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Abstract – We examine the effects of stemming on the tracing 
of software engineering artifacts.  We compare two common 
stemming algorithms to each other as well as to a baseline of no 
stemming.  We evaluate the algorithms on eight tracing datasets.  
We run the experiment using the TraceLab experimental 
framework to allow for ease of repeatability and knowledge 
sharing among the tracing community.  We compare the 
algorithms on precision at recall levels of [0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0], as well as on mean average precision 
values.  The experiment indicated that neither the Porter 
stemmer nor the Krovetz stemmer outperformed the other on 
all datasets tested.    

Keywords – traceability, stemming, empirical research 

I. INTRODUCTION 
Requirements tracing, also called traceability, is an 

ongoing area of research in software engineering that affects 
many different industries.  An oft-used definition of 
traceability is “the ability to describe and follow the life of a 
requirement in both the forwards and backwards direction 
[1].”  Tracing is useful in many tasks in software engineering, 
and for many artifacts beyond just requirements.  Tracing is 
beneficial in the verification and validation (V&V) and 
independent verification and validation (IV&V) processes 
[2].  Tracing has also shown its usefulness in performing 
change analysis, especially in the case of large projects.  

There has been ongoing work to formulate the tracing 
problem as an information retrieval (IR) task [2]–[4].  By 
formulating the tracing activities as an IR problem, we can 
leverage the extensive research and knowledge acquired over 
the years by that community.  This approach showed 
significant gains over prior techniques in terms of the 
precision and recall. 

Stemming has become a common part of the IR process 
when attempting to correlate a query to documents in a 
document collection.  The process of stemming reduces 
similar words to their morphological root or “stem.”  This 
reduction allows for simplified matching between similar 
words.  The Porter stemmer [5] appears to have become the 
most prevalent stemming technique applied in information 
retrieval.   

This study focuses on how diverse stemming techniques 
influence the performance of information retrieval applied to 
requirements tracing.  We compare two stemming 
techniques, Porter [5] and Krovetz [6], against each other and 
against a baseline of no stemming.  The study attempts to 
determine if the standard suffix stemming approach of the 

Porter stemmer outperforms the morphologically focused 
Krovetz stemmer in the domain of requirements tracing.  The 
experiment was undertaken using the TraceLab workbench 
[7], aimed to assist in the development of tracing experiments 
and in the transfer of tools for research reproduction and 
further innovation.  We leveraged an existing TraceLab 
experimental package for this experiment and existing 
TraceLab components were used where possible. 

The experiment showed that for three of the eight 
datasets, the tracing using no stemming outperformed either 
stemming technique.  On two of the datasets, the Krovetz 
stemmer outperformed the other two methods. On the 
remaining three datasets, the Porter stemmer outperformed 
the other techniques.   

We organize the paper as follows:  Section II discusses 
related work and helps pertinent background concepts.  
Section III discusses the experimental design and the 
execution of the experiment.  Section IV analyzes the data 
gathered from the experiment.  Section V presents the 
conclusions and future work. 

II.   RELATED WORK 
This section provides information on work related to 

tracing, IR, and stemming.  

A. Tracing 
Requirements tracing has been a focus of interest and 

research for decades.   Pierce [8] is commonly referenced in 
regards to historical examples of the development of 
traceability tools.  Pierce developed “The Requirements 
Tracing Tool” to assist with V&V and change analysis by 
tracing requirements throughout the phases of software 
development.  The tool was initially used on a naval undersea 
sensor system, and was then repurposed to support the Cruise 
Missile Mission Planning Project.  Pierce’s tool focused on 
the construction of a database that leveraged keywords from 
the requirements. 

More recently, a variety of approaches to the 
requirements tracing problem have been applied, including 
keyword detection and matching [9], reference models [10], 
and information retrieval [2], [3], [11].  As discussed above, 
this work is targeting the enhancement of requirements 
tracing using information retrieval techniques.  The IR 
approach is largely bring used for performing tracing after-
the-fact, as opposed to the upfront construction of 
requirements tracing artifacts. 

 

https://paperpile.com/c/qSIklK/VYaw
https://paperpile.com/c/qSIklK/BT3V+VYaw+ye8j
https://paperpile.com/c/qSIklK/WX5x
https://paperpile.com/c/qSIklK/ZlOE
https://paperpile.com/c/qSIklK/Ua9b
https://paperpile.com/c/qSIklK/NPve
https://paperpile.com/c/qSIklK/VIli
https://paperpile.com/c/qSIklK/Y8fH
https://paperpile.com/c/qSIklK/BT3V+VYaw+R0Ur
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B. Information Retrieval 
Information retrieval attempts to identify relevant 

information from a large dataset generally composed of 
natural language text.  An IR problem is formulated such that 
it is composed of a document collection and a query.  The 
document collection is a large dataset, or a representation of 
the dataset, that a user wishes to query for relevant data.  The 
query is a representation of the information that the user 
desires to locate in the document collection.  Sanderson and 
Croft [12] provide a history of information retrieval 
beginning with librarianship, progressing through 
computerization, and finishing with descriptions of 
techniques used at the time of its publishing in 2012.   The 
paper discusses topics such as the move towards ranked 
retrieval and the introduction of relevance feedback.  
Sanderson and Croft also describe the important concept of 
term weighting schemes such as term frequency-inverse 
document frequency (tf-idf). 

C. Stemming 
Stemming, also referred to as suffixing, is a process of 

reducing words to their morphological root or word stem.  
The word stem may or may not be a “real” word, depending 
upon the stemming approach used.  The purpose of word 
stemming in IR is to conflate words (combine into one) with 
the same stems, assuming that they have like meanings.  The 
stemming technique may be as simple as removing 
pluralization suffixes from words (such as s or es), or more 
complicated approaches that attempt to maintain meanings 
and incorporate dictionaries.   

Lovins [13] developed one of the earliest documented 
stemming algorithms in 1968.  The Lovins stemming 
algorithm focused on longest match stemming for the English 
language.  Martin Porter developed the Porter stemming 
algorithm [5] in 1980.  The Porter stemming algorithm 
focuses on suffix removal to assist in the conflation of words.   

In 1993, Robert Krovetz [6] described his work in 
determining if there is benefit to using word morphology in 
the stemming process.  Krovetz attempted to maintain the 
meaning of words throughout the stemming process to avoid 
the over-stemming problem associated with strong stemmers, 
such as the Porter stemmer, which can cause faulty conflation 
of words.  Krovetz incorporated a suffixing process that 
focused on repetitive minimal suffixing alongside a machine-
readable dictionary.  Throughout the repetitive suffixing 
steps, the results are checked against a dictionary of 
commonly mis-stemmed words.  If a word is found in the 
dictionary, it is either stemmed to a known root or instructed 
to stop any further stemming.  Krovetz’s work led to the 
creation of what later became known as the Krovetz stemmer.   
The Krovetz stemmer is considered a lightweight stemmer, 
in that it is not as susceptible to over-stemming, but may 
suffer from under-stemming of words. 

    

 
Fig. 2. Precision-Recall curve for CCHIT. 

III.    STUDY 
The goal of this experiment is to determine if there is a 

difference in the performance of a tracing experiment when 
the stemming technique is varied.  We chose the Porter and 
Krovetz stemming techniques for comparison as they are 
prevalent stemming techniques use in information retrieval.  
We evaluate the two stemming techniques against a baseline 
where no stemming is performed in the requirements tracing 
process.     

A. Analysis Method 
The standard metrics for evaluating information retrieval 

techniques of precision, recall, and mean average precision 
are used to compare the stemming techniques.   

Precision indicates the quality of the links retrieved in the 
information retrieval process.  Precision is a measure in the 
range of 0 to 1, calculated by: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
|# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|

|# 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|  . 

Recall indicates the quality of the links returned on a scale 
of 0 to 1.  Recall indicates the percentage of the total number 
of true links returned out of the total 

 
Fig. 3. Precision-Recall curve for CM1. 

number of true links and is calculated by: 

https://paperpile.com/c/qSIklK/NPRT
https://paperpile.com/c/qSIklK/GvSF
https://paperpile.com/c/qSIklK/WX5x
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
|# 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|

|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 # 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|  . 

Another method of evaluating information retrieval 
techniques is the mean average precision (MAP), which is 
popular among the TREC IR community [14].  MAP is 
preferred in many cases, as it gives a clearer indication of 
where on the list of retrieved links the correct links are 
located.  A higher MAP score indicates that more of the true 
links returned are near the beginning of the list of links.  MAP 
is calculated on a scale of 0 to 1 by: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞)

|# 𝑜𝑜𝑜𝑜 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞|  . 

The MAP metric is the primary evaluation criteria, as it 
provides an indication of the precision across the recall 
levels.  As this experiment does not focus on the quality of a 
specific recall value, or number of links, MAP provides a 
useful point of comparison between stemming techniques.   

B. Hypotheses 
Null Hypothesis (H0):  There will be no difference 

between the precision (P), recall (R), and mean average 
precision (MAP) when different stemming techniques are 
incorporated into the tracing process.  The stemming 
techniques compared will be no stemming (SN), Porter 
stemming (SP), and the Krovetz stemmer (SK).   

Null Hypothesis 

1. H0: MAPSN = MAPSP = MAPSK 

Alternate Hypothesis:   

1. MAPSN > MAPSP > MAPSK 

2. MAPSN > MAPSK > MAPSP 

 

Fig. 4. Precision-Recall curve for GANTT. 

3. MAPSK > MAPSN > MAPSP 

4. MAPSK > MAPSN > MAPSP 

5. MAPSK > MAPSP > MAPSN 

6. MApSP > MAPSK > MAPSN 

7. MAPSP > MAPSN > MAPSK 

The independent variable for this experiment is the 

stemming technique used in processing the source and target 
tracing artifacts.   The stemming techniques studied are: 

1. No Stemming (SN) 

2. Porter Stemmer (SP) 

3. KStem/Krovitz Stemmer (SK) 

The dependent variables evaluated are precision, recall, 
and MAP.  The tracing process is static, excluding the 
varying of the stemming technique.   

C. Datasets 
We evaluate the stemming techniques on several existing 

requirements tracing datasets.  The datasets are available at 
www.coest.org [15], with the addition of the Pine dataset 
previously used in tracing studies at the University of 
Kentucky [16].  The datasets vary in both size and application 
domain. 

The datasets include: 

1. CCHIT [17] - A project from the healthcare domain 
consisting of 116 World Vista requirements as source 
artifacts, 1064 CCHIT healthcare regulatory codes as 
target artifacts, and 587 true links. 

2. CM-1 [2] - A NASA Instrument project consisting of 
235 requirements as source artifacts, 220 design 
elements as target artifacts, and 361 true links. 

3. GANTT [18] - A software project to generate Gantt 
charts consisting of 17 high level requirements as source 
artifacts, 69 

 
Fig. 5. Precision-Recall curve for ITrust. 

low level requirements as target, and 68 true links. 

4. ITrust [19] - Another healthcare related project 
consisting of 124 use cases as source artifacts, 367 java 
source files as target artifacts, and 400 true links. 

5. Pine [16], [20] - An email program consisting of 49 
requirements as source artifacts, 133 test cases as target 
artifacts, and 247 true links. 

6. SMOS [21] - A School Monitoring software project 
consisting of 67 use cases as source artifacts, 100 code 
modules as target artifacts, and 1044 true links. 

7. WARC Functional Requirements Specifications (FRS) 

 

https://paperpile.com/c/qSIklK/w1AK
https://paperpile.com/c/qSIklK/9oNj
https://paperpile.com/c/qSIklK/4W06
https://paperpile.com/c/qSIklK/KJso
https://paperpile.com/c/qSIklK/VYaw
https://paperpile.com/c/qSIklK/JpVj
https://paperpile.com/c/qSIklK/BT4X
https://paperpile.com/c/qSIklK/AyAc+4W06
https://paperpile.com/c/qSIklK/rxw7
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to System Requirements Specifications (SRS) [22], [23] 
- A web archive tool consisting of 42 source artifacts , 89 
target artifacts, and 78 true links. 

8. WARC Non Functional Requirements (NFR) to 
Software Requirements Specifications (SRS) [22], [23] - 
Web Archive Tool: 21 source artifacts, 89 target 
artifacts, and 58 true links. 

D. Setup 
The experiment was designed to use the TraceLab 

framework [7], [24], [15], developed to facilitate tracing 
experimentation.    The TraceLab community has created a 
number of modular components that can be leveraged to 
quickly setup and reproduce prior tracing experiments.  
TraceLab comes with the majority of the components 
necessary for this experiment.  Existing components used in 
this experiment include several tracing artifact import 
components, a Porter stemmer component, a stopword 
removal component, a vector space model using tf-idf tracing 
component, and an export component.   

Fig. 6. Precision-Recall curve for Pine. 

The existing TraceLab component contained a Porter 
stemming component, but did not contain a stemming 
component that incorporated the Krovetz stemmer.  We 
created a Krovetz stemming component that used the Krovetz 
Stemmer Version 3.4 library developed by the Lemur Project 
[25], part of their Indri Toolkit.  The Toolkit  has been used 
and validated in a number of information retrieval research 
projects.  We developed the component to use the same inputs 
and outputs as the Porter stemmer component.  This allows 
the stemming algorithms to be swapped easily without any 
changes to the TraceLab experiments.  

The included TraceLab components did not provide a 
metrics generation component that produced the metrics in a 
format that could be saved to disk.  The source code for a 
series of components by the SEMERU group at the College 
of William and Mary was included in the GitHub repository 
for TraceLab [24].  The SEMERU components are covered 
by the GNU version 3 license and thus freely available for 
modification. The “SEMERU - OverallMetrics 
Computation” and the “SEMERU - Metrics Per Source 
Artifact” components were modified to store the computed 
tracing metrics as a TLSimilarityMatrix collection format 

that could then be saved to disk using an existing component.  
This allowed for the existing metrics calculations to be 
unaltered and allow for the data to be stored for review and 
processing.   

The TraceLab experiment used for the evaluation of the 
stemming algorithms is shown in Fig. 1 (see Appendix, 
package available at 
selab.netlab.uky.edu/homepage/pages/TraceLabCatalogue/T
raceLabCatalogue/Stemming_TraceLab_Project.7z).  Each 
block in the experiment is a TraceLab component.  The 
arrows between the components set constraints that force a 

 
Fig. 7. Precision-Recall curve for SMOS. 

component to wait on a prior component to complete. All 
experiments begin at the start block and end at the end block.  

In this experiment, the initial components load the source, 
target, stopword list, and oracle/answer/gold standard matrix 
from file.  Next, the source and target artifacts are processed 
by the cleanup preprocessor, which converts all letters to 
lowercase and removes all non-alphanumeric letters.  
Stopwords, from the Fox stopword list [26], are removed 
from the source and target artifacts.  This removes the most 
common English language words from the artifacts, to avoid 
matches on frequent words such as “the” or “a.”  At this point, 
the source and target artifacts are processed by the TF-IDF 
VSM Tracer component to generate a similarity matrix using 
the cosine between the inputs.  This produces the non-
stemmed similarity matrix which is processed by the “Overall 
Metrics - Matrix” component to determine the precision, 
recall, and MAP scores by comparing the similarity scores 
against the answer matrix for the dataset.  The scores are 
saved to disk using the “CSV Similarity Matrix Exporter” 
component.   

The source and target artifacts are processed by the 
Krovetz stemming component to produce stemmed artifacts.  
The artifacts are then processed by the tracing component and 
the metrics are saved to disk.  This process is repeated again 
by stemming the source and target artifacts with the Porter 
stemming component.  This same process is repeated for each 
dataset analyzed.  The only changes made between datasets 
had to do with exchange components used to import the 
artifacts, as there were several file formats used.  It appeared 
best to leverage the existing import components rather than 

Fi

https://paperpile.com/c/qSIklK/DwEX+oY9M
https://paperpile.com/c/qSIklK/DwEX+oY9M
https://paperpile.com/c/qSIklK/Ua9b+lL0q+6Z5c
https://paperpile.com/c/qSIklK/AsUv
https://paperpile.com/c/qSIklK/lL0q
https://paperpile.com/c/qSIklK/ZfUL
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Fig. 8. Precision-Recall curve for WARC FRS to SRS. 

modify the format of the datasets, which could have led to 
corruption of the data.    

E. Threats to Validity 
The main threat to construct validity is that there could be 

some fundamental flaw regarding the structure and 
formulation of the experiment.  This was reduced in that any 
filtering and cleanup of the data has been consistent between 
all treatments.  We used a popular general-purpose stopword 
list for the English language, and not customized for use with 
a particular dataset or stemming algorithm. We used standard 
IR analysis metrics. 
A possible threat to internal validity is that the first author is 
both the designer of the experiment and the developer of the 
software.  This could impose an unintended bias on the output 
of the experiment.  This is somewhat limited by the use of 
TraceLab and many of its included components.  The newly 
generated components for this experiment build on existing 
code developed by other institutions, which should limit an 
unintended bias toward a particular outcome.  

Although the use of existing tools assists in reducing the 
possibility of unintended bias, it leaves open the possibility 
that there could be flaws in the metrics generation tools used 
for this experiment.  As these tools were developed and used 
in other tracing experiments, it is unlikely that they are 
flawed, but it cannot be ruled out entirely. In the event that 
the analysis tools are flawed, the impact to the outcome is 
reduced in that all stemming techniques use the same analysis 
tools, and would most likely be impacted equally.   

In regards to threats to external validity, there is the 
possibility that the datasets used are not representative.  This 
risk is reduced by the fact that these datasets come from a 
range of sources and vary dramatically in size and domain.  
These datasets have been used in many other tracing 
experiments.  

F. Execution 
The datasets were loaded into the TraceLab experiment 

one at a time.  The artifact import components were chosen 
to allow the import of the file format of the given dataset.  The 
source and target artifacts were loaded such that the source 
and target artifact matched those used in the answerset.  As 

tracing can be done in either direction, it was determined that 
the artifacts should be chosen such that the answerset did not 
have to be modified. This avoids possible corruption of the 
answerset, due to manipulation of its data, as well as 
simplifying the experiment.  

 
Fig. 9. Precision-Recall curve for WARC NFR to SRS. 

IV.    ANALYSIS 
The metrics generated from the TraceLab components 

allow for comparison between the two stemming techniques 
and the baseline of no stemming.  The precision values for 
the three methods were compared at recall values of [ 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].  The precision vs recall 
graphs are shown in Fig. 2 through 9.  From the CCHIT 
dataset (Fig.2) it can be observed that the Krovetz stemmer 
outperforms the other methods at the 10% recall level, but 
then falls in line with the Porter stemmer from 20% - 100% 
recall.  Both stemming techniques outperformed the baseline 
of no stemming across the range of recall levels.  The CM-1 
dataset (Fig.3) shows that the baseline technique outperforms 
the stemming techniques at the 10% recall, but the methods 
are roughly consistent with each other from 20% - 100% 
recall.    

The GANTT dataset (Fig.4) indicates that the baseline 
technique outperforms the stemming techniques for the 10% 
- 30% recall levels, but underperforms the stemming 
techniques from 50% - 100% recall.  The ITrust dataset 
(Fig.5) showed similar precision values for each technique 
throughout the range of recall levels.  In the Pine dataset 
(Fig.6), the stemming techniques only show an improvement 
over the baseline for the 20% - 40% recall levels.  In the 
SMOS dataset (Fig.7), the Porter stemmer shows improved 
precision over the range of 60% - 90% recall.  In the WARC 
FRS-SRS dataset (Fig.8), the Krovetz stemmer shows an 
improved precision at the 10% recall level after which the 
three techniques closely match in precision values.  Finally, 
in the WARC NFR-SRS dataset (Fig.9), both the Porter and 
Krovetz stemmers show a large improvement in precision 
over the baseline at the 10% recall level after which the 
stemming techniques maintain a slight improvement over the 
baseline.   

As can be observed from the precision vs recall graphs, 
the range of precision values varies dramatically between 
datasets.  It can also be observed that there is not one 
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approach that appears to outperform the other techniques on 
all the datasets.  The same observation can be made when 
comparing the mean average precision (MAP) values for the 
different approaches on the datasets as shown in Fig.10 and 
Table 1.  A review of the MAP scores show that the baseline 
method of no stemming outperformed the stemming 
techniques on the CM1, ITrust, and WARC NFR-SRS 
datasets.  The Krovetz stemmer outperformed the other 
methods on the GANTT and the WARC FRS-SRS datasets.  
Finally, the Porter stemmer outperformed the other methods 
on the CCHIT, Pine, and SMOS datasets. 

The precision scores at 100% recall of each source artifact 
for each dataset were analyzed for normality, and it was 
determined that the data did not meet the requirements for the 
T-Test.  As such, the data were analyzed using the Wilcoxon 
method to determine if there was statistical significance to the 
results.  On the CCHIT dataset, the Krovetz stemmer was 
shown to outperform the baseline with p = 0.02202, and the 
Porter stemmer outperformed the baseline with p = 0.00338.  
On the Pine dataset, the Krovetz stemmer was shown to 
outperform the baseline with p = 0.00112, and the Porter 
stemmer outperformed the baseline with p = 0.002.  The other 
data showed no statistical significance with a significance 
level of p ≤ 0.05. 

TABLE I. MAP BY DATASET AND STEMMING ALGORITHM 

 No 
Stemming 

Krovetz Porter 

CCHIT 0.22 0.24 0.25 

CM1 0.4 0.4 0.39 

GANNT 0.46 0.48 0.45 

iTrust 0.15 0.14 0.13 

Pine 0.64 0.7 0.71 

SMOS 0.23 0.23 0.23 

WARC 
FRS-
SRS 

0.64 0.65 0.64 

WARC 
NFR-
SRS 

0.61 0.6 0.62 

 

V. CONCLUSION AND FUTURE WORK 
We investigated how different stemming techniques 

influence the generation of similarity matrices for a set of 
disparate requirements tracing datasets.  We compared the 
Porter and Krovetz stemming algorithms against a baseline 
of no stemming to determine how the generated similarity 
scores are impacted.  From the results, it was observed that 
neither the Porter nor Krovetz stemmer appear to inherently 
outperform the other in all cases, or even outperform the non-
stemming baseline approach.  The benefits of stemming 
appear to vary greatly depending upon the underlying dataset.  

This work can be extended by investigating the datasets 
in more detail to determine what characteristics may lend 
themselves to a particular stemming technique.  Perhaps the 
stemming technique used in an information retrieval task 
could be determined by first observing the fundamental 
characteristics of a dataset.   

It may also be beneficial to investigate the similarity 
matrices generated in more detail, to determine if the 
differing stemming techniques lead to higher scoring of 
differing links.  It may be possible to develop a composite 
approach that incorporates the similarity matrices generated 
from two or more stemming approaches.  A composite 
approach may be more computationally intensive than a 
single approach, but may lead to simplification of user tasks.   
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Fig. 1. TraceLab experiment. 
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