
Trace Matrix Analyzer (TMA)

Wenbin Li, Jane Huffman Hayes, Fan Yang, Ken Imai, Jesse Yannelli, Chase Carnes, Maureen Doyle
1

Computer Science

University of Kentucky

Lexington, Kentucky, USA

wenbin.li@uky.edu, hayes@cs.uky.edu, fan_yang_1@brown.edu, jesse.yannelli@uky.edu, chase.carnes@uky.edu,
1
 Northern Kentucky University

Lexington, Kentucky, USA

doylem3@nku.edu

Abstract—A Trace Matrix (TM) represents the relationship

between software engineering artifacts and is foundational for

many software assurance techniques such as criticality analysis.

In a large project, a TM might represent the relationships

between thousands of elements of dozens of artifacts (for

example, between design elements and code elements, between

requirements and test cases). In mission- and safety-critical

systems, a third party agent may be given the job to assess a TM

prepared by the developer. Due to the size and complexity of the

task, automated techniques are needed. We have developed a

technique for analyzing a TM, called Trace Matrix Analyzer

(TMA), so that third party agents can perform their work faster

and more effectively. To validate, we applied TMA to two TMs

with known problems and golden answersets: MoonLander and

MODIS. We also asked an experienced software engineer to

manually review the TM. We found that TMA properly

identified TM issues and was much faster than manual review,

but also falsely identified issues for one dataset. This work

addresses the Trusted Grand Challenge, research projects 3, 5,

and 6.

Index Terms—Formal Specification, Temporal Requirements,

Translation, Requirement Comprehension, Trusted Grand

Challenge, Research Projects 3, 5, and 6.

I. INTRODUCTION

"Requirements assurance aims to increase confidence in the

quality of requirements through independent audit and review"

[1]. A Trace Matrix (TM) represents the relationship between

software engineering artifacts and is foundational for many

assurance techniques such as criticality analysis, change

impact analysis, and regression testing. In a large project, a TM

might represent the relationships (trace links) between

thousands of elements of dozens of artifacts (for example,

between design elements and code elements, between

requirements and test cases). In mission- and safety-critical

systems, a third party agent may need to assess a TM prepared

by the developer. There are currently no automated techniques

to assist such an agent.

To support assurance activities, trace links and TMs must

possess a number of characteristics (shared with requirements

and requirement sets, as a matter of course [2]). Trace links

must be: correct, unambiguous, and verifiable; the TM must be

complete, consistent, and modifiable [2]. Our work focuses on

ensuring that TMs and their trace links are complete and

correct. Informally, a complete trace matrix is one where all

the parent level elements trace to all appropriate children

elements. A correct trace matrix is one that does not contain

inappropriate or spurious trace links [1]. Theoretically, it is not

possible to determine if a trace matrix is complete, just as it is

not possible to determine that a set of requirements are

complete. We therefore move to a surrogate line of inquiry:

can we develop automated techniques to evaluate

completeness (and correctness) as well as human analysts.

Toward that end, we developed a tool in C++ to analyze a

given trace matrix and look for six types of potentially

incorrect links (listed from hardest to easiest to detect):

possible “bad” links, possible missing links, parents without

children (e.g., high level requirements without links), children

without parents, children with too many parents, and parents

with too many children (e.g., a high level requirement may

have more than ten children while most of the other high level

requirements have less than five). The results were promising

and the tool, Trace Matrix Analyzer or TMA, was rewritten in

C# and converted to a TraceLab component.

The research question addressed by this paper is: Can a

technique be developed to analyze provided trace matrices at

least as well as humans? The contribution of the paper is

several-fold:

- Introduces a technique for analyzing a provided TM,

- Undertakes an empirical study to evaluate the

technique using a publicly available dataset,

- Undertakes an anecdotal study of manual review of a

TM, and

- Provides a composite TraceLab component for use by

others.

We applied TMA to two trace matrices for which issues

had already been identified manually by independent experts.

We used two common information retrieval (IR) measures to

assess the composite component (using a gold standard or

answerset against which to compare): recall, a coverage

measure that indicates the percentage of true trace matrix

issues that were retrieved; and precision, a noise measure

Figure 1. The Trace Matrix Analysis Approach (after [1]).

that indicates the percentage of retrieved issues that were

correct. We also looked at execution time. TMA exhibited

95% recall and 78% precision and ran very quickly (less than

2 seconds in wall clock time) for one dataset.

We also undertook an anecdotal study to compare the

tool’s performance to that of a human analyst. We found little

difference in the effectiveness of the two methods (TMA,

manual), but found that TMA is much more efficient than

manual evaluation.

The paper is organized as follows. Section 2 addresses

trace matrix analysis. Section 3 presents related work.

Sections 4 and 5 discuss validation and results, respectively.

Section 6 provides conclusions and a look at future work.

II. TRACE MATRIX ANALYSIS

The Trace Matrix Analysis tool builds on prior work by

Port et al. [1]. We explain possible issues that a TM may

possess and the approach that is implemented in TMA.

A. Possible Issues

Trace Matrices must be examined by independent agents to

ensure that the trace generation process was undertaken

properly (whether a developer generated the TM as the

lifecycle proceeded or an automated tool was used to generate

the TM after the fact) as well as to check for common trace

matrix issues. Specifically, our work focuses on assuring that

trace matrices are complete and that individual links are

correct.

In order to assure that a given TM is complete, we seek to

address three questions: 1) do all parent elements have

children elements?, 2) do all children elements have parents?,

and 3) are there any missing links? The first question can be

answered in a trivial way by examining the trace matrix for

parent element identifiers (IDs) followed by no links. After

inverting the trace matrix (examining it from the children

element perspective), the second question can also be

answered trivially by examining the trace matrix for children

element identifiers (IDs) followed by no links.

The third question requires an evaluation of the trace

matrix to apply heuristics or methods for identifying missing

links. One way to accomplish this is to examine sibling

relationships. For example, if children elements 1 and 2 share

the parents A and B and child element 2 also has parent C, it

could be inferred that child element 1 should also have a link

to parent element C (see Figure 2). We have implemented

such “sibling” checks for possible missing links. Further, we

have looked at the notion of investigation sets as implemented

by Port et al. to study the relationships between non-

functional and functional requirements in a generated trace

matrix [1].

Figure 2. “Sibling” Checks

Port et al. [1] automatically generate a trace matrix

between all functional and non-functional requirements in a

given system. They then use heuristics to identify

investigation sets for the trace matrix. This approach is shown

in Figure 1. The generated trace matrix is shown in the upper

left of the figure and labeled T. Its inverse is generated, called

AT or anti-trace. Links that are found to possess the

characteristic of “high similarity” (which Port et al. [1] do not

define, but we define as a high relevance weight (from the

vector space model with tf-idf weighting that is associated

with a link in the TM) form the high similarity or HT set.

Based on these sets, we can find the low risk investigation set

or L (lower left corner of Figure 1), possible missing links or

M and possible bad traces or F. Our TMA component uses

these sets. M augments the set of possible missing links

(completeness). F becomes the set of possible bad traces, thus

addressing the other TM issue of interest: correctness of links.

Next, we discuss how the approach has been implemented as

a TraceLab component.

B. Analysis Approach

We implemented our approach using TraceLab, as shown

in Figure 3. We created eight TraceLab components: High

Similarity Matrix, Low Risk Trace, Possible Missing Link,

Possible Bad Trace, Anti-Trace, Generate Issue List, Read

Golden Answerset, and Compare Issue Lists. High Similarity

Matrix uses the Vector Space Model to generate candidate

links between the source and target artifacts. It then applies a

threshold to the relevance weight and accepts all links above

that threshold as elements of the High Similarity set HT. Low

Risk Trace takes HT as input as well as the trace matrix T

(from the answer set importer component) and determines the

intersection of the two sets, L.

Possible Missing Link takes HT and L as input and returns

their difference (M in the Port et al. paper [1]). Possible Bad

Trace takes T and L as input and returns their difference (F,

per Port et al. [1]). Anti-Trace returns AT which is the inverse

of the trace matrix, T. Generate Issue List outputs all the issues

identified (possible missing link, parent without children, etc.)

along with the associated parent and/or child identifiers.

Figure 4 shows an example issue list. Read Answerset accepts

the gold standard issue list for the given trace matrix in order

to evaluate TMA. Compare Issue Lists calculates recall and

precision by comparing the output issue list of Generate Issue

List with the golden answerset. All other components used are

provided with TraceLab.

III. RELATED WORK

A number of researchers have described the creation [4, 10]

or maintenance [8] of trace matrices, however validation and

verification of the matrices has, up to now, primarily been

performed by humans.

The use of automated methods for TM assessment was

first explored and reported by A. Dekhtyar, Hayes, Sundaram,

Holbrook, and O. Dekhtyar [4]. They present a method using

Information Retrieval (IR), multiple trace recovery tools, and

voting among the tools to demonstrate the detection and

rejection of false positives introduced by automatic trace tools.

They found that humans were better at finding false positives;

however automation did find false positives that were not

detected by humans. The findings from Dekhatyar et al. [4]

influenced the requirements for a low false positive rate for the

tool discussed within this paper. Also, our results have led us

to consider using a variety of trace techniques for generating

and combining multiple HT sets. This remains future work.

Port, Hayes, Huang, and Nikora [1] examined the problem

of missing requirements between non-functional requirements

and functional requirements. This paper applies a similar

methodology using text-mining and statistical analysis to

analyze TMs and identify sets of potential missing links for a

larger set of artifacts.

Ghabi et al. [9] describe an interesting tool they developed

for validation of requirements to code traces. They

demonstrate their tools effectiveness using four gold-standard

case studies. Ghabi’s work is similar to the work described

here; however, it was developed to address maintenance of the

trace matrix and not overall verification and validation. In

addition, differences include: TMA is a static tool, TMA does

not require a caller/callee relationship, and TMA does not

require a code graph for evaluation. In addition, though

Ghabi’s work may be extended to apply to a general graph,

TMA was designed to support any and all types of artifact

pair(s).

IV. VALIDATION

In order to evaluate the TMA approach, we undertook a

small scale study. The research question, variables, hypotheses,

study design, and threats to validity are presented below.

A. Research Question

The research question for the study is: Can a technique be

developed to analyze provided trace matrices at least as well

as humans in terms of effectiveness (recall, precision) and

efficiency (time)?

Figure 3. The Trace Matrix Analysis Composite TraceLab Component.

A. Dependent and Independent Variables

The Dependent Variables (DVs) are recall, precision, and

time. Recall (R) measures the percentage of the issues that

TMA is able to retrieve. Precision (P) measures how many

incorrect issues TMA retrieves. Time (S) measures, in wall

clock seconds, how long it takes for TMA to generate an issue

list.

The Independent Variable (IV) is technique. The IV has

two levels: TMA (T) or manual (M).

B. Hypotheses

There are three sets of hypotheses:

Null hypothesis 1 (H01): R(TM) = R(M)

Alternative hypothesis 1 (HA1): R(TM) > R(M)

Null hypothesis 2 (H02): P(TM) = P(M)

Alternative hypothesis 2 (HA2): P(TM) > P(M)

Null hypothesis 3 (H03): S(TM) = S(M)

Alternative hypothesis 3 (HA3): S(TM) > S(M)

B. Study Design

The study was designed to evaluate the performance of
TMA on publicly available datasets compared to a human
analyzing the trace matrix for the same datasets.

Figure 4. Sample Issue List

We ran the study on the Moderate Resolution Imaging
Spectroradiometer (MODIS) dataset and the MoonLander
dataset. The MODIS dataset [5, 6] is an open source NASA
scientific instrument; it consists of 19 high level and 49 low-
level requirements. The MoonLander dataset [7] is a text-
based game written by undergraduates at CalPoly San Luis
Obispo; it consists of 10 high level requirements and 5 test
cases.

The consenting participant (per the University’s
institutional review board process) was given a pre-study
questionnaire to gauge any prior experience with tracing and
trace matrices. The participant possessed strong software
engineering experience (17 years), which put bias in favor of
the manual method. The study was then explained to the
participant. The participant was given the MoonLander
dataset in hardcopy. The dataset contained the trace matrix,
requirements, and test cases. The participant was asked to
record the time expended on the task, to record issues, and
then to answer several short post-study questions (such as
describing the process applied).

After finishing, the participant was given the MODIS
dataset and was also shown the RETRO.NET tool [8] that
could be used to interactively examine the datasets and matrix.
Some hardcopy artifacts were also provided: trace matrix,
high-level requirements, low-level requirements. We
manually calculated recall and precision using golden answer
sets for each dataset. In addition, we ran the TMA Tracelab
component on the same datasets and captured execution time.
The choice of threshold significantly affects the performance
of TMA. We used three thresholds (0.1, 0.2, and 0.4)
(filtering the similarity scores generated by the vector space
model) to generate the high similarity matrix which is used to
generate the list of possible bad links and possible missing
links. We checked the high similarity matrix generated by the
Vector Space Model component manually and found that
most of the links have weights between 0.1 and 0.2. Thus, the
three thresholds we used were representative.

C. Threats to Validity

There were four possible types of threats to validity for
the study. A threat to internal validity was the possibility that
something other than our independent variable was impacting
recall, precision, and time. The main threat was possible
distractions or confounding factors regarding the human
analyst. We did not monitor the analyst during the study and
it is possible that they were distracted by other events and/or
made avail of other sources to assist them (though we do not
think this was the case). In addition, we provided an
automated tool to assist with review of the second trace
matrix. To mitigate this internal validity threat, we asked the
participant to document the process they used as well as to
time their work.

A possible threat to construct validity was “hypothesis
guessing.” The participant may have tried to guess what the
study was about and based his/her behavior accordingly. A
threat to external validity is the use of two datasets that were
rather small, although the MODIS dataset is a real dataset.
Our datasets covered only two domains, we cannot generalize
the results to all domains or all project trace matrices.

A possible threat to conclusion validity is that proper
statistical analysis is not performed or that data violate the
assumptions of the statistical tests. We cannot claim that our
results are statistically significant (sample is too small). We
discuss the results next.

V. RESULTS

Below we present the results of the study as well as some

observations.

A. Study Results

The MODIS dataset and its trace matrix were inspected

manually and independently: the trace matrix has 19 issues

that comprise the trace matrix analysis golden answerset. Of

these 19, there are: 11 parent artifacts without any children

artifacts, six bad links, and two missing links. Table I shows

the issues found by the participant and TMA. The participant

identified 11 parent artifacts without children, four missing

links, and three incorrect links. With threshold 0.1, TMA

found 11 parent artifacts without children, 85 missing links,

and seven bad links. TMA found all the parents with no

children regardless of the threshold (this is a trivial check).

With threshold 0.2, the number of missing links greatly

reduced to four, while the number of bad links increased to

eight. With threshold 0.4, TMA did not find any missing links

and bad links increased to nine.

TABLE I. MODIS ISSUE IDENTIFICATION: TMA VS. MANUAL METHOD

 All
Parents
w/out

Children

Missing

Links

Bad

Links

Trace
Matrix

19 11 2 6

Manual 18 11 4 3

TMA, 0.1 103 11 85 7

TMA, 0.2 23 11 4 8

TMA, 0.4 20 11 0 9

Table II shows the precision, recall, and time for the

manual and TMA techniques applied to the MODIS dataset.

The participant (the manual method) performed better than

TMA with respect to finding missing links because both

missing links were found; of note is that the participant also

misidentified two links as missing (false positives). TMA at

threshold of 0.1 also found both of the missing links, but

returned many incorrect missing links. The reason for this is

that there are too many links with weight higher than 0.1, and

all these links are considered “possibly missing.” For bad

links, the two methods performed similarly. The participant

only found half of the bad links, but all that were found were

correct; TMA threshold 0.2 and TMA threshold 0.4 found all

six of the bad links, but identified false positives as well. The

threshold of 0.4 also prevented the approach from finding any

missing links, because the weights of most links in this

dataset are below 0.4.
We added the number of issues (regardless of their types)

for each method and arrived at the recall and precision shown
in Table III. As can be seen, the manual method has the
highest precision (89% versus 85%), and TMA at threshold of
0.2 has recall as high as 95% (versus 84% for manual).

While the effectiveness of the manual method and TMA
0.2 are not so different, there is a major difference in their
efficiency. The participant spent 2,280 seconds (38 minutes)
to evaluate the matrix (after training was performed) while
the TMA method took only one second to generate a similar
result. It should be noted that any false positives generated by
TMA may require review (and thus time) on the part of an
analyst.

Neither the manual review nor TMA performed well on
the “toy’ dataset (MoonLander). All of the non-trivial issues
identified by TMA (there were five in total) were false
positives. In addition, TMA missed three possible missing
links. There was little consolation that TMA correctly
identified the two parents with no children (making for two of
eight issues correctly identified (25% recall) with five false
positives of seven issues identified (28.7% precision). The
participant also performed poorly on this dataset, incorrectly
identifying one bad link and 19 missing links for recall of
100% and precision of 20% (this took him 25 minutes or

TABLE II. PRECISION, RECALL, AND TIME FOR MANUAL AND TMA METHODS ON MODIS (ISSUES SEPARATED)

Parents w/out Children Missing Links Bad Links All Issues

Time
Precision Recall Precision Recall Precision Recall Precision Recall

Manual 1.00 1.00 0.50 1.00 1.00 0.50 0.71 0.63 2,280 sec

TMA, 0.1 1.00 1.00 0.02 1.00 0.71 0.83 0.08 0.88

1 sec TMA, 0.2 1.00 1.00 0.25 0.50 0.75 1.00 0.58 0.88

TMA, 0.4 1.00 1.00 - 0.00 0.67 1.00 0.67 0.67

1500 seconds). We are currently investigating the dataset to
understand this result. Our current thinking is that the
elements of MoonLander are very simple (sentences) and
there is a tremendous amount of repeated text in each element
of both artifacts.

TABLE III. PRECISION, RECALL, AND TIME FOR MANUAL AND TMA

METHODS ON MODIS (ISSUES COMBINED)

 Recall Precision

Manual 84.21% 88.89%

TMA, 0.1 94.74% 17.48%

TMA, 0.2 94.74% 78.26%

TMA, 0.4 89.47% 85.00%

Based on the results, we are not able to reject null

hypotheses 1 and 2. It does appear that TMA saves significant
time. If we had a larger sample size, we might be able to
reject null hypothesis 3.

B. Observations

It is obvious that the threshold greatly affects the
performance of TMA. This is not surprising, because
threshold directly affects the HT. As expected, with an
increase of threshold comes a decrease in the number of links
in HT. Consequently, TMA finds fewer possible missing
links and more possible bad links. The recall will increase
with the threshold, but the precision will reach a maximal
value at a certain threshold and then decrease. In this study,
the threshold value for maximal precision appears to be close
to 0.2.

According to Table I, this effect is more obvious in
finding missing links. While a suitable threshold (in this case,
0.2) can generate reasonable results, a higher threshold (in
this case, 0.4) prevents TMA from finding any possible
missing links. On the contrary, TMA 0.1 found many
incorrect missing links. The low precision makes the result
less useful since a human will be required to weed out false
positives. To investigate this, we checked the similarity
matrix generated by the Tracer component of TraceLab. We
found that the weights of a large portion of the links are
between 0.1 and 0.2. With a threshold of 0.1, these links were
all included in the high similarity matrix and were considered
as possible missing links. However, a threshold of 0.4
resulted in only one link being in the high similarity matrix,
causing TMA to not find any possible missing links.

To analyze how to improve the performance of TMA, we
also examined the possible missing links that were not found
by TMA 0.2 and the false positive bad links that were only

found by the TMA method. We found that the children
artifacts of the two missing links share very few keywords
with their parent artifacts; this causes the weight of these two
links to be lower than the threshold of the high similarity
matrix. The participant found these missing links based on the
element semantics (they read the parent and child text and
realized that the text meant the same thing though common
terms were not used). However, the threshold prevents these
links from being included in HT, which also makes it
impossible to find these links in M, the possible missing links.
Additionally, high thresholds also explain the two false
positive bad links. The similarity weight of these two links
was so low that even TMA 0.1 did not include them in HT.

The results show that the quality of HT significantly
affects the performance of TMA. There are two factors that
affect the quality of HT: the threshold and the tracing
technique. The “best” threshold that maximizes TMA
effectiveness for finding bad links and other issues may
depend on the dataset. The value of this threshold should not
be too low in order to prevent low precision in finding
possible missing links; also, it should not be too high to
prevent too many false positive bad links.

In this study, we used the vector space model (VSM) with
term frequency-inverse document frequency (TF-IDF)
weighing as the tracing technique. One possible way to
improve HT is to use other tracing techniques (such as LSI,
Probabilistic

1
) or to use Okapi or LTU as the weighting

option for VSM. Using different techniques to generate
multiple HT sets, it is possible to build a “combined HT” that
may have higher quality.

VI. CONCLUSIONS AND FUTURE WORK

We believe that TMA can be useful in validating a given
trace matrix and be used to assist in finding issues in it. With
a well-designed TMA program, analysts need to merely set
the proper threshold and then check the results. A suitable
threshold can be estimated by checking the weights of all
possible links. Alternatively, when the TMA returns too many
possible missing links or possible bad links, it is clear that the
threshold should be increased or decreased accordingly.
Comparing the effects of various thresholds is an easy task
because of the efficiency of TMA. Once the analyst gets a
result, he/she should focus on the possible bad links with low
weights because these links may be false positives. Similarly,
he/she should focus on the possible missing links with high

1
 The reader is referred to the chapter on Information Retrieval techniques in

the “Software and Systems Tracebility” book (Springer, 2012) for definitions
of LSI, LTU, and Okapi

weights because these will always be included in the HT
(regardless of correctness).

Future work includes examining the threshold issue to see

if more specific, dataset-specific guidance can be given to

human analysts. Another possible improvement is expanding

the current approach by comparing the parents that have

similar children. For example, if two parents share most of

their children, it is possible that they also share other non-

linking children. This may illustrate missing links. In addition,

it should be noted that several of the analyses performed

require only the TM and a list of the identifiers of the source

and target artifacts (we assume that a TM presents the trace

links from the source to the target [3]). This is useful for third

party agents who are not permitted to share the text of the two

artifacts being traced and further are not permitted to install

external tools on their computer systems. At this time, we

require the full text of both artifacts. Implementing checks

using just the identifiers remains future work.

ACKNOWLEDGMENTS

This work is funded in part by the National Science

Foundation under NSF grants CCF-0811140 (research) and

ARRA-MRI-R2 500733SG067 (benchmark development).

We thank our anonymous participant.

REFERENCES

[1] D. Port, A, Nikora, JH Hayes, and LiGuo Huang, "Text Mining

Support for Software Requirements: Traceability Assurance ",

System Sciences (HICSS), 2011 44th Hawaii Inernational

Conference on, February 2011.

[2] OCZ Gotel, FT Marchese, and S. Morris, “On Requirements

Visualization,” In Proceedings of the Second International

Workshop on Requirements Engineering Visualization

(REV’07).New Delhi, India: IEEE Computer Society, 15-19

October 2007.

[3] OCZ Gotel, JC Haung, JH Hayes, A Zisman, A Egyed, P

Grunbacher, A Dekhtyar, G Antoniol, J Maletic, and Patrick

Mader, Traceability Fundamentals, in Software and Systems

Traceability, Jane Cleland-Huang, Orlena Gotel, Andrea

Zisman, editors, Springer, London, New York, 2012, p. 6.

[4] Alex Dekhtyar, Jane Huffman Hayes, Senthil Sundaram,

Ashlee Holbrook, Olga Dekhtyar, “Technique Integration for

Requirements Assessment.” In Proceeding of the IEEE Int’l

Conference on Requirements Engineering, 2007.

[5] [5] MODIS Science Data Processing Software Requirements

Specification Version 2, SDST089, GSFC SBRS, November

10, 1997.

[6] MODIS Requirements Specification, SDST-0591, GSFC

SBRS, September 11, 1997.

[7] Dalbey, John, MoonLander dataset, CalPoly San Luis Obispo.

[8] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan

Sundaram, E. Ashlee Holbrook, Sravanthi Vadlamudi, and

Alain April, "REquirements TRacing On target (RETRO):

Improving Software Maintenance Through Traceability

Recovery," Innovations in Systems and Software Engineering:

A NASA Journal (ISSE), Vol. 3, No. 3, pp. 193-202, 2007.

[9] Ghabi, A., Egyed, A., “Code Patterns for Automatically

Validating Requirements-To-Code Traces.” In Proceeding of

the 27th IEEE/ACM International Conference on Automated

Software Engineering, September 2012, Essen, Germany.

[10] Antoniol, Giuliano, et al. "Recovering traceability links

between code and documentation." Software Engineering, IEEE

Transactions on 28.10 (2002): 970-983.

