

Maintainability Prediction: A Regression Analysis of Measures of Evolving Systems

Jane Huffman Hayes

Computer Science Department
University of Kentucky

hayes@cs.uky.edu
(corresponding author)

Liming Zhao

Computer Science Department
University of Kentucky

lzhao2@uky.edu

Abstract

In order to build predictors of the maintainability of
evolving software, we first need a means for measuring
maintainability as well as a training set of software
modules for which the actual maintainability is known.
This paper describes our success at building such a
predictor. Numerous candidate measures for
maintainability were examined, including a new
compound measure. Two datasets were evaluated and
used to build a maintainability predictor. The resulting
model, Maintainability Prediction Model (MainPredMo),
was validated against three held-out datasets. We found
that the model possesses predictive accuracy of 83%
(accurately predicts the maintainability of 83% of the
modules). A variant of MainPredMo, also with accuracy
of 83%, is offered for interested researchers.

1. Introduction

 As society becomes more and more dependent on
software and demands that new, more capable software
be provided on short cycles, the need for maintainable,
reliable software continues to increase. In this paper, we
are interested in improving the maintainability of such
evolving software systems. Maintainability is the ease
with which software can be corrected, errors, adapted to
environment changes, and/or enhanced per customer
requests[8]Our suggested approach for improving the
maintainability of software is to first understand the
characteristics of maintainable software and attempt to
measure these characteristics in order to determine the
maintainability of a product .
 We performed correlation analysis and found that
coding effort correlates with maintainability. We
developed a new measure that captures the relationship
between requirements and design effort and coding effort.
Next, we built a regression model, Maintainability
Prediction Model (MainPredMo), using the new measure
and two datasets. We then used the model to categorize

three datasets of software modules, where each module
was designated as "easy to maintain" or "not easy to
maintain." The model was found to have 83% accuracy.

2. Related Work

 There is no clear agreement on how to measure
maintainability. Welker and Oman suggest measuring it
statically by using a Maintainability Index (MI) which is
decided by cyclomatic complexity, lines of code (LOC),
and lines of comments [8]. Ramil and Lehman suggested
a linear model with effort and %modules changed as the
variables.[7] Polo, Piattini, and Ruiz used number of
modification requests, mean effort per modification
request, and type of correction to examine maintainability
[5]. Pressman [6] also introduced an effort-based metric,
mean-time-to-change (MTTC), to predict maintainability.
A lengthier survey of related work is presented in [2] and
[3].

3. Maintainability Prediction Model
(MainPredMo)

 To build the predictive model, we first identified static
measures of interest. We performed correlation analysis
on these measures. We then used regression analysis on
the datasets to build the model. Finally, we validated the
model. Each will be discussed below, as well as threats
to validity. We hypothesize that the maintainability of a
software application can be measured using static metrics
that can be derived from the software development
process. Specifically, we hypothesize that coding effort,
percentage of modules changed, design effort, MI, classes
changed, classes added, comment ratio (CR), Attribute
Complexity (AC) [1], True comment ratio (TCR), lines of
code (LOC), and requirement effort correlate well with
maintainability. Further, we hypothesize that a model can
be built to predict the maintainability of software, given
these static metrics.

 1

 To examine these hypotheses, we first focused on the
static metrics that might affect the effort required to
maintain a software program. Hayes et al present a
subjective measure, “perceived maintainability” (PM).
The maintaining software engineer, after all changes have
been made, assign a value from 1 to 10 to each
component modified, where 10 is code that was very easy
to change [2, 3]. We treated perceived maintainability
(PM) as the dependent variable (typically denoted as y)
and the hypothesized metrics as independent variables.
Since our first step was to determine whether a
relationship existed between these two quantitative
variables, we performed correlation analysis (Section 3.3)
for each of the metrics presumed related to effort. Once
correlating metrics were identified, we performed
regression analysis to derive an analytical model as
discussed in Section 3.4.

3.1 Data Sets

 We used data from five sources. Three data sets were
from software engineering (or related) classes, including
CS499 of Fall 2001, CS616 of Fall 2002, and CS616 of
Fall 2004; Spathic Project Data was from the source code
a test generation tool; PA0 and PA2 were from the
student projects of two networking classes. We expected
to get adaptable results (that could be easily generalized)
due to the heterogeneity of the data. Parts of the data are
based on object-oriented design and programming, so our
experiment results apply to OO projects as well.

3.2 Threats to Validity

 We attempted to limit internal validity threats by
validating the tools and processes we used for data
collection and analysis. A major threat to external
validity (generalization of results) for our work is the
representativeness of our subject programs and changes
as well as our small sample size. Also, we worked with
students and with student applications. However, Høst et
al [4] found that students perform the same as
professionals on small tasks of judgment.

3.3 Correlation Analysis

 We used PM as the dependent variable, performing
correlation analysis with the candidate measures listed in
Section 3. Correlation analysis infers whether a linear
relationship exists between two variables. That is to say,
the higher the value of the coefficient of determination,
the stronger the relationship between actual
maintainability (PM) and the metric. We ranked the

candidate measures by their determination value. Coding
effort for change is ranked first with the highest value of
determination value or R² (0.82) and a very low
significance value (.0003). The high correlation value
(very close to 1) indicates that this metric increases
positively as perceived maintainability increases, in
almost perfect correlation. The significance value
indicates that there is less than a 1% chance (.0003) that
these results are due to chance. %Modules changed is
ranked second with the determination value of 0.26 and
significance value of 0.13. None of the other measures
show very impressive determination values or
significance values. The fact that lines of code (LOC) is
not a crucial factor in our experiment might be a little
surprising, at first glance. However, if we consider the
following factors, the result is reasonable: LOC is just
one of the factors that influences maintainability. Other
important factors include complexity, code annotation,
documentation, etc. Lines of code alone cannot determine
the maintainability of the code.
 Before proceeding, we analyzed our environment by
performing some basic prescriptive analysis on the data
sets. Table 1 indicates that our models were built based
on small- to medium-sized maintenance tasks. Note that
Total effort is the sum of requirement effort, design
effort, and coding effort, measured in person minutes.

3.4 Development and Validation of
Maintainability Prediction Model

 “A typical estimation model is derived using regression
analysis on data collected from past software projects
[5].” The heterogeneity of the data is one of the strengths
of our study. For example, one project was a stereology
application (image processing) and one was a nutrition
tracker. Heterogeneous data helped us achieve more
generalized results than data from just one particular
domain. The primary description of this data is found in
Section 3.1. However, this section provides some
additional details.

Table 1. Descriptive statistics for LOC and Total
Effort.

LOC

Total effort (minutes)

Mean 2211.56 Mean 117.5
Minimum 701 Minimum 25
Maximum 9542 Maximum 255

 . 2

3.4.1 Compound Metric – RDCRatio

 In the above process, we found that Coding effort
(“effort” for the change) affects the maintenance effort
and hence maintainability. Considering that coding is not
the only activity involved in maintaining software and/or
in adding functionality to evolving software, we need to
analyze how coding effort compares with other elements
of the software process, such as design effort and
requirement analysis effort.
 We decided to bring in other metrics as mentioned in the
previous section. Since requirement effort and design
effort are the most relevant items, we attempted to build a
compound metric out of the three (the
Requirement/Design/Code ratio or RDCRatio) in order to
normalize the code effort data.

RDCRatio = (Reqt Effort + Design Effort)/Coding Effort

There are two possible approaches to constructing the
prediction model using RDCRatio: using regression
analysis to construct a prediction model, or using the
related rank of the RDC ratio to predict maintainability
directly. Next, we will show how we use the above two
approaches.

3.4.2 Regression Analysis

By using the CS499 and CS616 project data to build a
model, we obtained the following:

 MainPredMo =3.795 + 1.652RDCRatio (1)

 We used a total of 10 points to build the model shown
in formula (1) and in Figure 1. Analysis showed that this
model has a very low statistical significance value of
0.005 and an R square value of 0.64.

0

2

4

6

8

10

12

0 1 2 3 4 5

Predict Maintainability by RDCRatio

PM
Predicted PM

Figure 1. Predict maintainability using RDCRatio.

3.4.3 Using RDCRatio to Predict Maintainability
Directly
 We use RDCRatio rank instead of regression analysis to
predict the perceived maintainability on two smaller data
sets, PA0 and PA2. We ranked the projects by their
RDCRatios and used that to predict the related rank of
maintainability to identify the codes/modules that require
re-factoring and optimization. To validate this notion, we
also ranked the data sets by the PM values provided by
the programmers, as shown in Table 2. If the manager
makes the decision that half of all modules having the
lowest RDCRatio need to be re-factored or modified to
make them more maintainable, the modules chosen will
be B, C, and F. As shown in Table 3, the model correctly
classifies 5 of the 6 modules (83%). The model also
correctly identifies all modules that are hard to maintain.
The only error made is that an easy to maintain module
(module C) is incorrectly classified as hard to maintain.
We’d prefer to make such errors (though not frequently),
as opposed to “missing” a hard to maintain module, since
it would not hurt to review a module already possessing
high maintainability.

Table 2. Ranking Data Sets by RDCRatio and by PM.

Data
set PM PM Rank DCRatio DCRatio

Rank
A 10 1 1.14 3
B 7 6 0.26 5
C 10 1 1 4
D 9 4 2.6 1
E 10 1 2 2
F 8 5 0.18 6

Table 3. Classification of maintainability by

RDCRatio and its validation.

Module (perceived)
Maintainable

Classified
by RDC
Ratio

A Yes Yes
B No No
C Yes No
D Yes Yes
E Yes Yes
F No No

 The two approaches were validated on the CS616-2 data
set and both produced good results. The regression
approaches achieved a significance value of 0.026 and a

 . 3

high R square value of 0.85, showing that RDCRatio did
have strong correlation and thus is a good predicator of
maintainability. In the RDC ranking approach, the data
point with the highest RDCRatio (1.5) has the highest PM
value (9), and the data point with the lowest RDCRatio
(0.25) also has the lowest PM value (7).

3.5.7 Multiple metrics model
 In this model, we treated the percentage of modules
changed (%moduleschanged) and RDCRatio as multiple
variables (Xs) for predicting maintainability.
 In building the next model, we used the data from the
CS499 and CS616 data sets.

MainPredMo_new = 4.083 + 1.602RDCRatio -
0.01%modules changed (2)

 The R square is 0.64 and the p value is 0.028, below the
desired significance value of 0.05.

4. Conclusions and Future Work
 LOC, documentation, complexity, coding style, etc.
are all factors that influence the maintainability of
software. However, these factors act together and not any
one of them single-handedly “decide” the software’s
maintainability. Due to this fact, the normalized coding
effort, RDCRatio, provides an easy way to predict the
software maintainability indirectly. We also found that
%Modules changed, also an indirect measure, could be
used together with RDCRatio to predict software
maintainability.
 We proposed a method for predicting the
maintainability of a software application based on a ratio
of the requirement and design effort to the coding effort,
called RDCRatio, and percentage of modules changed.
We first used our prior research to generate a list of
possible measures that correlate with maintainability
(maintenance effort). We performed correlation analysis
and ranked the above measures. We found that of the
measures we hypothesized to correlate with
maintainability, only coding effort and a ratio of
requirement effort and design effort to coding effort did
so. This confirms our intuition that effort correlates with
maintainers’ perception and that the RDC ratio further
offers a normalized metric that can be used to predict
maintainability with two alternative approaches. After
several iterations, we proposed a final multiple regression
model, Maintainability Prediction Model (MainPredMo).
 A larger scale study with a variety of industry
projects across diverse domains is required before any
broad conclusions can be reached. We also plan to apply

other statistical techniques, such as principal component
analysis, to the data sets.

5. Acknowledgements
We thank the students of CS 650 (January 2001), CS 499
(August 2001), CS 616 (Fall 2003 and Fall 2004), Inies Raphael
Michael Chemmannoor, Tina Gao, and Senthil Karthikeyan
Sundaram for their contributions. We thank Dr. Ken Calvert for
allowing us to use specifications and code from his CS 571
course. We thank Togethersoft for their donation of Together to
our research program.

6. References

[1] Chidamber S, Kemerer C. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering 1994; 20(6):476–493.

[2] Hayes, J. Huffman, Mohamed, N., Gao, T. The
Observe-Mine-Adopt Model: An agile way to
enhance software maintainability. Journal of
Software Maintenance and Evolution: Research
and Practice, Volume 15, Issue 5, Pages 297 –
323, October 2003.

[3] Hayes, J. Huffman, Patel, S., and Zhao, L. A
metrics-based software maintenance effort model.
Proceedings of the 8th European Conference on
Software Maintenance and Reengineering, CSMR
2004, Finland, March 2004.

[4] Høst M, Regnell B, Wohlin C. Using students as
subjects – A comparative study of students and
professionals in lead-time impact assessment.
Empirical Software Engineering 2000; 5(3):210–
214.

[5] Polo M, Piattini M, Ruiz F. Using code metrics to
predict maintenance of legacy programs: a case
study. Proceedings of the International Conference
on Software Maintenance, ICSM 2001. IEEE
Computer Society: Florence Italy, 2001;202–208.

[6] Ramil J, Lehman M. Metrics of software evolution
as effort predictors – A case study. Proceedings
International Conference on Software
Maintenance, ICSM 2000. IEEE Computer
Society: San Jose CA, 2000;163–172.

[7] Pressman, R.S., Software Engineering A
Practitioner’s Approach, McGraw-Hill, 2001.

[8] Welker, K.D. and Oman, P.W. Software
Maintainability Metrics Models in Practice,
Journal of Defense Software Engineering, Volume
8, Number 11, November/December 1995, 19-23.

 . 4

	Introduction
	Related Work
	Maintainability Prediction Model (MainPredMo)
	Data Sets
	Threats to Validity
	Correlation Analysis
	Development and Validation of Maintainability Prediction Model

	“A typical estimation model is derived using regr
	3.4.1 Compound Metric – RDCRatio
	3.4.2 Regression Analysis
	3.5.7 Multiple metrics model

	Conclusions and Future Work
	Acknowledgements
	References

