

Toward a Learned Project-Specific Fault Taxonomy:

Application of Software Analytics
A Position Paper

Billy Kidwell

Computer Science Department

University of Kentucky

Lexington, USA

bill.kidwell@uky.edu

Jane Huffman Hayes

Computer Science Department

University of Kentucky

Lexington, USA

hayes@cs.uky.edu

Abstract—This position paper argues that fault classification

provides vital information for software analytics, and that

machine learning techniques such as clustering can be applied to

learn a project- (or organization-) specific fault taxonomy.

Anecdotal evidence of this position is presented as well as

possible areas of research for moving toward the posited goal.

Keywords—fault taxonomy; machine learning; software

repositories; clustering

I. INTRODUCTION

Any viable, useful software product is characterized by at
least two “proof of life” indicators: feature requests and bug
reports from users and/or developers. Our software-driven
society is known for its appetite for more and better features,
all while shunning buggy, slow, or just “ugly” software
products. Development organizations that want to remain
competitive in this environment must develop high quality
software that is also feature rich and reaches the market before
competitors. How can this be accomplished?

Studies have shown that history repeats itself in software
products, just as in life. Bugs/faults (called faults hereafter) or
types of faults that occurred in the past are likely to occur again
in the future (or are likely to reappear as latent errors). In
addition, there is evidence that fault taxonomies, when used
conscientiously, can assist a development organization in
understanding the types of faults that tend to occur: and when,
and where, and for whom. This information can greatly assist
in preventing errors, in finding and correcting errors, and in
supporting other applications such as clone detection. There
has been prior work on automatically assigning categories to a
fault based on a provided fault taxonomy.

In this paper, we argue that classified faults contain vital
information for software analytics, and that both the
development of a fault taxonomy and the assignment of fault
taxonomy categories to an individual fault or bug report must
be automated. We describe the utility of fault classification
data in the context of decisions that can be aided by software
analytics. Then, we argue for an automated approach to
learning a fault taxonomy for a specific project based on
project data. Based on our experience in the traceability area,
we understand the difficulties of getting practitioners to adopt a

new practice. This makes full automation desirable. We
believe, further, that recovering a fault taxonomy is analogous
to recovering traceability links from software engineering
artifacts or discovering the architecture style of a given
software system using its source code.

The paper is organized as follows. Section II presents
background information and our position. Section III presents
evidence that fault classification data is vital to software
analytics. Section IV provides research results to date to defend
our position for a learned fault taxonomy. Section V suggests
research goals/areas to move toward a realization of the
position and Section VI concludes.

II. BACKGROUND AND POSITION

This section presents background on fault classification

and fault taxonomies as well as our position.

A. Background

IEEE defines a software fault as an “incorrect step, process
or data definition in a computer program” [1]. The term fault
and defect are used synonymously in this paper. A fault leads
to a failure when the software does not perform to
specifications.

A fault taxonomy provides a scheme of classification for
software faults. Many attributes of a fault may be classified,
including severity, when the fault was found, the type of
failure, and the type of fault. A good example of a fault
taxonomy is the Orthogonal Defect Classification scheme,
developed by Chillarege et al. [2].

Clustering is a machine learning technique that groups data
instances into natural groups [3]. Clustering is therefore useful
when a training set is not available. Given a sufficiently large
training set, classification learning algorithms, e.g. Bayesian
networks, decision trees, and others, can be used to classify
new faults.

B. Position

Position: That fault classification provides data that is
essential to many types of decisions that could be aided by
software analytics.

Further: That machine learning can be used to learn a
fault taxonomy for a given software project.

III. FAULT CLASSIFICATION AND SOFTWARE ANALYTICS

Buse and Zimmermann surveyed 110 professional software
engineers and managers to determine their information needs
with regard to software analytics [4]. Failure information and
Bug Reports were the top two indicators for decision making.
Buse and Zimmermann also present themes for the types of
questions and decisions in which analytics could support
software engineers and managers. In this section we argue that
many of these types of decisions can be enhanced with fault
classification data.

A. Targeting Testing

Miller et al. developed detailed taxonomies for both faults
and for verification and validation (V&V) techniques, which
include different testing approaches and inspections [5]. Their
research maps the fault type to the V&V types that can detect it
and includes cost benefit analysis on each technique. Applying
software analytics to this approach of choosing the most
applicable V&V technique could expand the reach and utility
of such a method due to the availability of additional data.

Vegas et al. present a characterization process for testing
technique selection [6]. The characterization schema includes
the defect (fault) type. This history can then be used to
determine which types of faults are found by a particular
technique. Since components often exhibit similar types of
faults as they have in the past, it supplies helpful empirical data
about the selection of the most effective testing technique.

Misirli et al. present a retrospective study of software
analytics projects in industry [7]. Among the feedback on a
case study for defect prediction was the need for information
about “defect causes, such as the phases introduced, categories
and severity levels” [7]. Defect prediction models with this
additional information can provide recommendations about
where defects will occur, along with what kind of defects can
be expected, and thus how they can be most effectively
detected.

B. Release Planning

One of the relevant factors for release planning is the
number of outstanding faults in the software [4]. Managers
want to know that the fault arrival rate is declining to
determine that the software is approaching a stable point, and
can be considered ready for release. Chillarege et al. describe
how the defect type attribute of the Orthogonal Defect
Classification (ODC) can be used to assess the state of the
software with regard to release [2].

Consider, for example, that the fault arrival rate slows.
This is normally an indication that the software is stabilizing.
However, what if the faults that have been logged indicate that
functionality is missing? In that case, this could represent a
local minimum on the reliability growth curve. More faults are
just around the corner, but the functionality has not been tested
because it is not yet fully implemented. As software processes
become more iterative and incremental, with iterations as short
as two weeks, this type of analysis becomes even more
important, and requires automation.

C. Judging Stability

The same process to measure the stability of a release,
described above in Release Planning, can also be applied to
components or subsystems that are being developed
independently. By using a fault classification scheme, we can
build a profile for different stages of stability, and then
compare the current state of a project to past profiles. This
provides a quantitative assessment of the project’s progress
that can be used to aid in decisions about status and course
correction.

D. Targeting Training

As noted by Buse and Zimmermann, software development
is primarily a human endeavor that can benefit from
considering individual and team collaboration [4]. It is often
difficult to monitor the quality of work by individuals, in order
to recommend ways to improve performance. We believe that
fault classification plays a role here as well.

Yu reports on a software fault prevention program at
Lucent Technologies [8]. A crucial finding reported by Yu was
that nearly half of the faults were introduced during coding,
and many of the faults were preventable. Yu goes on to
describe the fault prevention guidelines that were developed.
Yu estimates that the 34.5% reduction in coding faults saved
approximately US$7M (published in 1998) in product rework
and testing [8].

Yu’s classification of faults is similar to other fault
classification schemes, and we feel that availability of this data
could make the development of such fault prevention
guidelines more efficient and effective. As a result, software
developers get valuable training on best practices that can
increase the quality of their source code.

E. Targeting Inspection

Inspection is an important practice in verification and
validation of software. It is not always clear, however, when it
should be applied, and to what extent. Runeson et al. analyzed
several empirical studies to answer this question, and provided
some practical findings [9]. They find that inspections are more
efficient and effective at finding design specification defects.
Code defects are more effectively found by functional or
structural testing, but some studies suggest that these activities
find different kinds of defects.

Hayes et al. describe a method to improve code inspections
through the use of fault links [10]. A fault link is a relationship
between the type of code fault and the types of components in
which they occur. In this experiment they demonstrate that use
of fault link information to customize code review checklists
can improve the number of faults that are found by 170-200%
and the number of hard to find faults by 200-300%. This
demonstrates the use of fault classification data, along with
properties of the software, to improve code inspections.

Historical data that includes classified fault data can help a
manager assign resources appropriately to these activities for a
given project. Given historical data about the types of faults
that were found using inspection and testing, we could better
understand the effectiveness of each activity for a given project
or organization. Software components tend to have the same

types of faults that have occurred in the past. The combination
of a component’s history and the effectiveness of past
techniques provide quantitative data that can be used to
allocate resources on these activities.

F. Summary

In this section we have presented evidence to support the
use of fault classification data for five types of decisions that
can be supported by software analytics. In each case prior
research provides examples of how fault classification data can
be used, and its importance to the decision-making process.

These areas may be improved through the use of software
analytics while using classified fault data to aid in the decision
making process. In many cases, we find that classified fault
data is not available. In the next section, we present our
position regarding the automatic construction of a fault
taxonomy.

IV. FAULT TAXONOMIES FROM CHANGE DATA

This section describes current research efforts to
automatically classify software faults through the use of
clustering. We present these results as anecdotal evidence that
more granular fault data can be extracted using machine
learning.

Our current investigation of a fault taxonomy focuses on
the classification of the fix for the fault as a proxy for the
nature of the fault. This is similar to the Defect Type attribute
in the Orthogonal Defect Classification scheme [2]. We extract
the syntactical differences from the source code changes that
repaired each fault. This data is arranged in a feature vector
that is used for clustering and analysis. We describe this
approach next.

To extract the syntactical changes from the source code, we
extend the fine-grained source code changes introduced in the
ChangeDistiller tool [11]. The algorithm for this tool compares
the abstract syntax trees for two revisions of a file [12]. The
tool and taxonomy were created for change impact analysis.
We were able to extend the taxonomy using contextual
information that is captured by the tool [13]. Additional
changes were made to the ChangeDistiller project in order to
handle problematic constructs such as the presence of
anonymous classes. The changes are available as open source
code1.

For each fault we construct a vector with each possible
syntactic change as a feature, and the frequency of that change
as the value of the feature. As an example, a fault may have
three changes to condition expressions, one inserted if
statement, and one inserted return statement. The set of
vectors from all faults in a version form a dataset. The dataset
is provided as input to the clustering algorithm.

Clustering is performed with the CLUTO clustering
toolkit [14]. The cosine similarity is used as the distance
measure. A repeated bisection clustering algorithm was used
with the I1 criterion function [13]. CLUTO reports the features
in the vector that contribute to the internal similarity of each

1 https://bitbucket.org/bill_kidwell/tools-changedistiller/

cluster [14]. This provides a quantitative way to name clusters
based on the dominant traits. The use of the I1 criterion
function maximizes the tightness of the resulting clusters by
providing one poor quality cluster for outliers. Zhao and
Karypis conclude that this property may be useful for noisy
data sets [15]. Our analysis of this cluster supports their claim.

Initial results were encouraging in multiple areas. The
frequency of occurrence for our extended change types indicate
that these changes occur frequently for fault repairs. In
addition, the changes were consistent between two versions of
Eclipse that were released two years apart, and that included
re-architecture from a proprietary runtime to a runtime based
on the OSGi® specifications [16]. The clusters that were
found for these versions were also consistent, suggesting a
possible consistency in the patterns of change. Initial manual
analysis indicates that the nature of faults within a cluster is
indeed similar: i.e., we have identified a fault type that is part
of a larger fault taxonomy. For more details about the resulting
clusters, data collection, and validation please refer to our
previous publication [13].

In addition, this process can be implemented as part of a
continuous integration system. This allows fault data to be
automatically collected and updated as code is integrated,
builds are completed, and automated tests are running. We
believe that the automatable nature of the data collection will
increase the likelihood of technology transfer to industry.

V. WHAT NEXT?

This section suggests research areas/goals for using

classified faults/fault taxonomies as a data source for software

analytics.

A. Fault Classification and Software Analytics

In Section III we provide information about the application
of fault classification data in the context of software analytics
questions and decisions. Each of these areas provides a starting
point for further study. A first step is to implement systems that
provide the information for these decisions. Further work can
incrementally expand on each of these areas by adding
additional information that is not easily available to decision-
makers today, thus improving the state of the art for these
practices through software analytics.

B. Fault Taxonomies from Change Data

Based on the results to date from Section IV, we found that
the syntactical change patterns in fault fixes exhibit
consistency, and provide insight into the nature of faults.

Therefore, we feel that we have provided initial validation
of our position: that software analytics can assist with the
learning of fault taxonomies, and that it is important to
integrate these methods into development tools.

To further work in this area, we suggest these research
areas/goals:

 Apply additional machine learning algorithms and

techniques to improve the automatic classification of faults.

 Study additional projects from multiple domains to

understand variance in faults.

 Enhance tools to support multiple programming languages.

 Study the application of recovered fault taxonomies to

process improvement, e.g., and verification and validation,

with comparisons to manual classification approaches.

 Automate other attributes of fault taxonomies, such as

failure type or severity, using machine learning.

C. New Applications for Software Analytics

In addition to the applications of fault classification data that
we have discussed in Section III, and the automation of the
fault classification process, there are numerous problems that
can benefit from classified fault data. Classified fault data
provides additional precision to the measurement of fault
occurrence that is not possible without it.

As an example of additional applications, we consider the
problem of evaluating the success of refactoring efforts. One
of the motivations of refactoring is to improve the quality of a
software component. Measuring the number of faults after the
refactoring provides coarse data, but measuring faults of a
particular type can provide more useful data.

As an example, consider a refactoring effort that reduces the
complexity of the source code in a highly volatile area of the
software. The expected impact of this change is likely to
include a reduction in the number of logic faults that are
introduced. After the refactoring has occurred, there will still
be numerous faults in the component due to the fact that it is a
volatile area of the code. If the refactoring was successful, the
number of logic faults will be reduced. However, faults due to
incomplete or ambiguous requirements are likely to occur here
as well. The classification of the faults separates these
measurements in a way that allows progress to be tracked more
precisely.

VI. SUMMARY

In this paper we provided a two part position about software
fault classification and software analytics. First, we believe
that fault classification provides useful data for software
engineering decisions. In Section III we examine five types of
decisions that others have identified for the application of
software analytics. For each of these areas we submit evidence
from previous studies about the use of classified fault data to
aid in the decision making process.

Our second position involves the manner in which software
faults are classified. Fault classification has traditionally been a
manual task, and there have been many studies that discuss the
benefits of the practice. However, industry adoption has been
limited to mature organizations. We present initial results from
our research supporting our position. In addition, we provide
source code changes that were used in our experiment to allow
others to contribute to this area.

Finally, we provide our suggestions for future work in three
parts. First, we provide suggestions on the use of classified
fault data for software analytics. Then, we present future
directions for learning fault taxonomies from change data.
Finally, we suggest how software analytics and fault

classification data can be used to solve new problems, using
the assessment of refactoring as an example.

In conclusion, a fault taxonomy provides improved precision
in the measurement of software quality. This improved
precision can be valuable in the application of software
analytics. In order to promote the value of fault classification,
we feel that research in automation of the task is warranted.

ACKNOWLEDGMENT

Work on this topic was previously partially funded by
NASA under grant NNG05GQ58G.

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE

Computer Society, IEEE Std 610.12-1990, Dec. 1990.
[2] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,

B. K. Ray, and M.-Y. Wong, “Orthogonal Defect Classification-A

Concept for In-Process Measurements,” IEEE Trans Softw Eng, vol. 18,

no. 11, pp. 943–956, 1992.

[3] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, Second Edition, 2nd ed. Morgan Kaufmann,
2005.

[4] R. P. L. Buse and T. Zimmermann, “Information Needs for Software

Development Analytics,” in Proceedings of the 34th International
Conference on Software Engineering, Piscataway, NJ, USA, 2012, pp.

987–996.

[5] S. M. Mirsky, J. E. Hayes, and L. A. Miller, “Guidelines for the
Verification and Validation of Expert System Software and

Conventional Software: Project Summary. Volume 1,” Nuclear

Regulatory Commission, Washington, DC (United States). Div. of
Systems Technology; Electric Power Research Inst., Palo Alto, CA

(United States). Nuclear Power Div.; Science Applications International
Corp., McLean, VA (United States), NUREG/CR--6316-Vol.1; SAIC--

95/1028-Vol.1, Mar. 1995.

[6] S. Vegas, N. Juristo, and V. Basili, “Packaging experiences for
improving testing technique selection,” J. Syst. Softw., vol. 79, no. 11,

pp. 1606–1618, Nov. 2006.

[7] A. T. Misirli, B. Caglayan, A. Bener, and B. Turhan, “A Retrospective
Study of Software Analytics Projects: In-Depth Interviews with

Practitioners,” IEEE Softw., vol. 30, no. 5, pp. 54–61, Sep. 2013.

[8] W. D. Yu, “A software fault prevention approach in coding and root
cause analysis,” Bell Labs Tech. J., vol. 3, no. 2, pp. 3–21, 1998.

[9] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling,

“What do we know about defect detection methods? [software testing],”
IEEE Softw., vol. 23, no. 3, pp. 82–90, May 2006.

[10] J. H. Hayes, I. R. Chemannoor, and E. A. Holbrook, “Improved code

defect detection with fault links,” Softw. Test. Verification Reliab., vol.
21, no. 4, pp. 299–325, Dec. 2011.

[11] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer

and ChangeDistiller,” IEEE Software, vol. 26, no. 1, pp. 26–33, 2009.
[12] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change Distilling:Tree

Differencing for Fine-Grained Source Code Change Extraction,” IEEE

Trans. Softw. Eng., vol. 33, no. 11, pp. 725–743, 2007.
[13] B. Kidwell, J. H. Hayes, and A. P. Nikora, “Toward Extended Change

Types for Analyzing Software Faults,” in 2014 14th International

Conference on Quality Software (QSIC), 2014, pp. 202–211.
[14] G. Karypis, “CLUTO: A Clustering Toolkit,” University of Minnesota,

Department of Computer Science, Minneapolis, MN, Technical Report

#02-017, Nov. 2003.
[15] Y. Zhao and G. Karypis, “Empirical and Theoretical Comparisons of

Selected Criterion Functions for Document Clustering,” Mach Learn,

vol. 55, no. 3, pp. 311–331, Jun. 2004.
[16] D. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and T. Watson,

“The Eclipse 3.0 platform: Adopting OSGi technology,” IBM Syst. J.,

vol. 44, no. 2, pp. 289–299, 2005.

