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Abstract—A Trace Matrix (TM) represents the relationship 

between software engineering artifacts and is foundational for 

many software assurance techniques such as criticality analysis. 

In a large project, a TM might represent the relationships 

between thousands of elements of dozens of artifacts (for 

example, between design elements and code elements, between 

requirements and test cases). In mission- and safety-critical 

systems, a third party agent may be given the job to assess a TM 

prepared by the developer. Due to the size and complexity of the 

task, automated techniques are needed. We have developed a 

technique for analyzing a TM, called Trace Matrix Analyzer 

(TMA), so that third party agents can perform their work faster 

and more effectively. To validate, we applied TMA to two TMs 

with known problems and golden answersets: MoonLander and 

MODIS. We also asked an experienced software engineer to 

manually review the TM. We found that TMA properly 

identified TM issues and was much faster than manual review, 

but also falsely identified issues for one dataset. This work 

addresses the Trusted Grand Challenge, research projects 3, 5, 

and 6. 

Index Terms—Formal Specification, Temporal Requirements, 

Translation, Requirement Comprehension, Trusted Grand 

Challenge, Research Projects 3, 5, and 6. 

I.  INTRODUCTION 

"Requirements assurance aims to increase confidence in the 

quality of requirements through independent audit and review" 

[1]. A Trace Matrix (TM) represents the relationship between 

software engineering artifacts and is foundational for many 

assurance techniques such as criticality analysis, change 

impact analysis, and regression testing. In a large project, a TM 

might represent the relationships (trace links) between 

thousands of elements of dozens of artifacts (for example, 

between design elements and code elements, between 

requirements and test cases). In mission- and safety-critical 

systems, a third party agent may need to assess a TM prepared 

by the developer. There are currently no automated techniques 

to assist such an agent.  

To support assurance activities, trace links and TMs must 

possess a number of characteristics (shared with requirements 

and requirement sets, as a matter of course [2]). Trace links 

must be: correct, unambiguous, and verifiable; the TM must be 

complete, consistent, and modifiable [2]. Our work focuses on 

ensuring that TMs and their trace links are complete and 

correct. Informally, a complete trace matrix is one where all 

the parent level elements trace to all appropriate children 

elements. A correct trace matrix is one that does not contain 

inappropriate or spurious trace links [1]. Theoretically, it is not 

possible to determine if a trace matrix is complete, just as it is 

not possible to determine that a set of requirements are 

complete. We therefore move to a surrogate line of inquiry: 

can we develop automated techniques to evaluate 

completeness (and correctness) as well as human analysts.  

Toward that end, we developed a tool in C++ to analyze a 

given trace matrix and look for six types of potentially 

incorrect links (listed from hardest to easiest to detect): 

possible “bad” links, possible missing links, parents without 

children (e.g., high level requirements without links), children 

without parents, children with too many parents, and parents 

with too many children (e.g., a high level requirement may 

have more than ten children while most of the other high level 

requirements have less than five). The results were promising 

and the tool, Trace Matrix Analyzer or TMA, was rewritten in 

C# and converted to a TraceLab component.  

The research question addressed by this paper is: Can a 

technique be developed to analyze provided trace matrices at 

least as well as humans? The contribution of the paper is 

several-fold: 

- Introduces a technique for analyzing a provided TM, 

- Undertakes an empirical study to evaluate the 

technique using a publicly available dataset, 

- Undertakes an anecdotal study of manual review of a 

TM, and 

- Provides a composite TraceLab component for use by 

others. 

We applied TMA to two trace matrices for which issues 

had already been identified manually by independent experts. 

We used two common information retrieval (IR) measures to 

assess the composite component (using a gold standard or 

answerset against which to compare): recall, a coverage 

measure that indicates the percentage of true trace matrix 

issues that were retrieved; and precision, a noise measure 



 
 

Figure 1. The Trace Matrix Analysis Approach (after [1]). 

 

 

that indicates the percentage of retrieved issues that were 

correct. We also looked at execution time. TMA exhibited 

95% recall and 78% precision and ran very quickly (less than 

2 seconds in wall clock time) for one dataset.  

We also undertook an anecdotal study to compare the 

tool’s performance to that of a human analyst. We found little 

difference in the effectiveness of the two methods (TMA, 

manual), but found that TMA is much more efficient than 

manual evaluation. 

The paper is organized as follows. Section 2 addresses 

trace matrix analysis. Section 3 presents related work. 

Sections 4 and 5 discuss validation and results, respectively. 

Section 6 provides conclusions and a look at future work. 

II. TRACE MATRIX ANALYSIS 

The Trace Matrix Analysis tool builds on prior work by 

Port et al. [1]. We explain possible issues that a TM may 

possess and the approach that is implemented in TMA. 

A. Possible Issues 

Trace Matrices must be examined by independent agents to 

ensure that the trace generation process was undertaken 

properly (whether a developer generated the TM as the 

lifecycle proceeded or an automated tool was used to generate 

the TM after the fact) as well as to check for common trace 

matrix issues. Specifically, our work focuses on assuring that 

trace matrices are complete and that individual links are 

correct.  

In order to assure that a given TM is complete, we seek to 

address three questions: 1) do all parent elements have 

children elements?, 2) do all children elements have parents?, 

and 3) are there any missing links? The first question can be 

answered in a trivial way by examining the trace matrix for 

parent element identifiers (IDs) followed by no links. After 

inverting the trace matrix (examining it from the children 

element perspective), the second question can also be 

answered trivially by examining the trace matrix for children 

element identifiers (IDs) followed by no links.  

The third question requires an evaluation of the trace 

matrix to apply heuristics or methods for identifying missing 

links. One way to accomplish this is to examine sibling 

relationships. For example, if children elements 1 and 2 share 

the parents A and B and child element 2 also has parent C, it 

could be inferred that child element 1 should also have a link 

to parent element C (see Figure 2). We have implemented 

such “sibling” checks for possible missing links. Further, we 



have looked at the notion of investigation sets as implemented 

by Port et al. to study the relationships between non-

functional and functional requirements in a generated trace 

matrix [1].  

 
Figure 2. “Sibling” Checks 

 

Port et al. [1] automatically generate a trace matrix 

between all functional and non-functional requirements in a 

given system. They then use heuristics to identify 

investigation sets for the trace matrix. This approach is shown 

in Figure 1. The generated trace matrix is shown in the upper 

left of the figure and labeled T. Its inverse is generated, called 

AT or anti-trace. Links that are found to possess the 

characteristic of “high similarity” (which Port et al. [1] do not 

define, but we define as a high relevance weight (from the 

vector space model with tf-idf weighting that is associated 

with a link in the TM) form the high similarity or HT set. 

Based on these sets, we can find the low risk investigation set 

or L (lower left corner of Figure 1), possible missing links or 

M and possible bad traces or F. Our TMA component uses 

these sets. M augments the set of possible missing links 

(completeness). F becomes the set of possible bad traces, thus 

addressing the other TM issue of interest: correctness of links. 

Next, we discuss how the approach has been implemented as 

a TraceLab component. 

B. Analysis Approach 

We implemented our approach using TraceLab, as shown 

in Figure 3. We created eight TraceLab components: High 

Similarity Matrix, Low Risk Trace, Possible Missing Link, 

Possible Bad Trace, Anti-Trace, Generate Issue List, Read 

Golden Answerset, and Compare Issue Lists. High Similarity 

Matrix uses the Vector Space Model to generate candidate 

links between the source and target artifacts. It then applies a 

threshold to the relevance weight and accepts all links above 

that threshold as elements of the High Similarity set HT. Low 

Risk Trace takes HT as input as well as the trace matrix T 

(from the answer set importer component) and determines the 

intersection of the two sets, L.  

Possible Missing Link takes HT and L as input and returns 

their difference (M in the Port et al. paper [1]). Possible Bad 

Trace takes T and L as input and returns their difference (F, 

per Port et al. [1]). Anti-Trace returns AT which is the inverse 

of the trace matrix, T. Generate Issue List outputs all the issues 

identified (possible missing link, parent without children, etc.) 

along with the associated parent and/or child identifiers. 

Figure 4 shows an example issue list.  Read Answerset accepts 

the gold standard issue list for the given trace matrix in order 

to evaluate TMA. Compare Issue Lists calculates recall and 

precision by comparing the output issue list of Generate Issue 

List with the golden answerset. All other components used are 

provided with TraceLab.  

III. RELATED WORK 

A number of researchers have described the creation [4, 10] 

or maintenance [8] of trace matrices, however validation and 

verification of the matrices has, up to now, primarily been 

performed by humans.   

The use of automated methods for TM assessment was 

first explored and reported by A. Dekhtyar, Hayes, Sundaram, 

Holbrook, and O. Dekhtyar [4]. They present a method using 

Information Retrieval (IR), multiple trace recovery tools, and 

voting among the tools to demonstrate the detection and 

rejection of false positives introduced by automatic trace tools.  

They found that humans were better at finding false positives; 

however automation did find false positives that were not 

detected by humans. The findings from Dekhatyar et al. [4] 

influenced the requirements for a low false positive rate for the 

tool discussed within this paper. Also, our results have led us 

to consider using a variety of trace techniques for generating 

and combining multiple HT sets. This remains future work. 

Port, Hayes, Huang, and Nikora [1] examined the problem 

of missing requirements between non-functional requirements 

and functional requirements. This paper applies a similar 

methodology using text-mining and statistical analysis to 

analyze TMs and identify sets of potential missing links for a 

larger set of artifacts.  

Ghabi et al. [9] describe an interesting tool they developed 

for validation of requirements to code traces. They 

demonstrate their tools effectiveness using four gold-standard 

case studies.  Ghabi’s work is similar to the work described 

here; however, it was developed to address maintenance of the 

trace matrix and not overall verification and validation.  In 

addition, differences include: TMA is a static tool, TMA does 

not require a caller/callee relationship, and TMA does not 

require a code graph for evaluation. In addition, though 

Ghabi’s work may be extended to apply to a general graph, 

TMA was designed to support any and all types of artifact 

pair(s). 

IV. VALIDATION 

In order to evaluate the TMA approach, we undertook a 

small scale study. The research question, variables, hypotheses, 

study design, and threats to validity are presented below. 

A. Research Question 

The research question for the study is: Can a technique be 

developed to analyze provided trace matrices at least as well 

as humans in terms of effectiveness (recall, precision) and 

efficiency (time)?  



 
 

Figure 3.  The Trace Matrix Analysis Composite TraceLab Component. 

A. Dependent and Independent Variables 

The Dependent Variables (DVs) are recall, precision, and 

time. Recall (R) measures the percentage of the issues that 

TMA is able to retrieve. Precision (P) measures how many 

incorrect issues TMA retrieves. Time (S) measures, in wall 

clock seconds, how long it takes for TMA to generate an issue 

list. 

The Independent Variable (IV) is technique. The IV has 

two levels: TMA (T) or manual (M). 

B. Hypotheses 

There are three sets of hypotheses: 

 

Null hypothesis 1 (H01): R(TM) = R(M) 

 

Alternative hypothesis 1 (HA1): R(TM) > R(M) 

 

Null hypothesis 2 (H02): P(TM) = P(M) 

 

Alternative hypothesis 2 (HA2): P(TM) > P(M) 

 

Null hypothesis 3 (H03): S(TM) = S(M) 

 

Alternative hypothesis 3 (HA3): S(TM) > S(M) 

B. Study Design 

The study was designed to evaluate the performance of 
TMA on publicly available datasets compared to a human 
analyzing the trace matrix for the same datasets.  

 
Figure 4. Sample Issue List 

 

We ran the study on the Moderate Resolution Imaging 
Spectroradiometer (MODIS) dataset and the MoonLander 
dataset. The MODIS dataset [5, 6] is an open source NASA 
scientific instrument; it consists of 19 high level and 49 low-
level requirements. The MoonLander dataset [7] is a text-
based game written by undergraduates at CalPoly San Luis 
Obispo; it consists of 10 high level requirements and 5 test 
cases. 

The consenting participant (per the University’s 
institutional review board process) was given a pre-study 
questionnaire to gauge any prior experience with tracing and 
trace matrices. The participant possessed strong software 
engineering experience (17 years), which put bias in favor of 
the manual method. The study was then explained to the 
participant. The participant was given the MoonLander 
dataset in hardcopy. The dataset contained the trace matrix, 
requirements, and test cases. The participant was asked to 
record the time expended on the task, to record issues, and 
then to answer several short post-study questions (such as 
describing the process applied).  



After finishing, the participant was given the MODIS 
dataset and was also shown the RETRO.NET tool [8] that 
could be used to interactively examine the datasets and matrix. 
Some hardcopy artifacts were also provided: trace matrix, 
high-level requirements, low-level requirements. We 
manually calculated recall and precision using golden answer 
sets for each dataset. In addition, we ran the TMA Tracelab 
component on the same datasets and captured execution time. 
The choice of threshold significantly affects the performance 
of TMA. We used three thresholds (0.1, 0.2, and 0.4) 
(filtering the similarity scores generated by the vector space 
model) to generate the high similarity matrix which is used to 
generate the list of possible bad links and possible missing 
links. We checked the high similarity matrix generated by the 
Vector Space Model component manually and found that 
most of the links have weights between 0.1 and 0.2. Thus, the 
three thresholds we used were representative. 

C. Threats to Validity 

There were four possible types of threats to validity for 
the study. A threat to internal validity was the possibility that 
something other than our independent variable was impacting 
recall, precision, and time. The main threat was possible 
distractions or confounding factors regarding the human 
analyst. We did not monitor the analyst during the study and 
it is possible that they were distracted by other events and/or 
made avail of other sources to assist them (though we do not 
think this was the case). In addition, we provided an 
automated tool to assist with review of the second trace 
matrix. To mitigate this internal validity threat, we asked the 
participant to document the process they used as well as to 
time their work.  

A possible threat to construct validity was “hypothesis 
guessing.” The participant may have tried to guess what the 
study was about and based his/her behavior accordingly. A 
threat to external validity is the use of two datasets that were 
rather small, although the MODIS dataset is a real dataset. 
Our datasets covered only two domains, we cannot generalize 
the results to all domains or all project trace matrices. 

A possible threat to conclusion validity is that proper 
statistical analysis is not performed or that data violate the 
assumptions of the statistical tests. We cannot claim that our 
results are statistically significant (sample is too small). We 
discuss the results next. 

V. RESULTS 

Below we present the results of the study as well as some 

observations. 

A. Study Results 

The MODIS dataset and its trace matrix were inspected 

manually and independently: the trace matrix has 19 issues 

that comprise the trace matrix analysis golden answerset. Of 

these 19, there are: 11 parent artifacts without any children 

artifacts, six bad links, and two missing links. Table I shows 

the issues found by the participant and TMA. The participant 

identified 11 parent artifacts without children, four missing 

links, and three incorrect links. With threshold 0.1, TMA 

found 11 parent artifacts without children, 85 missing links, 

and seven bad links. TMA found all the parents with no 

children regardless of the threshold (this is a trivial check). 

With threshold 0.2, the number of missing links greatly 

reduced to four, while the number of bad links increased to 

eight. With threshold 0.4, TMA did not find any missing links 

and bad links increased to nine. 

TABLE I.  MODIS ISSUE IDENTIFICATION: TMA VS. MANUAL METHOD 

 All 
Parents 
w/out 

Children 

Missing 

Links 

Bad 

Links 

Trace 
Matrix 

19 11 2 6 

Manual 18 11 4 3 

TMA, 0.1 103 11 85 7 

TMA, 0.2 23 11 4 8 

TMA, 0.4 20 11 0 9 

 

Table II shows the precision, recall, and time for the 

manual and TMA techniques applied to the MODIS dataset. 

The participant (the manual method) performed better than 

TMA with respect to finding missing links because both 

missing links were found; of note is that the participant also 

misidentified two links as missing (false positives). TMA at 

threshold of 0.1 also found both of the missing links, but 

returned many incorrect missing links. The reason for this is 

that there are too many links with weight higher than 0.1, and 

all these links are considered “possibly missing.” For bad 

links, the two methods performed similarly. The participant 

only found half of the bad links, but all that were found were 

correct; TMA threshold 0.2 and TMA threshold 0.4 found all 

six of the bad links, but identified false positives as well. The 

threshold of 0.4 also prevented the approach from finding any 

missing links, because the weights of most links in this 

dataset are below 0.4. 
We added the number of issues (regardless of their types) 

for each method and arrived at the recall and precision shown 
in Table III. As can be seen, the manual method has the 
highest precision (89% versus 85%), and TMA at threshold of 
0.2 has recall as high as 95% (versus 84% for manual).  

While the effectiveness of the manual method and TMA 
0.2 are not so different, there is a major difference in their 
efficiency. The participant spent 2,280 seconds (38 minutes) 
to evaluate the matrix (after training was performed) while 
the TMA method took only one second to generate a similar 
result. It should be noted that any false positives generated by 
TMA may require review (and thus time) on the part of an 
analyst. 

Neither the manual review nor TMA performed well on 
the “toy’ dataset (MoonLander). All of the non-trivial issues 
identified by TMA (there were five in total) were false 
positives. In addition, TMA missed three possible missing 
links. There was little consolation that TMA correctly 
identified the two parents with no children (making for two of 
eight issues correctly identified (25% recall) with five false 
positives of seven issues identified (28.7% precision). The 
participant also performed poorly on this dataset, incorrectly 
identifying one bad link and 19 missing links for recall of 
100% and precision of 20% (this took him 25 minutes or  



TABLE II.  PRECISION, RECALL, AND TIME FOR MANUAL AND TMA METHODS ON MODIS (ISSUES SEPARATED) 

 
Parents w/out Children Missing Links Bad Links All Issues 

Time 
Precision Recall Precision Recall Precision Recall Precision Recall 

Manual 1.00 1.00 0.50  1.00  1.00  0.50  0.71  0.63  2,280 sec 

TMA, 0.1 1.00 1.00 0.02  1.00  0.71  0.83  0.08  0.88  

1 sec TMA, 0.2 1.00 1.00 0.25  0.50  0.75  1.00  0.58  0.88  

TMA, 0.4 1.00 1.00 - 0.00  0.67  1.00  0.67  0.67  

 
1500 seconds). We are currently investigating the dataset to 
understand this result.  Our current thinking is that the 
elements of MoonLander are very simple (sentences) and 
there is a tremendous amount of repeated text in each element 
of both artifacts. 

TABLE III.  PRECISION, RECALL, AND TIME FOR MANUAL AND TMA 

METHODS ON MODIS (ISSUES COMBINED) 

 Recall Precision 

Manual 84.21% 88.89% 

TMA, 0.1 94.74% 17.48% 

TMA, 0.2 94.74% 78.26% 

TMA, 0.4 89.47% 85.00% 

 
Based on the results, we are not able to reject null 

hypotheses 1 and 2. It does appear that TMA saves significant 
time. If we had a larger sample size, we might be able to 
reject null hypothesis 3. 

B. Observations 

It is obvious that the threshold greatly affects the 
performance of TMA. This is not surprising, because 
threshold directly affects the HT. As expected, with an 
increase of threshold comes a decrease in the number of links 
in HT. Consequently, TMA finds fewer possible missing 
links and more possible bad links. The recall will increase 
with the threshold, but the precision will reach a maximal 
value at a certain threshold and then decrease. In this study, 
the threshold value for maximal precision appears to be close 
to 0.2. 

According to Table I, this effect is more obvious in 
finding missing links. While a suitable threshold (in this case, 
0.2) can generate reasonable results, a higher threshold (in 
this case, 0.4) prevents TMA from finding any possible 
missing links. On the contrary, TMA 0.1 found many 
incorrect missing links. The low precision makes the result 
less useful since a human will be required to weed out false 
positives. To investigate this, we checked the similarity 
matrix generated by the Tracer component of TraceLab. We 
found that the weights of a large portion of the links are 
between 0.1 and 0.2. With a threshold of 0.1, these links were 
all included in the high similarity matrix and were considered 
as possible missing links. However, a threshold of 0.4 
resulted in only one link being in the high similarity matrix, 
causing TMA to not find any possible missing links. 

To analyze how to improve the performance of TMA, we 
also examined the possible missing links that were not found 
by TMA 0.2 and the false positive bad links that were only 

found by the TMA method. We found that the children 
artifacts of the two missing links share very few keywords 
with their parent artifacts; this causes the weight of these two 
links to be lower than the threshold of the high similarity 
matrix. The participant found these missing links based on the 
element semantics (they read the parent and child text and 
realized that the text meant the same thing though common 
terms were not used). However, the threshold prevents these 
links from being included in HT, which also makes it 
impossible to find these links in M, the possible missing links. 
Additionally, high thresholds also explain the two false 
positive bad links. The similarity weight of these two links 
was so low that even TMA 0.1 did not include them in HT.  

The results show that the quality of HT significantly 
affects the performance of TMA. There are two factors that 
affect the quality of HT: the threshold and the tracing 
technique. The “best” threshold that maximizes TMA 
effectiveness for finding bad links and other issues may 
depend on the dataset. The value of this threshold should not 
be too low in order to prevent low precision in finding 
possible missing links; also, it should not be too high to 
prevent too many false positive bad links.  

In this study, we used the vector space model (VSM) with 
term frequency-inverse document frequency (TF-IDF) 
weighing as the tracing technique. One possible way to 
improve HT is to use other tracing techniques (such as LSI, 
Probabilistic

1
) or to use Okapi or LTU as the weighting 

option for VSM. Using different techniques to generate 
multiple HT sets, it is possible to build a “combined HT” that 
may have higher quality.  

VI.  CONCLUSIONS AND FUTURE WORK 

We believe that TMA can be useful in validating a given 
trace matrix and be used to assist in finding issues in it. With 
a well-designed TMA program, analysts need to merely set 
the proper threshold and then check the results. A suitable 
threshold can be estimated by checking the weights of all 
possible links. Alternatively, when the TMA returns too many 
possible missing links or possible bad links, it is clear that the 
threshold should be increased or decreased accordingly. 
Comparing the effects of various thresholds is an easy task 
because of the efficiency of TMA. Once the analyst gets a 
result, he/she should focus on the possible bad links with low 
weights because these links may be false positives. Similarly, 
he/she should focus on the possible missing links with high 

                                                           
1
 The reader is referred to the chapter on Information Retrieval techniques in 

the “Software and Systems Tracebility” book (Springer, 2012) for definitions 
of LSI, LTU, and Okapi 



weights because these will always be included in the HT 
(regardless of correctness). 

Future work includes examining the threshold issue to see 

if more specific, dataset-specific guidance can be given to 

human analysts. Another possible improvement is expanding 

the current approach by comparing the parents that have 

similar children. For example, if two parents share most of 

their children, it is possible that they also share other non-

linking children. This may illustrate missing links. In addition, 

it should be noted that several of the analyses performed 

require only the TM and a list of the identifiers of the source 

and target artifacts (we assume that a TM presents the trace 

links from the source to the target [3]). This is useful for third 

party agents who are not permitted to share the text of the two 

artifacts being traced and further are not permitted to install 

external tools on their computer systems. At this time, we 

require the full text of both artifacts. Implementing checks 

using just the identifiers remains future work. 
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