

Energizing Software Engineering Education through Real-World
Projects as Experimental Studies

Jane Huffman Hayes
Computer Science Department

Laboratory for Advanced Networking
University of Kentucky

Lexington, KY 40506-0046 USA
and Science Applications International Corporation

hayes@cs.uky.edu or jane.e.hayes@saic.com

Abstract

The use of a semester-long project to apply theoretical knowledge and provide “hands-
on” experience has long been a staple of software engineering courses. Our experience
shows that a typical industrial project can also enhance software engineering research and
bring theories to life. The University of Kentucky (UK) is in the initial phase of developing a
software engineering curriculum. The first course, a graduate-level survey of Software
Engineering, strongly emphasized quality engineering. Assisted by the UK Clinic (part of the
UK Medical School), the students undertook a project to develop a phenylalanine milligram
tracker. It helps phenylketonuria (PKU) sufferers to monitor their diet as well as assists PKU
researchers to collect data. The project was also used as an informal experimental study.
The applied project approach to teaching software engineering appears to be successful thus
far. The approach taught many important software and quality engineering principles to
inexperienced graduate students in an accurately simulated industrial development
environment. It resulted in the development of a framework for describing and evaluating
such a real-world project, including evaluation of the notion of a user advocate. It also
resulted in interesting experimental trends, though based on a very small sample.
Specifically, estimation skills seem to improve over time (with as little as one experience) and
function point estimation may be more accurate than LOC estimation.

1. Introduction

Software engineering courses have long used semester-long projects to apply theoretical
knowledge and provide “hands-on” experience. Generally, students are grouped into teams
that perform all the activities of the software system development lifecycle and deliver a
finished product at the end of the semester. Such an approach can be expanded to include
experimental research studies. Learning can be enhanced by having teams undertake
important, real-world projects that “double” as experimental studies.

1.1. Real-world project – phenylalanine tracker

The University of Kentucky (UK) is developing a new software engineering curriculum.
The first course, a graduate-level survey of Software Engineering, was offered this past
semester. The course emphasized software verification and validation and quality/reliability

engineering (we use the term reliability engineering informally). For example, students were
required to perform formal technical reviews, to collect data for reliability growth models,
and to perform extensive coverage testing. The students undertook a real-world project to
develop a phenylalanine (phe) milligram tracker. The product, developed to run on a
personal digital assistant (PDA), allows phenylketonuria (PKU) disease sufferers to monitor
their diet as well as assists PKU researchers to collect data. The project was also used as an
experimental study, testing numerous software engineering hypotheses.

Working together with the UK Clinic (part of the UK Medical School), the student’s
projects will be used in a pilot study to determine if such an application can advance PKU
research and/or assist PKU sufferers. About one in every 15,000 infants born in the United
States has the inherited (genetic) disorder PKU. People who are born with PKU are normal in
every way except that to stay healthy they must follow a strict diet. The diet limits phe, a
common part of most foods. If phe levels in the blood of a PKU sufferer stay too high for a
long time, the damage to the brain is severe and irreversible [5].

 The important, real-world project/study approach to teaching software engineering has
been successful thus far. It helped to motivate the teams and to encourage development of
higher quality products by the teams. The teams took seriously the importance of the
problem that they were helping to solve. The approach taught inexperienced graduate
students many software engineering and software verification and validation principles that
they are applying to newly gained jobs and/or subsequent courses.

1.2. Paper organization

The paper is organized as follows. In Section 2, related work in software and quality
engineering education is discussed. Section 3 describes the real-world project/study concept
as well as a framework for describing and evaluating such course projects. Section 4
discusses the semester-long PKU project and experimental study, the notion of a user
advocate, and describes the interaction with the Medical School and PKU sufferers. Benefits
of the important, real-world project/study approach are presented in Section 5. Finally,
Section 6 presents conclusions, directions for future work, and suggestions for how one might
administer a software engineering course using this approach.

2. Background and related work

In this section, related work in the area of quality engineering education is presented.
Section 2.1 discusses software engineering education literature and meetings. Section 2.2
presents information on other academic institutions that are pursuing software quality
engineering education, with an emphasis on their offered courses (particularly if a project
component exists).

2.1. Software engineering education

Software engineering education has been in the spotlight recently, with much progress on
the Software Engineering Body of Knowledge (SWEBOK) [6] as well as on what constitutes
an appropriate (and in the future accreditable) curriculum for software engineering [1]. There
are many articles in the literature on techniques/approaches being used to teach software
engineering and computer science, and entire conferences devoted to this subject such as the
Conference on Software Engineering Education and Training (CSEET), Frontiers in
Education (FIE), and the SEI Software Engineering Education Conference. The International

Conference on Software Engineering (ICSE) also invites papers on the topic, and in June, six
papers on the subject (roughly 10% of the total number of ICSE regular papers) were
presented [4].

2.2. Reliability and quality engineering education

It is more difficult to find information on software quality/reliability engineering
education, except as a subset of software engineering education. There is quite a bit of
activity in the area though, as evidenced by the many websites offering information on
reliability engineering, reliability engineering courses, etc. For example, the University of
Twente offers a reliability engineering course titled “Total Quality for Software
Engineering.” The curriculum consists of four one-week sessions. Lecture topics include
Introduction to Software Reliability, Software Reliability Improvement, Total Quality
Software Management, Software Reliability Engineering Practice. Students also performed
lab work, but no project [15].

A web-based software quality assurance (SQA) course was developed by the University
of Central Florida (UCF), working with Warsaw University of Technology and Delft
University of Technology [14]. The University of California-Irvine is undertaking a project
to develop an environment in which commercially-representative software engineering
experiences can be simulated, called Software SimCity. They hope to use the environment to
teach the cause and effect of the critical decisions that are typically made during the software
life cycle [9], including reliability decisions.

The SEI has developed a suggested software engineering curriculum [1]. It recommends
a series of courses, including Introduction to Software Engineering, Software Construction
and Evolution, and Software Design Project. These three proposed courses would discuss
quality and reliability engineering to varying degrees of depth and have some project
component (some individual, some team-based) [1].

3. Real-world project/study – concept and framework

In developing this course, the instructor: (a) interacted with a number of colleagues in the
software quality/reliability engineering field such as Dr. Jeff Offutt of George Mason
University,(b) researched the syllabi of many software engineering and software reliability
courses [3,7,8,12], and (c) spoke with the largest software engineering employers in
Lexington. This information, together with personal experience, dictated the course layout as
well as the project layout and content.

3.1. Project concept

The goals of the project were to: (a) teach software quality engineering concepts to
students, (b) give students an opportunity to apply software quality engineering concepts in
an industry-representative real-world project, (c) develop a framework for using projects as
experimental studies, and (d) build a product to fill an important need.

To meet these goals, we defined a project with many facets: (a) compelling real-world
project to capture and hold the student’s attention for an entire semester, (b) “easy” to
implement project so students could concentrate on the software and reliability engineering
process as opposed to subjecting them to “death by coding”, (c) phased implementation to
encourage design/implementation for maintenance/enhancement (commercially-
representative), (d) end users “in the loop” to motivate students, (e) demonstrations used to

encourage quality, (f) presentations required throughout the semester to ensure strong
management of the project as well as to closely resemble a real development environment, (g)
estimation and later collection of detailed metrics required to monitor quality (to convince
students that formal technical reviews (FTRs) are worthwhile as well as to instill a sense of
process), (h) students required to evaluate each other’s work using 360-degree feedback
forms and presentation evaluation checklists, (i) weaker teams “steered” at each phase of the
project by giving them “best of breed” samples, (j) team progress and timely instructor
feedback assured by having homework “feed” the project phases, and (k) concept of a user
advocate (or ‘voice of the user’) and how it might impact development investigated.

3.2. Project framework

While examining the above information and pondering the use of a course project as an
experimental study, it became apparent that projects have certain aspects. These aspects or
characteristics can serve as a framework for structuring, describing and evaluating any
project. The aspects provide a scheme that can be used to understand projects, compare
projects, or evaluate projects and look for areas of improvement. To develop such a scheme,
the Basili, Selby, and Hutchens [2] framework for experimentation, addressing many of the
aspects of a course project, was used as a departure point. There are advantages to doing so.
It ensures that our framework is in keeping with published, well-grounded work. It may
encourage instructors to use course projects for more than just student grades (to apply
experimental software engineering principles and use projects as part of their research). We
enhanced this framework by adding parts to phases and by adding levels to many of the parts
(see italics in Figure 1). The resulting course project framework, summarized in Figure 1,
designates four phases: (1) definition, (2) planning, (3) realization, and (4) interpretation.
Each of these phases is discussed next.

3.2.1. Project definition: Definition refers to the project definition phase, the time when
an instructor decides the scope and objective of the project. There are eight parts to the
definition phase: motivation, purpose, object, perspective, domain, scope, importance, and
end user. Just as with experimental studies, there can be many motivations, purposes, or
objects in reliability engineering course projects [2]. In addition, there can be several scopes,
end user classes, and importance levels. For example, the motivation of a project may be to
understand, learn, or validate the effect of a certain technology. The purpose of a project may
be to test an existing system, to implement a domain-specific application, to evaluate the
effectiveness of design processes, where the “object” of the project may be the final software
product, a development process, etc. Though most projects are from the perspective of the
instructor, they may be from many other perspectives such as tester, customer, and/or user
advocate.

The domains that typically comprise projects are individual engineers or teams (software
or reliability engineers or teams thereof) and programs on which teams or engineers work.
Basili et al classify experimental study scopes by looking at the size of the domains
considered [2], as does this project framework. Projects that are blocked subject-project
examine one or more objects across a set of teams and a set of programs. Projects that are
replicated project scope look at objects across a set of teams and a single program.
Multiproject variation projects examine objects across a single team and a set of programs.
Projects that are single project scope look at objects on a single team and a single program. A
course project can be characterized as having safety-critical importance (potential loss of

Motivation Project Design Preparation Interpretation

Context
Understand
Improve
Assess
Validate
Manage Assure
Engineer
Confirm Enhance
Learn

Problem Domain
Problem Class
Problem Complexity

Pilot study
Artifact
development
Object
development

Statistical
Framework
Study purpose
Field of research

Purpose Experimental Design Execution Extrapolation
Implement
Test
Predict
Evaluate
Characterize
Motivate

Experimental designs
 Incomplete block
 Completely
randomized
 Randomized block
 Fractional factorial
Multivariate analysis
 Correlation
 Factor analysis
 Regression
Statistical models
Non-parametric
Sampling

Project
execution
Data collection
Data validation

Sample
representativeness

Object Criteria Evaluation Impact
Product
Process
Model
Metric
Theory

Direct reflections of
cost/quality
 Cost
 Errors
 Changes
 Reliability
 Correctness
Indirect reflections of
cost/quality
 Data coupling
 Information visibility
 Programmer
comprehension
 Execution coverage
 Size
 Complexity

Quantitative
Qualitative
Gold Standard
Comparison
Peer-Project
comparison

Perspective Measurement Analysis
Developer
Modifier
Maintainer
Project Manager
Corporate
Manager
Customer
User
Reliability
Engineer
Academic
Institution
Tester
Researcher
User Advocate
Instructor
Domain
Software
Engineers
Reliability
Engineers
Program/project

Metric definition
 Goal-question-metric
 Factor-criteria-metric
Metric validation
Data collection
 Automatability
 Form design and test
Objective vs.
subjective
Level of measurement

Nominal/classificatory
 Ordinal/ranking
 Interval
 Ratio

Scope Process
Single project
Multi-project
Replicated project
Blocked subject-
project

Teams
Individuals
Lifecycle
Methodology

Importance Product
Safety-critical
Mission-critical
Quality of life
Convenience
End User

D
ef

in
iti

on
 P

ha
se

 I

None
Instructor
Real-world-like
Real-world

Pl
an

ni
ng

 P
ha

se
 II

Documentation
Code
Executable
Databases
Presentations
Demonstrations

 R

ea
liz

at
io

n
Ph

as
e

II
I

Quantitative
vs. qualitative
Preliminary
data analysis
 Plots and
histograms
 Model
assumptions
Primary data
analysis
 Model
application

 I
nt

er
pr

et
at

io
n

Ph
as

e
IV

Visibility
Replication
Application

Figure 1. Summary of the framework for course projects.

human life), mission critical importance, quality of life importance, or convenience
importance. The end user of the course project can be categorized as none, instructor, real-
world-like, or real-world.

3.2.2. Project planning: Planning refers to the project planning phase, the time when an
instructor designs the project and/or experiment. There are six parts to the planning phase:
project design, experimental design (optional), criteria, measurement, process, and product.
Project design encompasses the problem domain (such as financial, transportation, defense,
education, real estate, insurance, etc.), the problem complexity, and the problem class (such
as payroll, air traffic control, etc.). The experimental design is optional, but recommended if
an instructor is engaged in research and wants to experimentally study an aspect of software
or quality engineering as part of the project. The experimental design, criteria, and
measurement components are outside the scope of this paper but are covered in detail
elsewhere [2]. The planning process part encompasses teams (by size), individual
programmers, use of a standard process, and use of a particular lifecycle or methodology.
Finally, the planning product part covers documentation, code, executable, databases,
presentations, homework, and demonstrations

3.2.3. Project realization: The project realization phase is the time when the software
engineering students accomplish the project and/or experiment. There are four parts to the
realization phase: preparation, execution, evaluation, and analysis (optional). For an
experimental study, preparation often includes a pilot study [2]. In software engineering
course projects, preparation may include preparation of project artifacts, development of code
(if the project involves testing), etc. Execution covers the actual project accomplishment by
students as well as data collection and validation (if also an experimental study). Evaluation
refers to the review of the completed project for grade assignment. It includes qualitative
evaluation, quantitative evaluation, as well as comparing the projects to each other and/or to a
gold standard. The analysis component applies if the project is also an experimental study. It
is outside the scope of this paper but is covered in detail elsewhere [2].

3.2.4. Project interpretation: Interpretation refers to the project interpretation phase, the
time when the instructor and/or researcher derives a result from the experimental
study/project. There are three parts to the interpretation phase: interpretation context,
extrapolation, and impact. These components are outside the scope of this paper but are
covered in detail elsewhere [2].

3.3. Contributions

Our concept went beyond those described in Section 2 in several ways: it focuses on
important, real-world projects; it does not have predefined problem and/or solution sets
(making it harder to grade, but driving the students to extend their decision making skills); it
suggests the idea of “double dipping” and using course projects as experimental studies on a
routine basis; it introduces the notion of a user advocate; and it suggests facilitating these
ideas through the use of a flexible project framework that builds on the work of Basili et al
[2]. Our work enhanced their framework by adding numerous parts and levels specific to
course projects that are doubling as studies. Our course project concept is similar to those of
software engineering and quality engineering education in that a semester-long project was
assigned, and that teams undertook these projects. Another similarity is that students were
required to read many of the same reference materials.

4. Phenylalanine (phe) tracker – the sample project

To examine the sample project undertaken in the UK software engineering course, the
project framework defined above is used. The notion of a user advocate is presented. Next,
samples of the artifacts and object are presented. Analysis results from the experimental
study aspect of the project are discussed. A discussion of interactions with the UK Medical
School rounds out the section.

4.1. Classification of Phe Tracker project

This section examines the PKU project more closely, using the framework described
above. Our motivation was to engineer a product for easy modification as well as to better
understand the maintenance process. We undertook a project whose purpose was to predict
the size and effort to build the application (the product, i.e. object) as well as to implement the
problem solution. We did so from the perspective of the developer, maintainer, and user
advocate. The product was examined in a replicated project study (scope), where 33 software
engineers, student through professional (from the software engineer domain), developed one
software system (from the program/project domain). It was quality of life importance with
real-world end users. The software system developed belonged to the medical problem
domain in the nutrition monitoring system problem class (project design). It was developed
with no specific experimental design.

Objective measurement of the engineering processes was in several criteria areas: size
estimation effectiveness, complexity, fault detection, reliability growth, the relationship of
design characteristics to maintainability, the relationship of maintainability to reliability.
Preparation included artifact development (narrative statement of scope) and object
development (development lifecycle steps to be followed), and execution was broken into
three phases and incorporated manual monitoring of activity. Evaluation included the
application of qualitative criteria and peer-project comparison. Analysis, interpretation
context, extrapolation, and impact are still being finalized, but initial results are available.

4.2. Role of user advocate

Before presenting the object and artifacts of the Phe Tracker project, it is important to
understand an important concept. In setting up the project, the instructor/researcher sought to
find an important, real problem that could be “tackled” in a one-semester project. The
instructor also wanted the students to be able to perform requirements elicitation, a very
difficult but most important step. To facilitate course schedules and to examine the idea of a
user advocate, the instructor served as the end user. However, the instructor does not have
PKU but rather has detailed knowledge of the disease and its management through eight years
of interaction with a PKU sufferer.

The instructor had been discussing the Phe Tracker idea with the PKU patient for several
years and was able to serve as the end user in the initial requirements elicitation session.
After an initial product capability was delivered by the students, it was demonstrated to the
PKU patient as well as the UK Medical School who helped direct the second requirements
elicitation session. We found that the user advocate notion worked well and that it improved
requirements elicitation and therefore improved the quality of the final product. We plan to
empirically study this in the future.

4.3. Phe Tracker project - object and artifacts

Acting as user advocate, the instructor (and students) held the first requirements
elicitation session. The resulting narrative statement of scope is shown in Figure 2. Students
were grouped into eleven 3-person teams. For the first phase of the project, the students were
instructed to use the software engineering lifecycle described in Pressman [15] and to prepare
the artifacts listed in Figure 3. Note that the teams had the option of using structured (SA) or
object-oriented (OO) analysis for their project.

Customer Description of Problem for Homework #1

I want the application to run on my workstation (Windows) and on my Palm Pilot (Palm OS)
I want it to count my protein gram intake each day
I want to be able to tell it how many protein grams I should have each day – a daily protein
budget
I want to be able to choose from a menu of different food types (like fruit, vegetable, meat,
dairy, etc.) and see a detailed list of food choices.
So if I clicked on fruit, I might see an alphabetized list:
Apple
Banana
Cherry
Etc.
I then can click on the food that I ate (such as Cherry) and it would look up the protein
amount for that food (in a table that is already provided, the user does not enter this
information)
and add it to my daily total of protein grams I had eaten (and subtract it from my daily
budget).
I want to be able to display my daily total of protein grams, how much I have left of my daily
budget of protein grams,
as well as a weekly average (take the last 7 day totals and divide by 7) of protein grams.
The display of these things should be available on the Palm Pilot or workstation.
Also, on the workstation, I want to be able to get a printed report of these 3 things.
You can choose what programming language you want to use.
If I have not answered a question you have, make it up and document it as an assumption. For
example: I assume that there is enough memory on a Palm Pilot to hold the protein look-up
table.

Figure 2. Problem statement from first requirements elicitation.

After Phase I was completed, the instructor evaluated the projects and returned those
results along with samples of excellent solutions. Phase II was assigned the day that Phase I
was returned. The artifacts required differed based on the methodology (SA or OO) used.
Our undertaking cannot be considered a strict experimental study because of this flexibility,
because students were given “best of breed” examples at the end of each phase, because the
teams could choose their programming language and environment, because there was no
specific experimental design, and because there was no attempt to control for threats to
validity (internal or external).

The resulting project applications were impressive. One team, Team 8, developed a
product as opposed to just a program, complete with installation disks, context-sensitive help,
a professional interface and logos, etc. Their product logo (displayed during the Setup
process) is shown in Figure 4. After Phase II, Phase III was assigned. This phase consisted
of making several major modifications to the Phase II program. Another requirements
elicitation session followed and resulted in a modified narrative statement of scope.

As can be seen from the discussion above, a significant amount of time was invested in
preparing the project assignments and interacting with the students throughout the project. In
addition, grading the projects was quite time consuming. The instructor read through each
project quickly, ensuring that all required artifacts had been delivered. The instructor then
went back through each artifact to determine completeness, attention to detail, consistency,
etc. Using initial grading criteria as a basis, the instructor built a point deduction system for
each artifact (for example, subtract 1 point if data flow diagrams fail to show the daily PKU
intake being stored for subsequent computations). Each project was reviewed numerous
times to ensure consistent grading.

1. Planning and Estimating
 a) develop a statement of the scope of the problem (narrative) – sections 3.3., 5.3 Pressman
 b) develop a high level problem decomposition (your choice how to represent) – sections
3.3.2, 5.6 Pressman
 c) develop a size estimate (either in LOC or FPs, should look like figure 5.3 or 5.4) – section
5.6 Pressman
 d) Develop a risk table for this project – Chapter 6 Pressman (should look like Figure 6.2
but sorted with worst risks at the top)
 e) Calculate a task set selector value for building this system (casual, strict, or structured) –
section 7.3 Pressman (should look like Table 7.2)
2. Analysis
 a) Develop a system context diagram for this system – section 10.6 Pressman (should look
like Figure 10.6)
 b) IF doing Structured Analysis, then:
 a. ERD
 b. DFD (level 0, 1)
 c. CFD
 d. Hold a FTR and show results
 c) IF doing Object-Oriented Analysis, then:
 a. Use-Cases
 b. Object-Relationship model
 c. Object-Behavioral model
 d. Hold a FTR and show results
3. High Level Design
 a) IF doing Structured Analysis, then:
 a. DFD (level 2,3)
 b. Program Structures
 c. Hold a FTR and show results
 a) IF doing Object-Oriented Analysis, then:
 a. Object interaction model (collaboration model in Pressman, Fig. 22.4, 22.5, also Fig.
12.13 Schach and Fig. 14.16 Sommerville)
 b. Detailed class diagram (Figure 12.14 Schach)
 c. Hold a FTR and show results
4. Presentation of Results to Class (2/22)
 ° Each team will have 5 minutes to present their results
 ° You may use viewfoils (transparency slides), PowerPoint slides, or posters
 ° Your presentation must present the major aspects of Phase I (you may not have enough
time to show all the items developed, so some results may be combined)
 ° You will also be presenting the results of Phase II and III to the class later in the
semester. Make sure that each team member speaks during one of the three presentations

Figure 3. Phase I project assignment and required artifacts.

Figure 4. Team 8 product logo.

Artifacts of the lifecycle were also quite impressive. A level 2 data flow diagram for the

Phase III project of Team 3 is shown in Figure 5. A partial list of the data gathered during
each phase is listed in Table 1.

Figure 5. Team 3’s level 2 data flow diagram for phase III.

4.4. Preliminary analysis of the Phe Tracker experimental study

The project is classified as an experimental study in section 4.1. There were three main
hypotheses being evaluated by this small study: (1) maintenance on a product decreases its
quality, (2) students will improve their estimating skills over time, and (3) programming
language or paradigm has no impact on quality.

As the real-world project/study approach was just evolving during the CS 650 course, the
experimental study was not handled with rigor or formality. For example, students selected
their own teams (no controlling for effect of some teams having more experienced or talented

members than others), there were only 11 teams (small sample), and teams were permitted to
select the programming language (nine selected Java, one selected C++, one selected
VBasic). Also, many teams did not supply all requested data for all phases of the project.
The students all worked to the same specifications and deadlines. Recall that implementation
occurred in Phase II with modifications/maintenance in Phase III.

Table 1. Sample of type of data gathered during Phe Tracker project.

Name of Class or Method Response for Class Number of operations
Weighted Methods per Class Number of Children Number of attributes
Cyclomatic Complexity Module Coupling Indicator Number of messages sent
Lack of Cohesion in Methods System Complexity Specialization index
Depth of Inheritance Tree Data Complexity Coupling between Objects

Examining the first hypothesis, we looked at several sub-hypotheses: weighted methods
per class (WMPC) will increase after maintenance occurs, complexity will increase after
maintenance occurs, number of defects will increase after maintenance occurs, coupling will
increase after maintenance occurs, cohesion will decrease after maintenance occurs, and size
will increase after maintenance occurs. Our small study found no such trend for WMPC (3
teams had higher values after maintenance, 4 did not), complexity did increase (but only 3
teams reported data before and after maintenance), number of defects decreased for
maintenance (all 4 teams reporting Phase II and III data had less defects in Phase III than in
Phase II), and coupling was inconclusive (increased for 2 teams, decreased for 2 teams) as
was cohesion. There were more function points (FPs) and lines of code (LOC) after
maintenance (4 of 6 teams had an increase in FPs, 6 of 7 teams had an increase in LOCs).
With such mixed results, we cannot say anything conclusive from our study about the
relationship between maintenance and quality.

Looking at the second hypothesis, we had two sub-hypotheses: FP estimates will
improve over time, and LOC estimates will improve over time. Our study found that 10 of
the 11 teams improved their FP or LOC estimating, Error 3 was smaller than Error 2. Error 2
is the estimation error of teams in Phase II of the project (number of FP or LOC difference
between estimated and actual as a percentage of the estimated value). Error 3 is the
estimation error of teams in Phase III. This finding suggests that estimation skills will
improve with experience. A related hypothesis was that students using FPs would make
better estimates than those using LOC. Indeed, this appeared to be the case. All 6 of the
teams reporting FP estimates and actuals were very accurate in estimating, as shown in Figure
6. Also, all FP actuals were equal to or larger than the estimates. For LOC, 2 teams
underestimated and 4 teams overestimated with several teams missing their estimates by
100%.

For the fourth hypothesis, we had several sub-hypotheses: Java applications will have
lower complexity than non-Java applications, Java applications will have lower coupling than
non-Java applications, Java applications will require less effort, Java applications will have
less defects. Unfortunately, we lacked the necessary data on the non-Java applications to
examine these ideas.

Estimated FP vs Actual FP

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

Function Point
Estimate

Function Point
Actual

Figure 6. FP Estimation Error.

4.5. Interaction with Medical School

The interaction with the UK Medical School was to commence in late January/early
February, but due to several reschedulings did not occur until mid-March. The first meeting
involved Dr. Charlton Mabry, Linda Brooks, and Carol Reid of the Pediatriatic
Endocrinology unit of the UK Medical Clinic, as well as a PKU patient and parent. All three
of the UK Med School staff possess decades of experience diagnosing and treating PKU.
During this interaction, two major requirements for the project were added (3-day diet history
and ability to enter weight of food portions consumed).

The next interaction occurred in late-March. The Medical School personnel helped the
instructor get in contact with Ross Laboratories to investigate their phenylalanine food
database. Discussions with Ross Laboratories helped the instructor to generate a
phenylalanine database from the USDA’s website. In mid-April, the UK Medical School
personnel were given a demonstration of the Phase II projects. They made a number of
suggestions for improvements (e.g., also categorize foods alphabetically as many children do
not know their food groups).

The Phase III projects were demonstrated to them in early May. Early in the Fall term we
plan to work on a joint grant proposal to pursue this project further (to expand it to a palm-
held computer, to possibly investigate monitoring of phe blood levels, etc.) for PKU research
as well as for software quality engineering research (use this as a research bed). The Medical
School also invited us to attend a PKU camp to demonstrate the project to many PKU patients
and their parents. Note that throughout the project we consulted with one PKU patient,
demonstrated projects to that patient, and used the feedback to improve the requirements and
requirements elicitation process. Also, the patient attended our class in mid-April.

5. Assessment of success

At this point, it appears that the project was a success. There were numerous benefits
provided to numerous groups of people. First, the students benefited from many software
industry-representative experiences such as requirements elicitation, requirements changes,
major enhancements or modifications to a program, development of a project that will
enhance the quality of life of real users. The students learned many important software
quality engineering concepts and were convinced of the need to build quality in as opposed to
testing quality in. The students seemed to learn more and work harder to ensure program

quality because the project was important. The students were able to work on a project in a
highly accurately simulated real-world development environment. This will benefit them
greatly upon graduation and/or in later courses. Many students commented on how much
they enjoyed doing something to help PKU patients, that it motivated them, and made them
“feel good” to participate in an important, worthwhile project. Second, the end user benefited
by receiving an application to help monitor and track phe intake (no such application existed
previously). It appears that this will enable some patients to actually eat more while on this
very restricted diet, thus improving their quality of life. The end user also gained some
insight into the software engineering process as well as learned more about computers in
general.

The Medical School benefited from this project by gaining a potential tool to help them
track patient’s intake of phe as well as to help their patients have higher quality of life. It
may help researchers and disease management experts make useful discoveries by allowing
them to carefully monitor/track phe intake. It also helped enhance their understanding of
software and reliability engineering and computers. The instructor also felt very motivated
and rewarded by undertaking this important project to fill a real need in the lives of PKU
patients. In addition, the instructor had a chance to interact with PKU patients, the UK
Medical School, and to empower a class of students to tackle an important project. The
academic institution benefits since the students taking this course will be a notch above the
students who take a typical software engineering or reliability engineering course. Also, there
is a chance that this project will become a product that can be “donated” to the medical
community and patients or technology that can be transferred to the commercial sector.

6. Results, conclusions, and future work

We realize that we have only examined one project and one use of the real-world
project/study approach, further objective evaluation must be performed. With this caveat,
what do these results mean to us? To instructors or researchers in the field of software
engineering, they indicate that important, real-world problems are the best ones to assign as
course projects. It means that these projects can be used as experimental studies also, with
advanced planning and careful attention to the framework of the study/project. It means that
preparing the project assignment and grading the projects will require more time, but the
benefits will be worth it. To end users and medical researchers with interest in a useful,
reliable product, it means that some investment of time to assist with requirements elicitation
and to evaluate prototype demonstrations is worthwhile.

In addition to having students evaluate the course and the project component of the
course, the instructor evaluated these items to extract “lessons learned.” Suggestions to
someone else implementing a software engineering course are:
- select an important, real-world project and have it double as an experimental study
- ensure that the implementation aspect is simple, allow students to concentrate on

reliability engineering and not “coding”
- plan to have the students make a major modification to the project to ensure design for

maintainability
- if real end users are not available, consider making yourself a user advocate
- do not underestimate the amount of time required to prepare such a project or to evaluate

each phase of the project
- try to collaborate with another department or school at your institution.

In conclusion, the important, real-world project/study approach to teaching software
engineering has been successful thus far. It helped to motivate the teams, to increase team

interest in the project, to inspire greater effort on the part of the teams, and to encourage
development of higher quality products by the teams. The teams were highly committed to
the success of the project as they understood and took seriously the importance of the
problem that they were helping to solve. The approach taught inexperienced graduate
students many important software reliability engineering principles. In addition, the project
accurately simulated an industrial development project that also served as an informal
experimental study.

There is further work to be done though. First, the project framework needs to be
evaluated and enhanced through use by other instructors/researchers. Second, the success of
the important, real-world project/study concept needs to be quantified. This will be facilitated
by further analysis and interpretation of the results of the Phe Tracker project. Third, the
important, real-world project/study concept needs to be validated by other
instructors/researchers. Finally, the Phe Tracker project needs to be continued. Future plans
include: porting the application to a PDA (in progress), enhancing the application to allow
synchronization of phe intake data logs, running a pilot study of the phe application (with the
Med School), gathering requirements as a result of the pilot study, and writing a grant to
receive research funding for both the medical aspects and software/quality engineering
aspects of this research bed and project.

Acknowledgments

I would like to thank all of the students who participated in the Software Engineering course
(UK’s CS 650). Thanks to Team 8 (Andrew Mertz, Venkata Velagapudi, Sanjiv Ganguli, and
Jessica Mertz - artist) and Team 3 (Jim Carigan, Ming Jiang, Xiangyang Qin) for providing
artifacts, and to Naresh Mohamed for assisting with analysis. A special thanks to Hannah and
Kelly Marcum and to the UK Medical School for their participation in this project.

References

[1] Bagert, D. Hilburn, T., Hislop, G., Lutz, M., McCracken, M., and S. Mengel. Guidelines for Software
Engineering Education Version 1.0. Technical Report CMU/SEI-99-TR-032, Software Engineering Institute,
Carnegie-Mellon University, October 1999.
[2] Basili, V., Selby, R., and D. Hutchens. Experimentation in Software Engineering. IEEE Transactions on
Software Engineering, Vol. SE-12, No. 47 July 1986, pp. 733-743.
[3] Bullard,C., Caldwell, I., Harrell,J., Hinkle, C. , and J. Offutt.. Anatomy of a Software Engineering Project. In
Proceedings of the 1988 SIGCSE Technical Symposium, Atlanta, GA, February 1988, pages 129—133.
[4] 23rd International Conference on Software Engineering, http://www.csr.uvic.ca/icse2001/.
[5] University of Washington PKU Clinic, “PKU: What is it?,” http://depts.washington.edu/pku/whatis.html.
[6] Guide to the Software Engineering Body of Knowledge (SWEBOK), Trail Version, Version 0.9, February
2001, Software Engineering Coordinating Committee (Joint IEEE Computer Society – ACM committee).
[7] Institutionen för Datavetenskap, “Information about Software Engineering Projects,”
http://www.ida.his.se/ida/kurser/programvaruproj_alla/.
[8] Jeff Offutt, “Software Project Laboratory SWE 626 Course Information,”
http://ise.gmu.edu/faculty/ofut/classes/626/.
[9] Institute for Software Research, “Software Engineering Education Research,” http://www.isr.uci.edu/research-
education.html.
[10] Miller,L., Mirsky, S., and J. Huffman Hayes. NUREG/CR-6316, Guidelines for the Verification and
Validation of Expert System Software and Conventional Software, U.S. Nuclear Regulatory Commission and
Electric Power Research Institute, March 1995.
[11] Offutt, J. and J. Huffman Hayes. "A Semantic Model of Program Faults," published in The Proceedings of
the International Symposium on Software Testing and Analysis, ACM, San Diego, California, January 1996, pages
195-200.
[12] Philip Greenspun , “Project Schedule for 6.916,” http://philip.greenspun.com/teaching/project-schedule.
[13] Pressman, R. Software Engineering: A Practitioner’s Approach, 5th edition. McGraw-Hill Publishing,
NY,NY, 2001.

[14] Shah, Ankur, Sosnowski, Janusz, Van Katwijk, Jan, and Janusz Zalewski. Web-based Course on Software
Quality Assurance: Perspectives on Intercontinental Learning. In Proceedings of the International Conference on
Engineering Education ’99, Technical University of Ostrava, Czech Technical University in Prague, August 13 -
14, 1999.
[15] University of Twente, “TGS Core module: Total Quality for Software Engineering: Schedule,”
http://wwwtgs.cs.utwente.nl/Docs/education/core/soft-engineering/schedule.html.

