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Abstract—This position paper argues that fault classification 

provides vital information for software analytics, and that 

machine learning techniques such as clustering can be applied to 

learn a project- (or organization-) specific fault taxonomy.  

Anecdotal evidence of this position is presented as well as 

possible areas of research for moving toward the posited goal. 
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I. INTRODUCTION 

Any viable, useful software product is characterized by at 
least two “proof of life” indicators:  feature requests and bug 
reports from users and/or developers.  Our software-driven 
society is known for its appetite for more and better features, 
all while shunning buggy, slow, or just “ugly” software 
products.  Development organizations that want to remain 
competitive in this environment must develop high quality 
software that is also feature rich and reaches the market before 
competitors.  How can this be accomplished? 

Studies have shown that history repeats itself in software 
products, just as in life.  Bugs/faults (called faults hereafter) or 
types of faults that occurred in the past are likely to occur again 
in the future (or are likely to reappear as latent errors).  In 
addition, there is evidence that fault taxonomies, when used 
conscientiously, can assist a development organization in 
understanding the types of faults that tend to occur:  and when, 
and where, and for whom.  This information can greatly assist 
in preventing errors, in finding and correcting errors, and in 
supporting other applications such as clone detection. There 
has been prior work on automatically assigning categories to a 
fault based on a provided fault taxonomy. 

In this paper, we argue that classified faults contain vital 
information for software analytics, and that both the 
development of a fault taxonomy and the assignment of fault 
taxonomy categories to an individual fault or bug report must 
be automated.  We describe the utility of fault classification 
data in the context of decisions that can be aided by software 
analytics. Then, we argue for an automated approach to 
learning a fault taxonomy for a specific project based on 
project data. Based on our experience in the traceability area, 
we understand the difficulties of getting practitioners to adopt a 

new practice.  This makes full automation desirable. We 
believe, further, that recovering a fault taxonomy is analogous 
to recovering traceability links from software engineering 
artifacts or discovering the architecture style of a given 
software system using its source code.  

The paper is organized as follows. Section II presents 
background information and our position. Section III presents 
evidence that fault classification data is vital to software 
analytics. Section IV provides research results to date to defend 
our position for a learned fault taxonomy.  Section V suggests 
research goals/areas to move toward a realization of the 
position and Section VI concludes.  

II. BACKGROUND AND POSITION 

This section presents background on fault classification 

and fault taxonomies as well as our position. 

A. Background 

IEEE defines a software fault as an “incorrect step, process 
or data definition in a computer program” [1]. The term fault 
and defect are used synonymously in this paper. A fault leads 
to a failure when the software does not perform to 
specifications.   

A fault taxonomy provides a scheme of classification for 
software faults.  Many attributes of a fault may be classified, 
including severity, when the fault was found, the type of 
failure, and the type of fault.  A good example of a fault 
taxonomy is the Orthogonal Defect Classification scheme, 
developed by Chillarege et al. [2]. 

Clustering is a machine learning technique that groups data 
instances into natural groups [3].  Clustering is therefore useful 
when a training set is not available.  Given a sufficiently large 
training set, classification learning algorithms, e.g. Bayesian 
networks, decision trees, and others, can be used to classify 
new faults. 

B. Position 

Position:  That fault classification provides data that is 
essential to many types of decisions that could be aided by 
software analytics. 



 

 

Further:  That machine learning can be used to learn a 
fault taxonomy for a given software project. 

III. FAULT CLASSIFICATION AND SOFTWARE ANALYTICS 

Buse and Zimmermann surveyed 110 professional software 
engineers and managers to determine their information needs 
with regard to software analytics [4].  Failure information and 
Bug Reports were the top two indicators for decision making.  
Buse and Zimmermann also present themes for the types of 
questions and decisions in which analytics could support 
software engineers and managers.  In this section we argue that 
many of these types of decisions can be enhanced with fault 
classification data. 

A. Targeting Testing 

Miller et al. developed detailed taxonomies for both faults 
and for verification and validation (V&V) techniques, which 
include different testing approaches and inspections [5].  Their 
research maps the fault type to the V&V types that can detect it 
and includes cost benefit analysis on each technique. Applying 
software analytics to this approach of choosing the most 
applicable V&V technique could expand the reach and utility 
of such a method due to the availability of additional data. 

Vegas et al. present a characterization process for testing 
technique selection [6]. The characterization schema includes 
the defect (fault) type.  This history can then be used to 
determine which types of faults are found by a particular 
technique. Since components often exhibit similar types of 
faults as they have in the past, it supplies helpful empirical data 
about the selection of the most effective testing technique.   

Misirli et al. present a retrospective study of software 
analytics projects in industry [7]. Among the feedback on a 
case study for defect prediction was the need for information 
about “defect causes, such as the phases introduced, categories 
and severity levels” [7].  Defect prediction models with this 
additional information can provide recommendations about 
where defects will occur, along with what kind of defects can 
be expected, and thus how they can be most effectively 
detected. 

B. Release Planning 

One of the relevant factors for release planning is the 
number of outstanding faults in the software [4].  Managers 
want to know that the fault arrival rate is declining to 
determine that the software is approaching a stable point, and 
can be considered ready for release.  Chillarege et al. describe 
how the defect type attribute of the Orthogonal Defect 
Classification (ODC) can be used to assess the state of the 
software with regard to release [2].   

Consider, for example, that the fault arrival rate slows.  
This is normally an indication that the software is stabilizing.  
However, what if the faults that have been logged indicate that 
functionality is missing?  In that case, this could represent a 
local minimum on the reliability growth curve.  More faults are 
just around the corner, but the functionality has not been tested 
because it is not yet fully implemented.  As software processes 
become more iterative and incremental, with iterations as short 
as two weeks, this type of analysis becomes even more 
important, and requires automation.  

C. Judging Stability 

The same process to measure the stability of a release, 
described above in Release Planning, can also be applied to 
components or subsystems that are being developed 
independently. By using a fault classification scheme, we can 
build a profile for different stages of stability, and then 
compare the current state of a project to past profiles.  This 
provides a quantitative assessment of the project’s progress 
that can be used to aid in decisions about status and course 
correction. 

D. Targeting Training 

As noted by Buse and Zimmermann, software development 
is primarily a human endeavor that can benefit from 
considering individual and team collaboration [4]. It is often 
difficult to monitor the quality of work by individuals, in order 
to recommend ways to improve performance.  We believe that 
fault classification plays a role here as well.   

Yu reports on a software fault prevention program at 
Lucent Technologies [8]. A crucial finding reported by Yu was 
that nearly half of the faults were introduced during coding, 
and many of the faults were preventable. Yu goes on to 
describe the fault prevention guidelines that were developed.  
Yu estimates that the 34.5% reduction in coding faults saved 
approximately US$7M (published in 1998) in product rework 
and testing [8].   

Yu’s classification of faults is similar to other fault 
classification schemes, and we feel that availability of this data 
could make the development of such fault prevention 
guidelines more efficient and effective. As a result, software 
developers get valuable training on best practices that can 
increase the quality of their source code. 

E. Targeting Inspection 

Inspection is an important practice in verification and 
validation of software.  It is not always clear, however, when it 
should be applied, and to what extent.  Runeson et al. analyzed 
several empirical studies to answer this question, and provided 
some practical findings [9]. They find that inspections are more 
efficient and effective at finding design specification defects.  
Code defects are more effectively found by functional or 
structural testing, but some studies suggest that these activities 
find different kinds of defects.   

Hayes et al. describe a method to improve code inspections 
through the use of fault links [10].  A fault link is a relationship 
between the type of code fault and the types of components in 
which they occur.  In this experiment they demonstrate that use 
of fault link information to customize code review checklists 
can improve the number of faults that are found by 170-200% 
and the number of hard to find faults by 200-300%. This 
demonstrates the use of fault classification data, along with 
properties of the software, to improve code inspections. 

Historical data that includes classified fault data can help a 
manager assign resources appropriately to these activities for a 
given project.  Given historical data about the types of faults 
that were found using inspection and testing, we could better 
understand the effectiveness of each activity for a given project 
or organization.  Software components tend to have the same 



 

 

types of faults that have occurred in the past.  The combination 
of a component’s history and the effectiveness of past 
techniques provide quantitative data that can be used to 
allocate resources on these activities. 

F. Summary 

In this section we have presented evidence to support the 
use of fault classification data for five types of decisions that 
can be supported by software analytics.  In each case prior 
research provides examples of how fault classification data can 
be used, and its importance to the decision-making process. 

These areas may be improved through the use of software 
analytics while using classified fault data to aid in the decision 
making process.  In many cases, we find that classified fault 
data is not available. In the next section, we present our 
position regarding the automatic construction of a fault 
taxonomy. 

IV. FAULT TAXONOMIES FROM CHANGE DATA 

This section describes current research efforts to 
automatically classify software faults through the use of 
clustering.  We present these results as anecdotal evidence that 
more granular fault data can be extracted using machine 
learning. 

Our current investigation of a fault taxonomy focuses on 
the classification of the fix for the fault as a proxy for the 
nature of the fault.  This is similar to the Defect Type attribute 
in the Orthogonal Defect Classification scheme [2]. We extract 
the syntactical differences from the source code changes that 
repaired each fault.  This data is arranged in a feature vector 
that is used for clustering and analysis. We describe this 
approach next. 

To extract the syntactical changes from the source code, we 
extend the fine-grained source code changes introduced in the 
ChangeDistiller tool [11]. The algorithm for this tool compares 
the abstract syntax trees for two revisions of a file [12].  The 
tool and taxonomy were created for change impact analysis.  
We were able to extend the taxonomy using contextual 
information that is captured by the tool [13]. Additional 
changes were made to the ChangeDistiller project in order to 
handle problematic constructs such as the presence of 
anonymous classes.  The changes are available as open source 
code1. 

For each fault we construct a vector with each possible 
syntactic change as a feature, and the frequency of that change 
as the value of the feature.  As an example, a fault may have 
three changes to condition expressions, one inserted if 
statement, and one inserted return statement.  The set of 
vectors from all faults in a version form a dataset.  The dataset 
is provided as input to the clustering algorithm. 

Clustering is performed with the CLUTO clustering 
toolkit [14]. The cosine similarity is used as the distance 
measure.  A repeated bisection clustering algorithm was used 
with the I1 criterion function [13]. CLUTO reports the features 
in the vector that contribute to the internal similarity of each 
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cluster [14].  This provides a quantitative way to name clusters 
based on the dominant traits.  The use of the I1 criterion 
function maximizes the tightness of the resulting clusters by 
providing one poor quality cluster for outliers.  Zhao and 
Karypis conclude that this property may be useful for noisy 
data sets [15]. Our analysis of this cluster supports their claim.   

Initial results were encouraging in multiple areas. The 
frequency of occurrence for our extended change types indicate 
that these changes occur frequently for fault repairs. In 
addition, the changes were consistent between two versions of 
Eclipse that were released two years apart, and that included 
re-architecture from a proprietary runtime to a runtime based 
on the OSGi® specifications [16].  The clusters that were 
found for these versions were also consistent, suggesting a 
possible consistency in the patterns of change.  Initial manual 
analysis indicates that the nature of faults within a cluster is 
indeed similar:  i.e., we have identified a fault type that is part 
of a larger fault taxonomy.  For more details about the resulting 
clusters, data collection, and validation please refer to our 
previous publication [13]. 

In addition, this process can be implemented as part of a 
continuous integration system. This allows fault data to be 
automatically collected and updated as code is integrated, 
builds are completed, and automated tests are running.  We 
believe that the automatable nature of the data collection will 
increase the likelihood of technology transfer to industry. 

V. WHAT NEXT? 

This section suggests research areas/goals for using 

classified faults/fault taxonomies as a data source for software 

analytics. 

A. Fault Classification and Software Analytics 

In Section III we provide information about the application 
of fault classification data in the context of software analytics 
questions and decisions. Each of these areas provides a starting 
point for further study. A first step is to implement systems that 
provide the information for these decisions.  Further work can 
incrementally expand on each of these areas by adding 
additional information that is not easily available to decision-
makers today, thus improving the state of the art for these 
practices through software analytics. 

B. Fault Taxonomies from Change Data   

Based on the results to date from Section IV, we found that 
the syntactical change patterns in fault fixes exhibit 
consistency, and provide insight into the nature of faults.   

Therefore, we feel that we have provided initial validation 
of our position: that software analytics can assist with the 
learning of fault taxonomies, and that it is important to 
integrate these methods into development tools. 

To further work in this area, we suggest these research 
areas/goals:  

 Apply additional machine learning algorithms and 

techniques to improve the automatic classification of faults. 

 Study additional projects from multiple domains to 

understand variance in faults. 



 

 

 Enhance tools to support multiple programming languages. 

 Study the application of recovered fault taxonomies to 

process improvement, e.g., and verification and validation, 

with comparisons to manual classification approaches.  

 Automate other attributes of fault taxonomies, such as 

failure type or severity, using machine learning. 

C. New Applications for Software Analytics 

In addition to the applications of fault classification data that 
we have discussed in Section III, and the automation of the 
fault classification process, there are numerous problems that 
can benefit from classified fault data. Classified fault data 
provides additional precision to the measurement of fault 
occurrence that is not possible without it.   

As an example of additional applications, we consider the 
problem of evaluating the success of refactoring efforts.  One 
of the motivations of refactoring is to improve the quality of a 
software component.  Measuring the number of faults after the 
refactoring provides coarse data, but measuring faults of a 
particular type can provide more useful data. 

As an example, consider a refactoring effort that reduces the 
complexity of the source code in a highly volatile area of the 
software.  The expected impact of this change is likely to 
include a reduction in the number of logic faults that are 
introduced.  After the refactoring has occurred, there will still 
be numerous faults in the component due to the fact that it is a 
volatile area of the code.  If the refactoring was successful, the 
number of logic faults will be reduced.  However, faults due to 
incomplete or ambiguous requirements are likely to occur here 
as well.  The classification of the faults separates these 
measurements in a way that allows progress to be tracked more 
precisely. 

VI. SUMMARY 

In this paper we provided a two part position about software 
fault classification and software analytics.  First, we believe 
that fault classification provides useful data for software 
engineering decisions.  In Section III we examine five types of 
decisions that others have identified for the application of 
software analytics.  For each of these areas we submit evidence 
from previous studies about the use of classified fault data to 
aid in the decision making process. 

Our second position involves the manner in which software 
faults are classified. Fault classification has traditionally been a 
manual task, and there have been many studies that discuss the 
benefits of the practice.  However, industry adoption has been 
limited to mature organizations.  We present initial results from 
our research supporting our position.  In addition, we provide 
source code changes that were used in our experiment to allow 
others to contribute to this area. 

Finally, we provide our suggestions for future work in three 
parts.  First, we provide suggestions on the use of classified 
fault data for software analytics. Then, we present future 
directions for learning fault taxonomies from change data.  
Finally, we suggest how software analytics and fault 

classification data can be used to solve new problems, using 
the assessment of refactoring as an example.  

In conclusion, a fault taxonomy provides improved precision 
in the measurement of software quality.  This improved 
precision can be valuable in the application of software 
analytics.  In order to promote the value of fault classification, 
we feel that research in automation of the task is warranted. 
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