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Abstract 
 
In order to build predictors of the maintainability of 
evolving software, we first need a means for measuring 
maintainability as well as a training set of software 
modules for which the actual maintainability is known.  
This paper describes our success at building such a 
predictor.  Numerous candidate measures for 
maintainability were examined, including a new 
compound measure.  Two datasets were evaluated and 
used to build a maintainability predictor.  The resulting 
model, Maintainability Prediction Model (MainPredMo), 
was validated against three held-out datasets.  We found 
that the model possesses predictive accuracy of 83% 
(accurately predicts the maintainability of 83% of the 
modules).  A variant of MainPredMo, also with accuracy 
of 83%, is offered for interested researchers. 
 
 
1. Introduction 
 
    As society becomes more and more dependent on 
software and demands that new, more capable software 
be provided on short cycles, the need for maintainable, 
reliable software continues to increase. In this paper, we 
are interested in improving the maintainability of such 
evolving software systems. Maintainability is the ease 
with which software can be corrected,  errors, adapted to 
environment changes, and/or enhanced per customer 
requests[8]Our suggested approach for improving the 
maintainability of software is to first understand the 
characteristics of maintainable software and attempt to 
measure these characteristics in order to determine the 
maintainability of a product .  
          We performed correlation analysis and found that 
coding effort correlates with maintainability.  We 
developed a new measure that captures the relationship 
between requirements and design effort and coding effort.  
Next, we built a regression model, Maintainability 
Prediction Model (MainPredMo), using the new measure 
and two datasets. We then used the model to categorize 

three datasets of software modules, where each module 
was designated as "easy to maintain" or "not easy to 
maintain."  The model was found to have 83% accuracy. 
 
2. Related Work 
 
     There is no clear agreement on how to measure 
maintainability.  Welker and Oman suggest measuring it 
statically by using a Maintainability Index (MI) which is 
decided by cyclomatic complexity, lines of code (LOC), 
and lines of comments [8].  Ramil and Lehman suggested 
a linear model with effort and %modules changed as the 
variables.[7]  Polo, Piattini, and Ruiz used number of 
modification requests, mean effort per modification 
request, and type of correction to examine maintainability 
[5]. Pressman [6] also introduced an effort-based metric, 
mean-time-to-change (MTTC), to predict maintainability. 
A lengthier survey of related work is presented in [2] and 
[3]. 
 
3. Maintainability Prediction Model 
(MainPredMo) 
 
    To build the predictive model, we first identified static 
measures of interest.  We performed correlation analysis 
on these measures.  We then used regression analysis on 
the datasets to build the model.  Finally, we validated the 
model.  Each will be discussed below, as well as threats 
to validity.     We hypothesize that the maintainability of a 
software application can be measured using static metrics 
that can be derived from the software development 
process.  Specifically, we hypothesize that coding effort, 
percentage of modules changed, design effort, MI, classes 
changed, classes added, comment ratio (CR), Attribute 
Complexity (AC) [1], True comment ratio (TCR), lines of 
code (LOC), and requirement effort correlate well with 
maintainability.  Further, we hypothesize that a model can 
be built to predict the maintainability of software, given 
these static metrics.    
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   To examine these hypotheses, we first focused on the 
static metrics that might affect the effort required to 
maintain a software program.  Hayes et al present a 
subjective measure, “perceived maintainability” (PM).  
The maintaining software engineer, after all changes have 
been made, assign a value from 1 to 10 to each 
component modified, where 10 is code that was very easy 
to change [2, 3]. We treated perceived maintainability 
(PM) as the dependent variable (typically denoted as y) 
and the hypothesized metrics as independent variables. 
Since our first step was to determine whether a 
relationship existed between these two quantitative 
variables, we performed correlation analysis (Section 3.3) 
for each of the metrics presumed related to effort.  Once 
correlating metrics were identified, we performed 
regression analysis to derive an analytical model as 
discussed in Section 3.4.   
 
3.1 Data Sets 
      

      We used data from five sources.  Three data sets were 
from software engineering (or related) classes, including 
CS499 of Fall 2001, CS616 of Fall 2002, and CS616 of 
Fall 2004; Spathic Project Data was from the source code 
a test generation tool; PA0 and PA2 were from the 
student projects of two networking classes.  We expected 
to get adaptable results (that could be easily generalized) 
due to the heterogeneity of the data. Parts of the data are 
based on object-oriented design and programming, so our 
experiment results apply to OO projects as well.   

 
3.2 Threats to Validity 
 
    We attempted to limit internal validity threats by 
validating the tools and processes we used for data 
collection and analysis.  A major threat to external 
validity (generalization of results) for our work is the 
representativeness of our subject programs and changes 
as well as our small sample size.  Also, we worked with 
students and with student applications.  However, Høst et 
al [4] found that students perform the same as 
professionals on small tasks of judgment.  
 
3.3 Correlation Analysis 
 
    We used PM as the dependent variable, performing 
correlation analysis with the candidate measures listed in 
Section 3. Correlation analysis infers whether a linear 
relationship exists between two variables. That is to say, 
the higher the value of the coefficient of determination, 
the stronger the relationship between actual 
maintainability (PM) and the metric.  We ranked the 

candidate measures by their determination value. Coding 
effort for change is ranked first with the highest value of 
determination value or R² (0.82) and a very low 
significance value (.0003). The high correlation value 
(very close to 1) indicates that this metric increases 
positively as perceived maintainability increases, in 
almost perfect correlation.  The significance value 
indicates that there is less than a 1% chance (.0003) that 
these results are due to chance.  %Modules changed is 
ranked second with the determination value of 0.26 and 
significance value of 0.13. None of the other measures 
show very impressive determination values or 
significance values. The fact that lines of code (LOC) is 
not a crucial factor in our experiment might be a little 
surprising, at first glance. However, if we consider the 
following factors, the result is reasonable:  LOC is just 
one of the factors that influences maintainability. Other 
important factors include complexity, code annotation, 
documentation, etc. Lines of code alone cannot determine 
the maintainability of the code.   
     Before proceeding, we analyzed our environment by 
performing some basic prescriptive analysis on the data 
sets.  Table 1 indicates that our models were built based 
on  small- to medium-sized maintenance tasks.  Note that 
Total effort is the sum of requirement effort, design 
effort, and coding effort, measured in person minutes.  
 
3.4 Development and Validation of 
Maintainability Prediction Model 
 

    “A typical estimation model is derived using regression 
analysis on data collected from past software projects 
[5].”  The heterogeneity of the data is one of the strengths 
of our study.  For example, one project was a stereology 
application (image processing) and one was a nutrition 
tracker.  Heterogeneous data helped us achieve more 
generalized results than data from just one particular 
domain.  The primary description of this data is found in 
Section 3.1.  However, this section provides some 
additional details.   
  

Table 1.  Descriptive statistics for LOC and Total 
Effort. 

 
LOC 
 

Total effort  (minutes) 
 

Mean 2211.56 Mean 117.5 
Minimum 701 Minimum 25 
Maximum 9542 Maximum 255 
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3.4.1 Compound Metric – RDCRatio 
 

   In the above process, we found that Coding effort 
(“effort” for the change) affects the maintenance effort 
and hence maintainability.  Considering that coding is not 
the only activity involved in maintaining software and/or 
in adding functionality to evolving software, we need to 
analyze how coding effort compares with other elements 
of the software process, such as design effort and 
requirement analysis effort.   
 We decided to bring in other metrics as mentioned in the 
previous section. Since requirement effort and design 
effort are the most relevant items, we attempted to build a 
compound metric out of the three (the 
Requirement/Design/Code ratio or RDCRatio) in order to 
normalize the code effort data.  
 
RDCRatio = (Reqt Effort + Design Effort)/Coding Effort 
 
There are two possible approaches to constructing the 
prediction model using RDCRatio:  using regression 
analysis to construct a prediction model, or using the 
related rank of the RDC ratio to predict maintainability 
directly. Next, we will show how we use the above two 
approaches. 

 
 

3.4.2 Regression Analysis  
 
By using the CS499 and CS616 project data to build a 
model, we obtained the following: 
 
 MainPredMo =3.795 + 1.652RDCRatio                (1) 
 
   We used a total of 10 points to build the model shown 
in formula (1) and in Figure 1.  Analysis showed that this 
model has a very low statistical significance value of 
0.005 and an R square value of 0.64.   
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Figure 1.  Predict maintainability using RDCRatio. 

3.4.3 Using RDCRatio to Predict Maintainability 
Directly 
   We use RDCRatio rank instead of regression analysis to 
predict the perceived maintainability on two smaller data 
sets, PA0 and PA2. We ranked the projects by their 
RDCRatios and used that to predict the related rank of 
maintainability to identify the codes/modules that require 
re-factoring and optimization. To validate this notion, we 
also ranked the data sets by the PM values provided by 
the programmers, as shown in Table 2.  If the manager 
makes the decision that half of all modules having the 
lowest RDCRatio need to be re-factored or modified to 
make them more maintainable, the modules chosen will 
be B, C, and F.  As shown in Table 3, the model correctly 
classifies 5 of the 6 modules (83%).  The model also 
correctly identifies all modules that are hard to maintain.  
The only error made is that an easy to maintain module 
(module C) is incorrectly classified as hard to maintain.  
We’d prefer to make such errors (though not frequently), 
as opposed to “missing” a hard to maintain module, since 
it would not hurt to review a module already possessing 
high maintainability.  
  
Table 2. Ranking Data Sets by RDCRatio and by PM. 
 
Data 
set PM PM Rank  DCRatio DCRatio 

Rank 
A 10     1 1.14 3 
B 7     6 0.26 5 
C 10     1 1 4 
D 9     4  2.6 1 
E 10     1 2 2 
F 8     5 0.18 6 
 

 
Table 3. Classification of maintainability by 

RDCRatio and its validation. 
 

Module (perceived) 
Maintainable 

Classified 
by RDC 
Ratio 

A Yes Yes 
B No No 
C Yes No 
D Yes Yes 
E Yes Yes 
F No No 

 
 
  The two approaches were validated on the CS616-2 data 
set and both produced good results. The regression 
approaches achieved a significance value of 0.026 and a 
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high R square value of 0.85, showing that RDCRatio did 
have strong correlation and thus is a good predicator of  
maintainability.  In the RDC ranking approach, the data 
point with the highest RDCRatio (1.5) has the highest PM 
value (9), and the data point with the lowest RDCRatio 
(0.25) also has the lowest PM value (7). 

 
3.5.7 Multiple metrics model 
  In this model, we treated the percentage of modules 
changed (%moduleschanged) and RDCRatio as multiple 
variables (Xs) for predicting maintainability.   
   In building the next model, we used the data from the 
CS499 and CS616 data sets.  
 
MainPredMo_new = 4.083 + 1.602RDCRatio -
0.01%modules changed                           (2) 
 
   The R square is 0.64 and the p value is 0.028, below the 
desired significance value of 0.05.   

4. Conclusions and Future Work 
       LOC, documentation, complexity, coding style, etc. 
are all factors that influence the maintainability of 
software. However, these factors act together and not any 
one of them single-handedly “decide” the software’s 
maintainability.  Due to this fact, the normalized coding 
effort, RDCRatio, provides an easy way to predict the 
software maintainability indirectly.  We also found that 
%Modules changed, also an indirect measure, could be 
used together with RDCRatio to predict software 
maintainability. 
       We proposed a method for predicting the 
maintainability of a software application based on a ratio 
of the requirement and design effort to the coding effort, 
called RDCRatio, and percentage of modules changed.  
We first used our prior research to generate a list of 
possible measures that correlate with maintainability 
(maintenance effort).  We performed correlation analysis 
and ranked the above measures.  We found that of the 
measures we hypothesized to correlate with 
maintainability, only coding effort and a ratio of 
requirement effort and design effort to coding effort did 
so.  This confirms our intuition that effort correlates with 
maintainers’ perception and that the RDC ratio further 
offers a normalized metric that can be used to predict 
maintainability with two alternative approaches. After 
several iterations, we proposed a final multiple regression 
model, Maintainability Prediction Model (MainPredMo).  
       A larger scale study with a variety of industry 
projects across diverse domains is required before any 
broad conclusions can be reached.  We also plan to apply 

other statistical techniques, such as principal component 
analysis, to the data sets. 
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