming component, but did not contain a stemming
component that incorporated the Krovetz stemmer. We
created a Krovetz stemming component that used the Krovetz
Stemmer Version 3.4 library developed by the Lemur Project
[25], part of their Indri Toolkit. The Toolkit has been used
and validated in a number of information retrieval research
projects. We developed the component to use the same inputs
and outputs as the Porter stemmer component. This allows
the stemming algorithms to be swapped easily without any
changes to the TraceLab experiments.

The included TraceLab components did not provide a
metrics generation component that produced the metrics in a
format that could be saved to disk. The source code for a
series of components by the SEMERU group at the College
of William and Mary was included in the GitHub repository
for TraceLab [24]. The SEMERU components are covered
by the GNU version 3 license and thus freely available for
modification. The “SEMERU - OverallMetrics
Computation” and the “SEMERU - Metrics Per Source
Artifact” components were modified to store the computed
tracing metrics as a TLSimilarityMatrix collection format

that could then be saved to disk using an existing component.
This allowed for the existing metrics calculations to be
unaltered and allow for the data to be stored for review and
processing.

The TraceLab experiment used for the evaluation of the
stemming algorithms is shown in Fig. 1 (see Appendix,
package available at
selab.netlab.uky.edu/homepage/pages/TraceLabCatalogue/T
raceLabCatalogue/Stemming_TraceLab_Project.7z). Each
block in the experiment is a TraceLab component. The
arrows between the components set constraints that force a

Fig. 7. Precision-Recall curve for SMOS.

component to wait on a prior component to complete. All
experiments begin at the start block and end at the end block.

In this experiment, the initial components load the source,
target, stopword list, and oracle/answer/gold standard matrix
from file. Next, the source and target artifacts are processed
by the cleanup preprocessor, which converts all letters to
lowercase and removes all non-alphanumeric letters.
Stopwords, from the Fox stopword list [26], are removed
from the source and target artifacts. This removes the most
common English language words from the artifacts, to avoid
matches on frequent words such as “the” or “a.” At this point,
the source and target artifacts are processed by the TF-IDF
VSM Tracer component to generate a similarity matrix using
the cosine between the inputs. This produces the non-
stemmed similarity matrix which is processed by the “Overall
Metrics - Matrix” component to determine the precision,
recall, and MAP scores by comparing the similarity scores
against the answer matrix for the dataset. The scores are
saved to disk using the “CSV Similarity Matrix Exporter”
component.

The source and target artifacts are processed by the
Krovetz stemming component to produce stemmed artifacts.
The artifacts are then processed by the tracing component and
the metrics are saved to disk. This process is repeated again
by stemming the source and target artifacts with the Porter
stemming component. This same process is repeated for each
dataset analyzed. The only changes made between datasets
had to do with exchange components used to import the
artifacts, as there were several file formats used. It appeared
best to leverage the existing import components rather than

Fi

https://paperpile.com/c/qSIklK/DwEX+oY9M
https://paperpile.com/c/qSIklK/DwEX+oY9M
https://paperpile.com/c/qSIklK/Ua9b+lL0q+6Z5c
https://paperpile.com/c/qSIklK/AsUv
https://paperpile.com/c/qSIklK/lL0q
https://paperpile.com/c/qSIklK/ZfUL

5

Fig. 8. Precision-Recall curve for WARC FRS to SRS.

modify the format of the datasets, which could have led to
corruption of the data.

E. Threats to Validity
The main threat to construct validity is that there could be

some fundamental flaw regarding the structure and
formulation of the experiment. This was reduced in that any
filtering and cleanup of the data has been consistent between
all treatments. We used a popular general-purpose stopword
list for the English language, and not customized for use with
a particular dataset or stemming algorithm. We used standard
IR analysis metrics.
A possible threat to internal validity is that the first author is
both the designer of the experiment and the developer of the
software. This could impose an unintended bias on the output
of the experiment. This is somewhat limited by the use of
TraceLab and many of its included components. The newly
generated components for this experiment build on existing
code developed by other institutions, which should limit an
unintended bias toward a particular outcome.

Although the use of existing tools assists in reducing the
possibility of unintended bias, it leaves open the possibility
that there could be flaws in the metrics generation tools used
for this experiment. As these tools were developed and used
in other tracing experiments, it is unlikely that they are
flawed, but it cannot be ruled out entirely. In the event that
the analysis tools are flawed, the impact to the outcome is
reduced in that all stemming techniques use the same analysis
tools, and would most likely be impacted equally.

In regards to threats to external validity, there is the
possibility that the datasets used are not representative. This
risk is reduced by the fact that these datasets come from a
range of sources and vary dramatically in size and domain.
These datasets have been used in many other tracing
experiments.

F. Execution
The datasets were loaded into the TraceLab experiment

one at a time. The artifact import components were chosen
to allow the import of the file format of the given dataset. The
source and target artifacts were loaded such that the source
and target artifact matched those used in the answerset. As

tracing can be done in either direction, it was determined that
the artifacts should be chosen such that the answerset did not
have to be modified. This avoids possible corruption of the
answerset, due to manipulation of its data, as well as
simplifying the experiment.

Fig. 9. Precision-Recall curve for WARC NFR to SRS.

IV. ANALYSIS
The metrics generated from the TraceLab components

allow for comparison between the two stemming techniques
and the baseline of no stemming. The precision values for
the three methods were compared at recall values of [0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The precision vs recall
graphs are shown in Fig. 2 through 9. From the CCHIT
dataset (Fig.2) it can be observed that the Krovetz stemmer
outperforms the other methods at the 10% recall level, but
then falls in line with the Porter stemmer from 20% - 100%
recall. Both stemming techniques outperformed the baseline
of no stemming across the range of recall levels. The CM-1
dataset (Fig.3) shows that the baseline technique outperforms
the stemming techniques at the 10% recall, but the methods
are roughly consistent with each other from 20% - 100%
recall.

The GANTT dataset (Fig.4) indicates that the baseline
technique outperforms the stemming techniques for the 10%
- 30% recall levels, but underperforms the stemming
techniques from 50% - 100% recall. The ITrust dataset
(Fig.5) showed similar precision values for each technique
throughout the range of recall levels. In the Pine dataset
(Fig.6), the stemming techniques only show an improvement
over the baseline for the 20% - 40% recall levels. In the
SMOS dataset (Fig.7), the Porter stemmer shows improved
precision over the range of 60% - 90% recall. In the WARC
FRS-SRS dataset (Fig.8), the Krovetz stemmer shows an
improved precision at the 10% recall level after which the
three techniques closely match in precision values. Finally,
in the WARC NFR-SRS dataset (Fig.9), both the Porter and
Krovetz stemmers show a large improvement in precision
over the baseline at the 10% recall level after which the
stemming techniques maintain a slight improvement over the
baseline.

As can be observed from the precision vs recall graphs,
the range of precision values varies dramatically between
datasets. It can also be observed that there is not one

6

approach that appears to outperform the other techniques on
all the datasets. The same observation can be made when
comparing the mean average precision (MAP) values for the
different approaches on the datasets as shown in Fig.10 and
Table 1. A review of the MAP scores show that the baseline
method of no stemming outperformed the stemming
techniques on the CM1, ITrust, and WARC NFR-SRS
datasets. The Krovetz stemmer outperformed the other
methods on the GANTT and the WARC FRS-SRS datasets.
Finally, the Porter stemmer outperformed the other methods
on the CCHIT, Pine, and SMOS datasets.

The precision scores at 100% recall of each source artifact
for each dataset were analyzed for normality, and it was
determined that the data did not meet the requirements for the
T-Test. As such, the data were analyzed using the Wilcoxon
method to determine if there was statistical significance to the
results. On the CCHIT dataset, the Krovetz stemmer was
shown to outperform the baseline with p = 0.02202, and the
Porter stemmer outperformed the baseline with p = 0.00338.
On the Pine dataset, the Krovetz stemmer was shown to
outperform the baseline with p = 0.00112, and the Porter
stemmer outperformed the baseline with p = 0.002. The other
data showed no statistical significance with a significance
level of p ≤ 0.05.

TABLE I. MAP BY DATASET AND STEMMING ALGORITHM

 No
Stemming

Krovetz Porter

CCHIT 0.22 0.24 0.25

CM1 0.4 0.4 0.39

GANNT 0.46 0.48 0.45

iTrust 0.15 0.14 0.13

Pine 0.64 0.7 0.71

SMOS 0.23 0.23 0.23

WARC
FRS-
SRS

0.64 0.65 0.64

WARC
NFR-
SRS

0.61 0.6 0.62

V. CONCLUSION AND FUTURE WORK
We investigated how different stemming techniques

influence the generation of similarity matrices for a set of
disparate requirements tracing datasets. We compared the
Porter and Krovetz stemming algorithms against a baseline
of no stemming to determine how the generated similarity
scores are impacted. From the results, it was observed that
neither the Porter nor Krovetz stemmer appear to inherently
outperform the other in all cases, or even outperform the non-
stemming baseline approach. The benefits of stemming
appear to vary greatly depending upon the underlying dataset.

This work can be extended by investigating the datasets
in more detail to determine what characteristics may lend
themselves to a particular stemming technique. Perhaps the
stemming technique used in an information retrieval task
could be determined by first observing the fundamental
characteristics of a dataset.

It may also be beneficial to investigate the similarity
matrices generated in more detail, to determine if the
differing stemming techniques lead to higher scoring of
differing links. It may be possible to develop a composite
approach that incorporates the similarity matrices generated
from two or more stemming approaches. A composite
approach may be more computationally intensive than a
single approach, but may lead to simplification of user tasks.

ACKNOWLEDGMENT
We thank NSF for partially funding this work under

grants CCF-1511117 and CICI 1642134.

REFERENCES
[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements

traceability problem,” in Proceedings of IEEE International
Conference on Requirements Engineering, 1994, pp. 94-101.

[2] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: the study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, Jan. 2006.

[3] J. H. Hayes, A. Dekhtyar, and J. Osborne, “Improving requirements
tracing via information retrieval,” in Proceedings. 11th IEEE
International Requirements Engineering Conference, 2003. pp. 138–
147.

[4] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
Traceability Links in Software Artifact Management Systems Using
Information Retrieval Methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, Sep. 2007.

[5] M. F. Porter, “An algorithm for suffix stripping,” Program: Electronic
Library and Information Systems, 2006, Vol.40(3), p.211-218 , 2006.

[6] R. Krovetz, “Viewing morphology as an inference process,” in
Proceedings of the 16th annual international ACM SIGIR conference
on Research and development in information retrieval - SIGIR ’93,
pp.191-202.

[7] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang,
Yonghee Shin, Evan Moritz, Malcom Gethers, Denys Poshyvanyk,
Jonathan Maletic, Jane Huffman Hayes, Alex Dekhtyar, Daria
Manukian, Shervin Hossein, and Derek Hearn, “TraceLab: An
experimental workbench for equipping researchers to innovate,
synthesize, and comparatively evaluate traceability solutions,” in 2012
34th International Conference on Software Engineering (ICSE), 2012,
pp. 1375–1378.

[8] R. A. Pierce, “A Requirements Tracing Tool,” in Proceedings of the
Software Quality Assurance Workshop on Functional and
Performance Issues, 1978, pp. 53–60.

[9] J. H. Hayes, “Risk reduction through requirements tracing,” in
Published in the Conference Proceedings of Software Quality Week
1990, San Francisco, California, May 1990, pp. 1-25.

[10] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Trans. Software Eng., vol. 27, no. 1, pp. 58–93, Jan.
2001.

[11] A. Mahmoud and N. Niu, “Using Semantics-Enabled Information
Retrieval in Requirements Tracing: An Ongoing Experimental
Investigation,” in 2010 IEEE 34th Annual Computer Software and
Applications Conference, 2010, pp. 246–247.

[12] M. Sanderson and W. B. Croft, “The History of Information Retrieval

http://paperpile.com/b/qSIklK/mxML
http://paperpile.com/b/qSIklK/mxML
http://paperpile.com/b/qSIklK/mxML
http://paperpile.com/b/qSIklK/mxML
http://paperpile.com/b/qSIklK/mxML
http://paperpile.com/b/qSIklK/VYaw
http://paperpile.com/b/qSIklK/VYaw
http://paperpile.com/b/qSIklK/VYaw
http://paperpile.com/b/qSIklK/VYaw
http://paperpile.com/b/qSIklK/VYaw
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/BT3V
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/ye8j
http://paperpile.com/b/qSIklK/WX5x
http://paperpile.com/b/qSIklK/WX5x
http://paperpile.com/b/qSIklK/ZlOE
http://paperpile.com/b/qSIklK/ZlOE
http://paperpile.com/b/qSIklK/ZlOE
http://paperpile.com/b/qSIklK/ZlOE
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/Ua9b
http://paperpile.com/b/qSIklK/NPve
http://paperpile.com/b/qSIklK/NPve
http://paperpile.com/b/qSIklK/NPve
http://paperpile.com/b/qSIklK/NPve
http://paperpile.com/b/qSIklK/NPve
http://paperpile.com/b/qSIklK/VIli
http://paperpile.com/b/qSIklK/Y8fH
http://paperpile.com/b/qSIklK/Y8fH
http://paperpile.com/b/qSIklK/Y8fH
http://paperpile.com/b/qSIklK/Y8fH
http://paperpile.com/b/qSIklK/Y8fH
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/R0Ur
http://paperpile.com/b/qSIklK/NPRT

7

Research,” Proc. IEEE, vol. 100, no. Special Centennial Issue, pp.
1444–1451, May 2012.

[13] J. B. Lovins, “Development of a Stemming Algorithm,” Mechanical
Translation and Computational Linguistics, Vol. 11, No. 1-2, 1968, pp.
22-31.

[14] C. D. Manning, P. Raghavan, H. Schütze, and Others, Introduction to
information retrieval, vol. 1. Cambridge University press Cambridge,
2008.

[15] “CoEST Website,” CoEST.org Center of Excellence for Software &
Systems Traceability. [Online]. Available: www.coest.org. [Accessed:
30-Jan-2019].

[16] H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of swarm
techniques to requirements tracing,” Requirements Eng, vol. 16, no. 3,
pp. 209–226, Sep. 2011.

[17] Y. Shin and J. Cleland-Huang, “A comparative evaluation of two user
feedback techniques for requirements trace retrieval,” in Proceedings
of the 27th Annual ACM Symposium on Applied Computing, 2012, pp.
1069–1074.

[18] E. A. Holbrook, J. H. Hayes, and A. Dekhtyar, “Toward Automating
Requirements Satisfaction Assessment,” in 2009 17th IEEE
International Requirements Engineering Conference, Atlanta,
Georgia, USA, pp. 149–158.

[19] Meneely, A, Smith, B. and Williams, L., The iTrust Electronic Health
Records System in Software and Systems Traceability, Huang, Jane,
Gotel, Orlena, Zisman, Andrea (Eds.) 2011.

[20] “Pine Information Center.” [Online]. Available:
http://www.washington.edu/pine. [Accessed: 30-Jan-2019].

[21] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On
integrating orthogonal information retrieval methods to improve
traceability recovery,” in 2011 27th IEEE International Conference on
Software Maintenance (ICSM), Williamsburg, VA, USA, pp. 133–142.

[22] “Google Code Archive - Long-term storage for Google Code Project
Hosting.” [Online]. Available: http://code.google.com/p/warc-tools/.
[Accessed: 30-Jan-2019].

[23] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and O. Dekhtyar, “Process
improvement for traceability: A study of human fallibility,” in 2012
20th IEEE International Requirements Engineering Conference (RE),
Chicago, IL, USA, pp. 31–40.

[24] CoEST, “CoEST/TraceLab,” GitHub. [Online]. Available:
https://github.com/CoEST/TraceLab. [Accessed: 30-Jan-2019].

[25] “Lemur Project Home.” [Online]. Available:
https://www.lemurproject.org. [Accessed: 30-Jan-2019].

[26] C. Fox, “A Stop List for General Text,” SIGIR Forum, vol. 24, no. 1–
2, pp. 19–21, Sep. 1989.

Fig. 10. MAP for all datasets.

http://paperpile.com/b/qSIklK/NPRT
http://paperpile.com/b/qSIklK/NPRT
http://paperpile.com/b/qSIklK/NPRT
http://paperpile.com/b/qSIklK/NPRT
http://paperpile.com/b/qSIklK/w1AK
http://paperpile.com/b/qSIklK/w1AK
http://paperpile.com/b/qSIklK/w1AK
http://paperpile.com/b/qSIklK/w1AK
http://paperpile.com/b/qSIklK/w1AK
http://paperpile.com/b/qSIklK/9oNj
http://paperpile.com/b/qSIklK/9oNj
http://paperpile.com/b/qSIklK/9oNj
http://paperpile.com/b/qSIklK/9oNj
http://www.coest.org/
http://paperpile.com/b/qSIklK/9oNj
http://paperpile.com/b/qSIklK/9oNj
http://paperpile.com/b/qSIklK/4W06
http://paperpile.com/b/qSIklK/4W06
http://paperpile.com/b/qSIklK/4W06
http://paperpile.com/b/qSIklK/4W06
http://paperpile.com/b/qSIklK/4W06
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/KJso
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/JpVj
http://paperpile.com/b/qSIklK/AyAc
http://paperpile.com/b/qSIklK/AyAc
http://www.washington.edu/pine
http://paperpile.com/b/qSIklK/AyAc
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/rxw7
http://paperpile.com/b/qSIklK/DwEX
http://paperpile.com/b/qSIklK/DwEX
http://code.google.com/p/warc-tools/
http://paperpile.com/b/qSIklK/DwEX
http://paperpile.com/b/qSIklK/DwEX
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/oY9M
http://paperpile.com/b/qSIklK/lL0q
http://paperpile.com/b/qSIklK/lL0q
http://paperpile.com/b/qSIklK/lL0q
http://paperpile.com/b/qSIklK/lL0q
https://github.com/CoEST/TraceLab
http://paperpile.com/b/qSIklK/lL0q
http://paperpile.com/b/qSIklK/AsUv
http://paperpile.com/b/qSIklK/AsUv
https://www.lemurproject.org/
http://paperpile.com/b/qSIklK/AsUv
http://paperpile.com/b/qSIklK/ZfUL
http://paperpile.com/b/qSIklK/ZfUL
http://paperpile.com/b/qSIklK/ZfUL
http://paperpile.com/b/qSIklK/ZfUL

8

APPENDIX

Fig. 1. TraceLab experiment.

	I. INTRODUCTION
	II. RELATED WORK
	III. STUDY
	IV. ANALYSIS
	V. CONCLUSION AND FUTURE WORK
	REFERENCES

