
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

University of Kentucky TraceLab Component
Similarity Matrix Voting Merge

Jared Payne
Computer Science

University of Kentucky
Lexington, Kentucky, USA

jared.payne@uky.edu

Jane Huffman Hayes
Computer Science

University of Kentucky
Lexington, Kentucky, USA

hayes@cs.uky.edu

Abstract—We present one of the University of Kentucky
TraceLab components, Similarity Matrix Voting Merge. We
highlight some particularly interesting aspects of the component
such as challenges faced when developing it. We discuss the
challenges encountered when setting up unit testing for the
component. We provide an example of the component being used
in a TraceLab experiment. We provide a link for download of the
component.

Keywords— TraceLab, components, traceability, unit testing

I. INTRODUCTION
TraceLab [1] is an experimental framework developed under

the National Science Foundation’s Major Research
Instrumentation program. The framework facilitates the
building, sharing, and composition of components into larger
experiments. Originally aimed at improving replicability and
decreasing start up time for traceability research, TraceLab has
since been broadened to include components and support of
other activities such as software testing and can be used for
empirical research in any subfield of software engineering.

The University of Kentucky has developed a number of
TraceLab components. These are available at
http://selab.netlab.uky.edu/homepage/pages/TraceLabCatalogu
e/TracelabCatalogue/componentspage.html. This paper
addresses one specific component which is provided in the
catalogue, Similarity Matrix Voting Merge.

The paper is organized as follows. Section II describes the
component and the research paper on which it is based. Section
III discusses what the component does and how it works.
Section IV discusses the approach used to introduce unit testing
to this and other components developed by the University of
Kentucky and challenges encountered during the process.
Finally, Section V discusses the component as part of a larger
TraceLab experiment.

II. TECHNIQUE INTEGRATION FOR REQUIREMENTS
ASSESSMENT

Dekhtyar et al. [2] examined the notion of combining tracing
techniques into a “committee” in order to evaluate a given trace
matrix. Specifically, they applied five different techniques
(Vector Space Model using term frequency-inverse document
frequency weighting [3] (VSM-tf-idf), Latent Semantic

Indexing [4] (LSI), Latent Dirochlet Analysis [5] (LDA), Chi-
squared based Keyword Extraction [6] (KE), Probabilistic
Information Retrieval [7] (IR)) to the CM-1 dataset, using a
variety of schemes for the committee of techniques to vote on a
link to be vetted (majority, supermajority, consensus). They
found that the techniques were very good at keeping true links
(high recall) when using majority and supermajority schemes.
When these voting schemes were filtered, they were able to
“beat” VSM tf-idf [2]. Regarding precision, the consensus rule
only failed to discard 40% of the false positives (whereas other
schemes kept 90%+ of the false positives) [2]. All three of the
voting rules had better precision than VSM tf-idf except for the
majority rule which only outperformed VSM tf-idf when
unfiltered [2]. This experiment inspired our component. It
should be noted that Poshyvanyk et al. [8] also used the idea of
combining tracing techniques for feature identification.

The Similarity Matrix Voting Merge component allows a
collection of similarity matrices, each generated by different
tracing techniques, to be combined using different voting or
decision rules. The aim is to generate better trace matrices using
the committee of techniques. The component is agnostic as to
how the similarity matrices are generated. The component
applies a user-provided voting percent threshold to generate the
merged matrix. For example, if four matrices are being
combined and the user-selected threshold is 50%, any links
appearing in two or more of the matrices will be written to the
final matrix. Next, we discuss the development of the
component.

III. DEVELOPMENT OF THE COMPONENT
The component was developed using C# in the Visual Studio

IDE. It was added to a solution of pre-existing TraceLab
components. This solution was created in order to streamline the
testing and installation of the components, as well as to place
code shared among them in a common library. The solution
contains 15 projects, nine of which are TraceLab components.
The other six comprise the common library and unit test
projects. There are also an additional 12 Java components stored
alongside these components, but they are not a part of the C#
solution.

The component functions by reading in a directory of files
containing instances of the TLSimilarityMatrix class that have
been converted to a plaintext format. This format is read in as a

We thank NSF for partially funding this work under grants CCF-1511117
and CICI 1642134.

collection of lines, with each line containing three space-
separated elements: a source identifier, target identifier, and
similarity score. The component deserializes these files back
into instances of the TLSimilarityMatrix class. Then, the
component merges the matrices into a single matrix while
removing links that appear in a percentage of the matrices less
than the given threshold. Link scores in the output matrix are the
average score given across all the input matrices. Finally, the
matrix is stored in the TraceLab workspace.

The component can be configured with an input directory
and a score threshold in TraceLab before runtime. Its
configuration options as displayed in TraceLab are shown in
Fig. 1. A screenshot of its code inside the component solution
is shown in Fig. 2 at the end of the paper. Next, we address
testing.

Fig. 1. The configuration options for the Similarity Matrix Voting Merge
component.

IV. TESTING OF THE COMPONENT
This section discusses the current state of testing of the

Similarity Matrix Voting Merge component and our other
TraceLab components, followed by the challenges encountered
in introducing unit tests to the component solution.

A. Current State of the Component Catalogue Tests
As of this writing, five of the nine components in the

component solution are coupled with their own unit test project,
named in the format ComponentProjectName.Tests by
convention. These projects contain an average of eight unit tests
per tested component, with a total of 40 unit tests for the
solution. All tests are passing. These tests typically check to
ensure that components are correctly performing their intended
transformation upon the data being examined in TraceLab. They
also check that the proper exceptions are thrown and that correct,
helpful information is provided to the user whenever a
component is not properly configured.

As an example, the test cases for the Similarity Matrix
Voting Merge component have been provided in Table I.
Currently, no unit tests have been implemented for any of the
Java components in the catalogue. Possible steps moving
forward would be to either use JUnit to test each of these
components individually, or to convert these components to C#
so that they can be added to the component solution and tested
simultaneously with the other components.

TABLE I. TEST CASES FOR THE COMPONENT

Class Test Name
SimilarityMatrix
VotingMerge
Component

Compute merges similarity matrices

Component configuration is custom type

SimilarityMatrix
VotingMerge
Configuration

Threshold default value is fifty percent
Throws argument exception when directory path does not
exist
Argument exception provides directory error message when
directory path does not exist
Throws argument exception when threshold is greater than
one
Throws argument exception when threshold is less than zero
Argument exception provides threshold error message when
threshold is out of range
Throws argument null exception when directory path is null
Argument null exception provides directory error message
when directory is null

B. Challenges
One of the challenges in developing this TraceLab

component and maintaining our catalogue of existing
components was ensuring that the components function properly
and without bugs. Because TraceLab components are intended
to be used in a variety of tracing experiments and behave
similarly to code blocks in a visual programming language,
ensuring that they are stable and execute predictably is of the
utmost importance.

To accomplish this, Visual Studio’s built-in unit testing
framework for .NET framework projects was utilized. Doing so
allowed development to move towards a more test-driven
approach, as the unit tests for all the components could be
quickly executed at any time. Since the unit tests are also
provided alongside the components, this also allows other users
of the components to verify the integrity of the code before they
are installed.

The second issue encountered when testing TraceLab
components was that many of them tend to manipulate files in
the filesystem. Many of our own components do so as well,
which posed an additional problem for testing because it
introduced the unit tests to the volatile state of a filesystem,
thereby often rendering the tests non-repeatable.

To resolve this issue, a package named
System.IO.Abstractions was retrieved from the NuGet package
manager and integrated into the solution. This package abstracts
the .NET framework’s concept of a filesystem from that of a
static class to an interface. This way, multiple implementations
of a filesystem can be created such that a class can instead be
given a specific instance type of a filesystem to use. In our case,
we used two types: a type representing the actual filesystem; and
a virtual, mock filesystem that can be initialized during testing.

For our TraceLab components to have access to this mock
filesystem, an internal constructor was added to each component
class that accepted an additional filesystem parameter. This way,
components could be constructed with a mock filesystem during
unit testing, and TraceLab could continue to use its expected
constructor while running experiments. When the original
constructor is used, the component is initialized to use the real
filesystem. When the mock filesystem is being used, it is reset

We thank NSF for partially funding this work under grants CCF-1511117
and CICI 1642134.

for each test case, and files with data for testing the component
are then created. Doing so ensured that the unit tests return the
same result every time.

V. EXPERIMENTAL CONTEXT FOR THE COMPONENT
The TraceLab experiment file that we built for using the

component utilizes several pre-existing components to import
data, to perform pre-processing, and to calculate results. In order
to use our voting merge component in an experiment, a
multitude of components that use tracing techniques to analyze
text must be used in order to generate the similarity matrices.
Because the voting merge component uses a directory for input,
any arbitrary number of matrices can by merged. Fig. 3 shows a
portion of an example experiment where two similarity matrices
are being merged by the component.

 The component is provided for download at
http://selab.netlab.uky.edu/homepage/pages/TraceLabCatalogu
e/TracelabCatalogue/TraceLabComponents.zip. We request
that this paper be cited when using our work in any future
published work.

ACKNOWLEDGMENT
We thank NSF for partially funding this work under grants

CCF-1511117 and CICI 1642134.

REFERENCES
[1] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang,

Yonghee Shin, Evan Moritz, Malcom Gethers, Denys Poshyvanyk,
Jonathan Maletic, Jane Huffman Hayes, Alex Dekhtyar, Daria Manukian,
Shervin Hossein, and Derek Hearn, “TraceLab: An experimental
workbench for equipping researchers to innovate, synthesize, and
comparatively evaluate traceability solutions,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012, pp. 1375–1378.

[2] Alex Dekhtyar, Jane Huffman Hayes, Senthil Karthikeyan Sundaram,
Elizabeth Ashlee Holbrook, Olga Dekhtyar: Technique Integration for
Requirements Assessment. RE 2007: 141-150

[3] Baeza-Yates, Ricardo A., Berthier A. Ribeiro-Neto: Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[4] Deerwester, S., S.T. Dumais, G.W. Furnas, T.K. Landauer, and R.
Harshman, Indexing by Latent Semantic Analysis, J. Am. Soc.
Information Science, vol. 41, no. 6, pp. 391-407, 1990.

[5] Heinrich, Gregor, “LDA-J Library” Code available at
http://www.arbylon.net/projects/.

[6] Huffman Hayes, J., Dekhtyar, A., Holbrook, E.A., Sundaram, S.,
Dekhtyar, O., Will Johnny/Joanie Make a Good Software Engineer?: Are
Course Grades Showing the Whole Picture?, in Proc., Conference on
Software Engineering Education and Training (CSEET), 2006, pp. 175 -
182.

[7] Cleland-Huang,J., C.K. Chang, G. Sethi, K. Javvaji, H. Hu, and J Xia.
Automating speculative queries through event-based requirements
traceability. Proc. International Requirements Engineering Conference
(RE’02), 2002.

[8] Poshyvanyk, D., Gueheneuc Y., Marcus, A., Antoniol, G., and Rajlich, V.
Combining Probabilistic Ranking and Latent Semantic Indexing for
Feature Identification in Proc..ICPC 2006, pp. 137-148.

Fig. 2. The TraceLab components solution in Visual Studio 2017. The code for the Similarity Matrix Voting Merge component class is displayed.

Fig. 3. The Similarity Matrix Voting Merge component being used in a TraceLab experiment. Two similarity matrices are being merged.

	I. Introduction
	II. Technique Integration for Requirements Assessment
	III. development of the component
	IV. Testing of the Component
	A. Current State of the Component Catalogue Tests
	B. Challenges

	V. Experimental context for the Component
	Acknowledgment
	References

