
Grand Challenges, Benchmarks, and TraceLab:
Developing Infrastructure for the Software Traceability

Research Community

J. Cleland-Huang1, A. Czauderna1, A. Dekhtyar2, O. Gotel, J. Huffman Hayes3

E. Keenan1, G. Leach1, J. Maletic4, D. Poshyvanyk5, Y. Shin1, A. Zisman6,
G.Antoniol7, B. Berenbach8, A. Egyed9, P.Maeder9

Center of Excellence for Software Traceability
DePaul Univ.1, Cal Poly2, Univ. of Kentucky3, Kent State Univ.4, College of William and Mary5

City College, London6, École Poly. Montréal, Siemens Corp.8, Linz Univ.9

jhuang@cs.depaul.edu

ABSTRACT
The challenges of implementing successful and cost-effective
traceability have created a compelling research agenda that
has addressed a broad range of traceability related issues,
ranging from qualitative studies of traceability users in in-
dustry to very technical and quantitative studies. Unfortu-
nately, advances are hampered by the significant time and
effort needed to establish a traceability research environ-
ment and to perform comparative evaluations of new re-
sults against existing baselines. In this panel we discuss
ongoing efforts by members of the Center of Excellence for
Software Traceability (CoEST) to define the Grand Chal-
lenges of Traceability, develop benchmarks, and to construct
TraceLab, an extensible and scalable visual environment for
designing and executing a broad range of traceability exper-
iments.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.1 [Requirements/Specifications]:
Tools

General Terms
Experimentation, Measurement, Documentation

Keywords
Traceability, Benchmarks, Metrics, TraceLab

1. INTRODUCTION
Requirements traceability is a critical component of any

rigorous software development process. Among other things,
it is used to demonstrate that a software design implements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00.

all of the specified software requirements, that all aspects
of the design are traceable to software requirements, and
that all code is linked to design specifications and test cases
[2]. Unfortunately, despite its clear criticality, numerous
case studies have shown that traceability can be difficult
to accomplish in practice, primarily because creating and
maintaining traceability links is time-consuming, costly, ar-
duous, and error prone [11, 26]. These problems have cre-
ated a compelling research agenda that includes qualitative
studies of traceability users in industry [20, 9, 24] as well as
a wide range of technical and quantitative studies address-
ing topics such as automated trace retrieval [4, 21, 17, 6,
7], link evolution [19], requirements satisfiability [14], and
traceability across product lines [18]. Traceability research
projects have been funded by government agencies including
NSF, NASA, and EU commission, as well as private indus-
tries. As a result of these efforts, there have been several
major advances in traceability techniques.

At the same time, advances have been hindered by the
lack of a publicly available research infrastructure. New re-
searchers entering the field must invest significant time to

Figure 1: Center of Excellence for Software Trace-
ability http://www.CoEST.org

Copyright is held by the author/owner(s).
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0589-1/11/05

17

Datasets
Metrics

Task

Baselines

Specific goals

Challenges Tasks, datasets,
& metrics

Components Templates

Track
progress

GUIs

Re-usable
resources

Community
contributions

Grand
Challenges

Experiments and studies

Results
Feedback
and
Community
consensus

Benchmarks

Manual Experiment/Study

Visual
modeler

TraceLab
experiment

TraceLab Resources

Results

Experimental
Plan

Publications

Figure 2: Elements of the Tracy Project

establish a research environment before they can become
productive, while seasoned traceability researchers face chal-
lenges in comparatively evaluating their work against prior
studies and must invest considerable time recreating prior
experiments in order to test out new algorithms or new com-
binations of techniques.

2. CENTER OF EXCELLENCE
To address these challenges, the International Center of

Excellence for Software Traceability (CoEST) was estab-
lished in 2005 with the charge to “bring together traceability
researchers and experts in the field, encourage research col-
laborations, assemble a body of knowledge for traceability,
and develop new technology to meet tracing needs” [3] . Co-
EST membership currently includes academic, government,
and industrial researchers from across the U.S. and Europe.

Since its inception, the CoEST has engaged in two pri-
mary projects, the Grand Challenges of Traceability
(GCT) and the Tracy project. The grand challenges, which
are discussed in greater detail in section 3 of this paper,
provide a detailed road map of critical research and prac-
tice goals. The Tracy project is driven by the grand chal-
lenges, and as depicted in Figure 2, focuses on equipping the
traceability research community through building research
infrastructure, collecting and organizing datasets, establish-
ing benchmarks, and developing a tool named TraceLab,
which will provide support for designing and executing a
broad range of traceability experiments.

3. GRAND CHALLENGES
Grand challenges, as their name suggests, are designed

to challenge and inspire people to work towards achieving
a difficult, yet significant goal. For example, in 1900, the
mathematician David Hilbert formulated a list of impor-
tant unsolved problems [13] which have engaged the cre-
ative thought of mathematicians ever since. More recently,
in 1989, the US Federal High Performance Computing Pro-
gram defined a modern day grand challenge as a “a funda-
mental problem in science or engineering, with broad appli-
cations, whose solution would be enabled by the application
of high performance computing resources” [1]. Furthermore,
a recent report entitled “Critical Code: Reproducibility for
Defense” [8], highlighted traceability as one of the critical el-
ements needed to build high-assurance systems. The report
goes on to further detail the significant difficulties in im-
plementing traceability effectively across large and complex
software systems. To address such needs, CoEST members
have therefore engaged in the task of identifying and defining
the grand challenge of traceability. This project was initially
launched in a series of workshop meetings funded by NASA
and NSF, which produced the original “Grand Challenges”
document [15]. Over the past three years, CoEST members
have further organized the challenges so that they are more
rigorously and systematically defined. The updated version
(2.0) is now available [12] on the CoEST website.

The GCT version 2.0 identifies the single overarching trace-
ability challenge as the need to achieve ubiquitous trace-
ability defined as “traceability which is always there, with-

18

out having to think about getting it there.” Furthermore,
ubiquitous traceability is “neither consciously established
nor sought; it is built-in and effortless. It has effectively
disappeared without a trace” [12].

GCT 2.0 also identifies the following seven sub-challenges:
(1) Purposed: Traceability is fit for purpose and supports
stakeholder needs, (2) Cost-Effective: The return from
using traceability is adequate in relation to the outlay of es-
tablishing it. (3) Configurable: Traceability is established
as specified, moment-to-moment, and the rich semantics ac-
commodate changing stakeholder needs. (4) Trusted: All
stakeholders have full confidence in the traceability as it is
created and maintained in the face of inconsistency, omis-
sions, and change. (5) Scalable: An increasing number
of artifacts are supported by traceability, of varying types
and at varying levels of granularity, as traceability extends
through the system life-cycle and across organizational and
business boundaries. (6) Portable: Traceability informa-
tion is exchanged, merged, and reused across projects, or-
ganizations, domains, product lines, and supporting tools.
(7) Valued: Traceability is a strategic priority valued by
all, where every stakeholder has a role to play and actively
discharges his or her responsibilities.

As these challenges are specified at a very high level, each
one of them is refined into a series of more concrete lower
level goals, associated with specific research tasks. For ex-
ample, the configurable sub-challenge has the associated re-
search task “to develop tools, templates, and techniques of
dynamic, heterogeneous and semantically rich traceability
information models to guide the definition and provision of
traceability”; while the ubiquitous challenge has the associ-
ated task of “total automation of trace creation and trace
maintenance, with quality and performance levels superior
to manual efforts.”

It is anticipated that such research tasks will motivate re-
searchers to engage in new projects and develop innovative
solutions. A more complete discussion of the grand chal-
lenges of traceability, their associated goals and tasks, is
found in the GCT version 2.0 [12] and at the CoEST web-
site [3].

4. TRACKING PROGRESS
In addition to serving as a research guide, the GCT pro-

vide the opportunity for evaluating and tracking progress
towards a specific goal. To that end, traceability researchers
and practitioners are able to rate the importance, difficulty,
and progress status of each research task. The CoEST web-
site reports the average ratings for each research goal. Over
time, we intend to show progression trends. Research tasks
that are quantitative in nature can also be evaluated through
the use of more formal benchmarks. These are discussed
in section 4.1. Additionally, all publications are classified
according to the research tasks they address, and are cata-
logued using a framework developed by Hayes and Dekhtyar
[16] for comparing requirements tracing experiments.

4.1 Benchmarks
A benchmark is defined by the Merriam-Webster dictio-

nary as a“standardized problem or test that serves as a basis
for evaluation or comparison.” Similarly, Oppenheimer, in
his work on benchmarks for system dependability, claims
that benchmarks provide researchers and system implemen-
tors with the means of quantifying design trade-offs and

Tom:
Research Professor

Tom is a long time traceability researcher. He has published
numerous papers that have evaluated techniques for tracing from
source code to design and requirements. He has focused on using
LDA, LSI, and various probabilistic approaches. He has also developed
algorithms for visualizing the results of his traces. Tom prefers coding
in C++ on Linux. He plans to contribute components to the TraceLab
project.

Win Scenarios include: (i) Ability to upload C++ components, (ii)
Benchmarks are easily accessible for comparative studies, (iii) Easy to
reproduce previously published experiments, (iv) Linux deployment

Karly is a PhD student. She is focusing her research in HCI and has
built tools that have been used on several case study projects to
create and manage traceability links. Her interests are in designing
user interfaces that help trace-users perform their tasks. She is
interested in studying the ways users interact with traceability
tools. She develops her GUI prototypes in C#. Karly does not
consider herself a programming whizz.

Win scenarios include: (i) Easily replace or modify one or more GUI
screens for capturing user feedback on traces, (ii) Very simple use
of TraceLab with minimal start-up/installation hassles, (iii) Quickly
establish a fully functioning, reliable traceability environment.

Karly:
PhD student

Aiden is a member of the TraceLab team. He will be an early
adopter of TraceLab and plans to use the alpha release of TraceLab
to develop components and model traceability experiments. He is
eager to evaluate the results of his new experiments against prior
baselines. To accomplish this he needs to be able to reproduce the
previous experiments and have access to the same datasets.

Win Scenarios include: (i) A flexible experimental environment that
allows a wide variety of complex experiments to be modeled, (ii)
access to several different datasets, (iii) reusable components so
that he doesn’t have to recreate previously used algorithms.

Aiden:
Associate Professor

Gordon is the technical manager for a very large systems
engineering project. He could be described as an early adopter, as
he prides himself in keeping an eye out for good ideas that could
help his organization. Gordon is concerned that current traceability
practices in his organization are costly and inefficient. He has heard
about TraceLab, and is interested in piloting a trace retrieval
technique on his project.

Win Scenarios include: (i) A reliable tool with no bugs, (ii) A
customized version of TraceLab which hides research features and
shows only the functionality he needs.

Gordon:
Industrial Researcher

Figure 3: Personas respresenting four primary users
of TraceLab

measuring and inspiring progress” [23]. Establishing bench-
marks in the traceability community is therefore anticipated
to facilitate a more rigorous comparison and analysis of ex-
perimental results.

We define a traceability benchmark to include (i) the de-
scription of a specific traceability task, for example “re-
trieve traces from requirements to code,” (ii) the measures
by which the effectiveness of the task will be evaluated, and
(iii) the specific datasets on which the task is to be per-
formed. Finally, over time as researchers conduct exper-
iments against the benchmark and report their results, a
set of baseline results will be established for use in future
comparative experiments. The benchmarks are all traceable
back to core goals in the grand challenges. This means that
researchers can focus on the low-level tasks while retaining
full accountability for how their work addresses higher level
traceability goals [10].

Benchmarks can be created retrospectively or proactively.
Retrospective benchmarks are established when it is ob-
served that multiple traceability researchers have conducted
related experiments, and there is a need to create a more
rigorous and systematic approach for comparing and analyz-
ing their results. Benchmarks might be established proac-

19

tively if the community as a whole, or even an individual
researcher, recognizes an important traceability task, and
proposes a benchmark in order to encourage research ac-
tivity in that area. We present two candidate benchmarks,
both of which are currently under consideration.

Benchmark #1:
Task: Automatically recover traces from documentation to
code, with options to trace at the class or method level. No
manual intervention is permitted.
Motivation: This is a traceability task which has at-
tracted significant attention [4, 21, 22] by multiple research
groups.
Relevant GCT challenge: RT1.3 (Inherent):Total au-
tomation of trace creation and trace maintenance, with qual-
ity and performance levels superior to manual efforts; RT6.9
(Trusted):Gain improvements in performance for the real-
time automated recovery and capture or links.
Datasets: (i) LEDA, (ii) EasyClinic, (iii)Albergate.
Metrics: Standard trace retrieval metrics.
Status: Under review.

Benchmark #2:
Task: Automatically maintain links between requirements
and UML class diagrams as the class diagrams evolve.
Motivation: Initial work performed in this area [19].
Relevant GCT challenge: RT1.3 (Inherent):Total au-
tomation of trace creation and trace maintenance, with qual-
ity and performance levels superior to manual efforts; RP5.7
(Trusted):Apply concepts from autonomic computing to ex-
plore self-healing traceability techniques and methods, cov-
ering diagnosis, repair actions and propagation, to apply at
both the individual trace and collection of traces levels.
Datasets: Under discussion
Metrics: Under discussion
Status: Datasets and metrics missing

4.2 Comparative Frameworks
Benchmarks are most appropriate for comparing quan-

titative results; however, traceability researchers engage in
a great variety of studies which are not so easily measur-
able. Basille, Shull, and Lanubile studied several different
experimental frameworks for software engineering [5]. They
pointed out that frameworks are useful for documenting key
choices and rationales for experiments, and that, over the
long-term, frameworks enable a shift in emphasis from ques-
tioning whether a specific approach is effective, to determin-
ing what factors make it effective or ineffective. Huffman
Hayes et. al. built on these ideas by proposing a framework
for “developing, conducting, and analyzing experiments on
requirements traceability” [16]. Their framework classifies
results according to the way the experiment is defined (i.e.
motivation, purpose, hypothesis etc), how the experiment is
planned (i.e. dependent and independent variables, metrics,
and data collection techniques), the way the experiment is
realized or executed, and the way the results are interpreted.
We further extend this framework to classify papers against
specific research projects within the GCT. The next release
of the CoEST website will include a self-reporting mecha-
nism so that authors can classify their own papers against
this framework when reporting results.

5. TRACELAB
Although defining the grand challenges, and providing

benchmarks, evaluative frameworks, and datasets goes a
long way towards establishing needed infrastructure for the
traceability research community, it still falls short of help-
ing new researchers to establish research environments or of
helping existing researchers to perform more rigorous eval-
uations and become more productive in their work. To this
end, we are developing a visual experimental workbench,
named TraceLab, for designing and executing traceability
experiments. TraceLab is similar in some respects to ex-
isting tools such as Weka, MatLab, or RapidMiner, except
that it is highly customized to support rigorous Software
Engineering experiments as opposed to general data mining
ones.

5.1 Features
As part of the TraceLab development process, we identi-

fied likely users and summarized their primary needs through
the use of Personas [25]. Four of these personas and their
anticipated usage scenarios are depicted in Figure 3. These
personas represent (i) researchers who will use TraceLab
to design and execute experiments, evaluate results against
benchmarked baselines, exchange components, and to train
students, (ii) PhD students, who will use TraceLlab to quickly
establish their experimental environments and get acclimated
to traceability research, (iii) developers, who will develop
the initial releases of TraceLab or help to maintain Trace-
Lab over the long-term, and finally (iv) industry adopters
who may wish to pilot various traceability components on
their own projects.

To meet these goals, TraceLab will include the following
features: 1. A visual environment for designing and exe-
cuting experiments. 2. An alternate scripting environment
for supporting experiments. 3. A stand-alone player which
compiles experiments for use in industrial pilots and other
studies. 4. A component library which facilitates sharing
of a wide variety of importers, pre-processors, algorithms,
analyzers, etc. across the traceability community. 5. The
ability for components to be written in a wide variety of lan-
guages including, C++, C#, and Java, and combined into a
single experimental workflow. 6. A flexible workflow engine
which support a wide variety of typical traceability experi-
ments. 7. Interfaces to previously defined benchmarks, so
that a researcher can design an experiment, run it against a
benchmark, and compare results against existing baselines.
8. A scalable environment that supports experiments in-
volving extremely large sized industrial datasets. 9. Porta-
bility across multiple operating systems including Windows,
Linux, and Mac OS. 10. A simple installation process which
allows new users to quickly download and install TraceLab.
11. An intuitive user interface which enables new users to
execute basic experiments without any formal training.

5.2 Designing and Executing an Experiment
To use TraceLab a researcher can either retrieve an ex-

isting experiment or create a new one from scratch. Each
experiment is represented as a precedence graph which de-
termines the order in which components are executed. Com-
ponents in the graph, exchange data through a data cache.
At the start of an experiment, data is loaded into the data
cache using a special importer component. Although data
may be stored in any user-defined data structure, Trace-

20

Figure 4: TraceLab Screen Shot

Lab provides a fairly extensive set of predefined data types,
which if used, can increase plug-n-play compatibility across
components. A given component in the precedence graph,
can use any of the data currently in the cache. In addition,
any new data elements output by that component then be-
come available for use by other downstream components.

Figure 4 depicts a basic experiment for tracing between
requirements and java code using the Vector Space Model
(VSM). This experiment uses four importers for import-
ing java code methods (target), stop words, requirements
(source), and the answer set against which results are evalu-
ated. The imported artifacts are then preprocessed to split
camelCase variable names, remove unwanted characters and
stopwords, to stem terms to their root forms, and to produce
a dictionary of terms.

A single component can be re-used in multiple places in
the graph. In this example, the same stop word remover is
used to process both the source and target artifacts, and
is labeled accordingly as Target Stopwords Remover and
Source Stopwords Remover. The workflow engine can ex-
ecute components in any viable order allowed by the prece-
dency relationships, including using parallel threads. In
this example, a synchronization point occurs when the trace
component is forced to wait for both the target artifacts
and the source artifacts to complete processing before simi-
larity scores are computed. Once traces are generated, their
accuracy is evaluated against the answer set by the results
metric computation component, and results are displayed in
a GUI-based Results chart. Figure 4 shows a tool tip depict-
ing information for the Dictionary builder component.

In order for a component to be integrated with TraceLab,
the programmer needs to modify the code using TraceLab’s

API. First the component’s metadata is defined, which in-
cludes a name, description, version, licensing, and config-
uration information. Secondly any data that the compo-
nent needs to read or write from the cache is defined using
the Input and Output functions from the IOSpec interface.
Components in the experiment that are dependent on in-
termediate artifacts are required to use the TraceLab I/O
interface to store and retrieve artifacts. Other data struc-
tures internal to a component do not require any special
treatment. Once the experiment is designed, TraceLab can
check the graph for problems such as illegal cycles or invalid
import commands. Once validated, the experiment can be
executed.

5.3 Experimenting against a Benchmark
Although not implemented yet, TraceLab is designed to

execute experiments against specified benchmarks. A bench-
mark controller is responsible for loading benchmark data-
sets, invoking the original experiment, and then collecting
and reporting results. The researcher is responsible for cre-
ating data mappings between the benchmark controller and
the original experimental design.

This is illustrated in Figure 5, which shows the same ex-
periment from Figure 4, but this time run against bench-
mark # 1 to “Automatically recover traces from documen-
tation to code, with options to trace at the class or method
level.” The experiment is automatically repeated for each
of the datasets associated with the benchmark. For each
dataset in turn, the data is loaded into the Borg. In this
example, this means that the java methods are loaded as
target artifacts and requirements as source artifacts. Stop-
words are also loaded. This step replaces the traditional

21

Benchmark
Metrics

Compute
Metrics

Bench-
mark
Task

More
benchmark
data sets?

Display
results

Yes

Benchmark
Datasets

Retrieve
dataset

B
e

n
ch

m
ar

k
Se

tu
p

Ex
p

e
ri

m
e

n
t

A
n

al
ys

is
 a

ga
in

st
 b

e
n

ch
m

ar
k

No

Baselines Compare
results against

baselines

Map current dataset
to specialized
importers

Map output results to
benchmark component

Figure 5: Benchmark experiment

import routine. Once data is loaded, the experiment is ex-
ecuted as per normal; however instead of displaying results
and terminating, the results are passed back to the bench-
mark controller for analysis against the standard benchmark
metrics. Once experiments have been run against all of the
associated datasets, the results are integrated, analyzed, and
reported against existing benchmark baselines.

5.4 Component Library
One of the primary goals of building TraceLab and devel-

oping the CoEST website, is to promote sharing across the
traceability research community. Although TraceLab allows
researchers to develop their own proprietary components,the
intention is that many of these components will eventually
be shared back into the community and available for future
researchers to use. To this end, collaborators on the project
are working to build sharable experiments and components
which will be released as part of the TraceLab framework.

Although TraceLab components are currently stored in an
unstructured directory, future releases will provide a fully
catalogued library of re-usable components. Furthermore,
TraceLab will also ship with a set of predefined experimen-
tal templates representing standard experiments in the field.
These templates will provide fully functioning experiments
which can be customized by individual researchers through
replacing or modifying components, or by restructuring the
experimental workflow.

5.5 TraceLab Status
TraceLab is currently in the development phase with part

of the functionality completed. To date the primary deliver-
ables include the visual environment for designing and exe-
cuting experiments, as well as the underlying data cache and
facilities for importing components. The first alpha release
is anticipated sometime around the Summer of 2011. Trace-
Lab is developed in C# using Mono, which means that it is
compilable to run on Windows, Mac, and Linux platforms.
However, currently TraceLab’s GUI has only been developed
for Windows. The multi-platform release is anticipated by
early 2012. The current release of TraceLab accepts com-
ponents written in C#, managed memory versions of C++,
and Java. Future releases will accept components written in
C regardless of whether memory is managed or not.

TraceLab is designed as a desktop application, as this
approach avoids any problems running experiments using
datasets under non-disclosure agreements. However, in the
future we will also provide a web-based version of TraceLab
for use in pedagogical settings. Although in an incubation
phase for the next two years, the TraceLab framework will
be released as an open source product. Specific licensing
decisions are still under consideration. At a recent collabo-
rators meeting, researchers sketched out ideas for the exper-
iments they would like to model and execute in TraceLab
(see Figure 6), and demonstrated the potential flexibility of
TraceLab to support a very broad range of experiments.

6. CONCLUSIONS
Moving a discipline forward towards more rigorous exper-

imental standards and greater collaboration provides signif-
icant benefits to the community, but does not come without
some amount of pain. One of the primary hindrances to
standardization and benchmarking in the traceability com-
munity has been the difficulty of acquiring non-trivial data-
sets. While industry does sometimes make data available to
individual research groups, it is almost always shared under
a non-disclosure agreement, and can therefore never be used
in a standard benchmark. Although for several research do-
mains, open source projects may provide a wealth of useful
data, this is not normally the case for traceability, as open
source projects typically do not include any form of system-
atic requirements or traceability matrices. These kinds of ar-
tifacts are part and parcel of the large and complex systems
for which traceability is most needed and must therefore be
included in benchmark datasets. For research purposes, it
is essential for datasets to come with validated traceability
matrices. Although researchers can reconstruct such matri-
ces on certain projects, it is difficult, if not impossible to do
this in unfamiliar domains. It therefore remains a significant
challenge for the traceability community to develop and/or
acquire non-trivial datasets for use in benchmarking.

In conclusion, this paper has described the current state

22

Figure 6: Traceability Researchers and Develop-
ers exchange ideas for TraceLab experiments. MRI
Meeting, DePaul University, February 2011

of CoEST’s TRACY project, including the Grand Chal-
lenges, benchmarking, and TraceLab. As previously ex-
plained, CoEST was founded to serve the traceability re-
search community and to foster advances in the field of
traceability, As such, the work accomplished to date repre-
sents significant community effort and involvement. Further
information concerning CoEST and opportunities for both
academics and practitioners to get involved can be found at
http://www.CoEST.org.

7. ACKNOWLEDGMENTS
The work described in this paper was primarily funded by

the U.S. National Science Foundation grant #CNS-0959924.

8. REFERENCES
[1] High-Performance Computing Act of 1991, Jan 1991.

[2] U.S. Food and Drug administration, general principles
of software validation. U.S. Dept. of Health and
Human Services, 1(1), 2002.

[3] Center of Excellence for Software Traceability,
http://www.traceabilitycenter.org, March 2008.

[4] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Software Eng.,
28(10):970–983, 2002.

[5] V. R. Basili, F. Shull, and F. Lanubile. Building
knowledge through families of experiments. IEEE
Trans. Software Eng., 25(4):456–473, 1999.

[6] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi,
and E. Romanova. Best practices for automated
traceability. IEEE Computer, 40(6):27–35, 2007.

[7] J. Cleland-Huang, A. Czauderna, M. Gibiec, and
J. Emenecker. A machine learning approach for
tracing regulatory codes to product specific
requirements. In ICSE (1), pages 155–164, 2010.

[8] Committee for Advancing Software-Intensive Systems
Producibility. Critical Code: Software Producibility for
Defense. National Research Council, USA, 2011.

[9] D. Cuddeback, A. Dekhtyar, and J. Hayes. Automated
requirements traceability: The study of human
analysts. Requirements Engineering, IEEE Intn’l
Conference on, 0:231–240, 2010.

[10] A. Davis. Requirements: A textbook example of goals
displacement. Requirements Engineering, IEEE Intn’l
Conference on, 0:xx, 2010.

[11] O. Gotel and A. Finkelstein. Contribution structures
(requirements artifacts). In RE, pages 100–107, 1995.

[12] O. Gotel et al. The Grand Challenges of Traceability
2.0. Software and Systems Traceability, Springer
Verlag, November, 2011.

[13] D. Hilbert. Mathematical problems. Bulletin of the
American Mathematical Society, 1900.

[14] E. A. Holbrook, J. Huffman Hayes, and A. Dekhtyar.
Toward automating requirements satisfaction
assessment. In RE, pages 149–158, 2009.

[15] J. Huffman Hayes, J. Cleland-Huang, and
A. Dekhtyar. The grand challenges of traceability.
Center of Excellence for Software Traceability, 1(1),
2005.

[16] J. Huffman Hayes and A. Dekhtyar. A framework for
comparing requirements tracing experiments. Intn’l
Journal of Software Engineering and Knowledge
Engineering, 15(5):751–782, 2005.

[17] J. Huffman Hayes, A. Dekhtyar, S. K. Sundaram, and
S. Howard. Helping analysts trace requirements: An
objective look. In RE, pages 249–259, 2004.

[18] W. Jirapanthong and A. Zisman. Xtraque:
traceability for product line systems. Software and
System Modeling, 8(1):117–144, 2009.

[19] P. Mäder, O. Gotel, and I. Philippow. Enabling
automated traceability maintenance through the
upkeep of traceability relations. In ECMDA-FA, pages
174–189, 2009.

[20] P. Mäder, O. Gotel, and I. Philippow. Motivation
matters in the traceability trenches. In RE, pages
143–148, 2009.

[21] A. Marcus, J. I. Maletic, and A. Sergeyev. Recovery of
traceability links between software documentation and
source code. Intn’l Journal of Software Engineering
and Knowledge Engineering, 15(5):811–836, 2005.

[22] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
Proc. of 18th IEEE Intn’l Conference on Program
Comprehension (ICPC’10), pages 68–71, 2010.

[23] D. L. Oppenheimer, A. B. Brown, J. Traupman,
P. Broadwell, and D. A. Patterson. Practical issues in
dependability benchmarking. In Evaluating and
Architecting System Dependability, 2002.

[24] M. C. Panis. Successful deployment of requirements
traceability in a commercial engineering
organization...really. Requirements Engineering, IEEE
Intn’l Conference on, 0:303–307, 2010.

[25] J. Pruitt and T. Adlin. The Persona Lifecycle:
Keeping People in Mind Throughout Product Design.
Morgan Kauffman, San Francisco, USA, 2006.

[26] B. Ramesh and M. Jarke. Toward reference models of
requirements traceability. IEEE Trans. Software Eng.,
27(1):58–93, 2001.

23

