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EXPERIENCE REPORT 
Abstract 

Fault-based analysis is an early lifecycle approach to 
improving software quality by preventing and/or 
detecting pre-specified classes of faults prior to 
implementation.  It assists in the selection of verification 
and validation techniques that can be applied in order to 
reduce risk.  This paper presents our methodology for 
requirements-based fault analysis and its application to 
National Aeronautics and Space Administration (NASA) 
projects.  The ideas presented are general enough to be 
applied immediately to the development of any software 
system. We built a NASA-specific requirement fault 
taxonomy and processes for tailoring the taxonomy to a 
class of software projects or to a specific project.  We 
examined requirement faults for six systems, including 
the International Space Station (ISS), and enhanced the 
taxonomy and processes.  The developed processes, 
preliminary tailored taxonomies for 
Critical/Catastrophic High-Risk (CCHR) systems, 
preliminary fault occurrence data for the ISS project, 
and lessons learned are presented and discussed. 
 
 
1. Introduction 
 
     Verification and validation (V&V) activities are a 
subset of the overall development process and are 
sometimes performed by a third party, referred to as an 
Independent Verification and Validation (IV&V) agent.  
We are never able to perform all the V&V or IV&V 
activities that we would like to perform.  We need a way 
to ensure that the activities that we do perform will be the 
most effective at reducing risk for the project.  Fault-
based analysis is one way to approach these challenges.   
   Fault-based testing generates test data to demonstrate 
the absence of a set of pre-specified faults.  Similarly, 

fault-based analysis identifies static techniques (such as 
traceability analysis) and even specific activities within 
those techniques (e.g., perform back-tracing to identify 
unintended functions) that should be performed to ensure 
that a set of pre-specified faults do not exist.  As part of 
fault-based analysis, a project manager can use historical 
data to determine what fault types are most likely to be 
introduced or can perform a risk analysis to determine 
what fault types would be most devastating if 
overlooked.   Static techniques that prevent or detect 
these fault types are then applied as part of the V&V 
and/or IV&V effort. Fault-based analysis can be used to 
improve the efficiency of the V&V or IV&V effort for 
any software development effort, though it is most 
commonly applied to development of CCHR systems.  
Note that fault-based analysis is an early lifecycle 
approach that can be applied prior to implementation. 
   One form of fault-based analysis, focused on 
requirement faults, can help us prevent and/or detect 
faults prior to developing design or writing code.  A 
requirement fault is a fault that originates in the 
requirements phase (e.g., omitted requirement, 
incomplete requirement description).  Eliminating faults 
as early as possible in the software lifecycle results in 
significant cost savings [1].  To provide a requirements-
based fault analysis approach, we have defined an overall 
methodology [4]:  (i) build a requirement fault taxonomy 
and a process for tailoring it; (ii) build a taxonomy of 
V&V techniques and build a matrix of their validated 
fault detection capabilities; and (iii) develop guidance to 
V&V agents and software projects for use of the fault-
based analysis methodology and assist in its adoption. 
   The first phase of the research involved several 
objectives:  select a fault taxonomy as the basis for the 
work, examine requirements faults from various projects, 
adopt or build a method for extending the fault 
taxonomy, and implement the method to extend the fault 
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taxonomy.  In this paper, we present our methodology 
and application of its first phase at NASA. 
    The paper is organized as follows.  Section 2 discusses 
related work in fault-based analysis.  Section 3 describes 
our work and the results of the aforementioned research 
activities.  Section 4 discusses the results of applying our 
fault taxonomy extension process to requirement fault 
data provided by the International Space Station.  
Section 5 presents a discussion of some lessons that we 
learned as we performed the research activities.  Finally, 
conclusions and future work are presented in Section 6. 

2. Related work 
 
   It is first necessary to define some of the terms that will 
be used in this paper.  The IEEE standard definition of an 
error is a mistake made by a developer.  An error may 
lead to one or  more faults [7].  A Requirement Fault is a 
fault that originates in the requirements phase (e.g., 
omitted requirement, incomplete requirement 
description).  We define Fault Taxonomy as an orderly 
classification of software faults according to their 
characteristics and relationships.  We define 
Requirements Analysis as analysis of requirements to 
ensure completeness, consistency, clarity, explicitness, 
etc. [3].  A NASA Software Class is one of four possible 
classes (A through D) based on the NASA software 
classification scheme that considers the combined factors 
of cost, size, complexity, lifespan, risk, and 
consequences of failure. For each class there is a 
corresponding set of minimum requirements for software 
management, assurance, and engineering activities.  This 
scheme is detailed in the NASA Software Safety 
Standard [15].  Class-Specific Taxonomy defines a 
taxonomy specific to a NASA software project Class.  
We introduce a process (termed Class-process) for 
developing this taxonomy.  Project-Specific Taxonomy 
defines a taxonomy specific to a NASA project.  We 
introduce a process (termed Project-process) that utilizes 
the results of Class-process as well as additional project-
specific information and results in a project-specific 
taxonomy. 
   There are numerous fault-based testing techniques.  
These use a list of potential faults to generate test cases, 
generally for unit- and integration-level testing [13,2].  
Research has been performed in the area of software 
safety fault identification also [12].  This includes 
research into numerous fault analysis techniques such as 
petri-net safety analysis [8], Failure Mode, Effects, 
Criticality Analysis (FMECA) [11], and criticality 
analysis [20].  A detailed literature survey into fault 
analysis techniques was performed and over 60 
references are presented in [4]. 

   As mentioned above, fault-based analysis has 
similarities to fault-based testing, where we target the 
strongest fault class while designing test generation 
algorithms in order to increase the effectiveness of the 
tests without unduly introducing overlap [6].  It is also 
risk driven, and attempts to select V&V techniques for 
application in order to achieve a project’s goals.  In this 
way, it is similar to test case selection during regression 
testing, where we attempt to reduce the time required to 
retest a modified program by selecting some subset of the 
existing test suite [18]. 
   von Mayrhauser, Ohlsson, and Wohlin [19] determine 
what components are fault-prone using historical defect 
data and coupling and cohesion measures and derives 
related fault architectures.    Our approach uses historical 
requirement defect data to understand what types of 
requirement faults are most prevalent for a particular 
NASA project or class of projects.  Lutz [9] examines the 
root cause of software errors in embedded, safety-critical 
systems and identifies methods by which safety-related 
requirements errors can be prevented.  Helmer et al [5] 
use a software fault tree for requirement identification 
and analysis in an intrusion detection system.  We do not 
use a formal fault-tree analysis method to categorize our 
requirement defects, but we do consider the “root” cause 
when it appears that a fault might belong in more than 
one category.    
   Orthogonal Defect Classification, or ODC, classifies 
defects into non-overlapping categories and also 
examines defect triggers to lead to improvements in the 
software process [21].  ODC emphasizes design and code 
whereas our approach emphasizes requirements.  ODC 
uses a fixed set of trigger and defect types.  Our 
approach is based on tailored fault taxonomies.  Munson 
and Nikora [14] count the number of faults associated 
with a failure using language-specific tokenizing.  We 
have also found it difficult to “count” requirement faults.  
Often, more than one fault is described in a single 
Problem Report.  We have performed some preliminary 
work in the area of fault “counting” and feel that this area 
requires further research [17]. 

Our research goes beyond that mentioned above in 
several ways.  It aims to develop a general approach to 
fault-based analysis that can be applied to any software 
system development.  To date, we have focused on 
requirement-based analysis and on NASA software 
systems.  We have examined NASA requirement faults 
and have developed a generic taxonomy of these faults.  
One of our larger research goals focuses on V&V and 
IV&V techniques and their requirements fault 
detection/prevention capabilities.  In future phases, we 
will work specifically to identify those techniques that 
will help reduce the requirements risks of NASA 
projects.  We have identified new types of faults that 
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were not in existing fault taxonomies.  Also, it is possible 
that our work will identify faults that are not detected (or 
not easily) by existing techniques (meaning that an 
outgrowth of this work may be the development of new 
or improved techniques). 
 

3. Fault-based analysis at NASA 
 
   The problem addressed by this research is that there is 
never enough time or money to perform V&V on 
everything associated with a software project. We have 
only high-level knowledge of how the potential existence 
of specific requirements faults increases the risk of 
software projects. We have only high-level knowledge of 
how specific V&V techniques (requirements tracing, 
code analysis, etc.) contribute to improved system 
software reliability and reduced risk. 
   Therefore, there is a need to wisely select techniques to 
apply when performing V&V or IV&V on software 
programs.  Resources are constrained, and we seek to 
lower program risk as much as possible with the least 
expenditure of time and money as possible.  Specifically, 
we need to improve how we focus our resources for 
IV&V of Critical/Catastrophic High-Risk (CCHR) 
software functions.  The nuclear power industry has 
found that a fault-based analysis method results in the 
optimal application of resources to V&V and IV&V of 
their critical software applications.  They have identified 
the types of faults that are common in nuclear power 
system software requirements, and then have identified 
the requirements analysis techniques that can best 
prevent or detect these types of requirements faults [10].  
This research categorized software systems as Class I, II, 
or III, where a malfunction of a Class I system could 
result in loss of life. 
   For the first phase of the research, the objectives were 
to:  select a fault taxonomy as the basis for the work, 
examine NASA-specific requirements faults, build a list 
of IV&V techniques, adopt or build a method for 
extending the fault taxonomy, and implement the method 
to extend the fault taxonomy.  Each will be discussed 
below. 
 

3.1 Selecting a fault taxonomy 

We chose the Nuclear Regulatory Commission (NRC) 
requirement fault taxonomy from NUREG/CR-6316 [10] 
as the basis for our work.  We selected this taxonomy 
based on two key criteria: 
� The fault categories were mutually exclusive, and 
� The fault categories were not specific to a particular 

language, environment, or system development 
approach. 

Also, as one of the developers of this taxonomy, the 
author was very familiar with it.  The NUREG fault 
categories are listed below (subcategories can be seen in 
[10]): 

1.     Requirement Faults 
   1.1 Incomplete decomposition 

   1.2 Omitted requirement 

   1.3 Improper translation 

   1.4 Operational environment incompatibility 

   1.5 Incomplete requirement description 

   1.6 Infeasible requirement 

   1.7 Conflicting requirement 

   1.8 Incorrect assignment of resources 

   1.9 Conflicting inter-system specification 

   1.10 Incorrect or missing external constants 

   1.11 Incorrect or missing description of initial system state 

   1.12 Over-specification of requirements 

   1.13 Incorrect input or output descriptions 

   We found many papers that confirmed our 
requirements fault types and found only a few papers that 
described “new” requirement faults (see [4]).  Note that 
the above list, with the addition of not traceable, non-
verifiable, unachievable, misplaced, and intentional 
deviation fault types, should serve as a good starting 
taxonomy for the fault-based analysis of any software 
system.  Examination of NASA requirement faults 
resulted in a number of changes to the taxonomy, as 
discussed below.  The resulting new set of 13 fault 
categories was considered to be relevant as a “generic” 
NASA fault taxonomy as shown in Table 1. 
   We added a category for each “new” fault type such as 
not traceable, non-verifiable, unachievable, misplaced, 
and intentional deviation, bringing the taxonomy to 18 
fault types.  We consider omitted or missing 
requirement as one major category.  The sub-fault 
categories identified under this category are: 1) Omitted 
requirement, 2) Missing external constants, and 3) 
Missing description of initial system state.  We identified 
incorrect as one major category.  The sub-fault 
categories are: 1) Incorrect external constants, 2) 
Incorrect input or output descriptions, 3) Incorrect 
description of initial system state, and 4) Incorrect 
assignment of resources. 
   We added one major requirement fault, ambiguous, 
and under it we grouped:  1) Improper translation, and 
added a new sub-fault category 2) Lack of clarity.  We 
grouped conflicting requirements into one major fault 
category, inconsistent, and the sub-faults under this 
category are: 1) External conflicts, and 2) Internal 
conflicts.  We added a new major requirement fault, 
redundant, to cover the situation where a requirement 
appears duplicated elsewhere in the specification. We 
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Table 1.  Revised requirement fault taxonomy.

 
 

 

 

Major Fault Sub-Faults Description of  Sub-Faults Earlier version 
taxonomy faults that 
are mapped here 

1. Requirements riginate in Requirements phase; found in the Requirements Specification 
.1 Incompleteness 
 
 

.1.1 Incomplete    
Decomposition 
.1.2 Incomplete Requirement 
Description  

.1.1 Failure to adequately decompose a 
more abstract specification. 
.1.2 Failure to fully describe all 
requirements of a function. 

.1,.5 

.2 Omitted/Missing 
 

.2.1 Omitted Requirement 

.2.2  Missing External 
Constants 
.2.3 Missing Description of 
Initial System State 

.2.1 Failure to specify one or more of the 
next lower levels of abstraction of a higher 
level specified. 
.2.2 Specification of a Missing value or 
variable in a requirement. 
.2.3 Failure to specify the initial system 
state, when that state is not equal to 0. 

.2,.10,.11 

.3 Incorrect .3.1 Incorrect External 
Constants 
.3.2 Incorrect Input or Output 
Descriptions 
.3.3 Incorrect Description of 
Initial System State 
.3.4 Incorrect Assignment of 
Resources 

.3.1 Specification of an incorrect value or 
variable in a requirement. 
.3.2 Failure to fully describe system input or 
output. 
.3.3 Failure to specify the initial system 
state, when that state is not equal to 0. 
.3.4 Over-or-under stating the computing 
resources assigned to a specification. 

.10,.11, .13, .8 

.4 Ambiguous 
 

.4.1 Improper Translation 

.4.2 Lack of Clarity 
.4.1 Failure to carry detailed requirement 
through decomposition process, resulting in 
ambiguity in the specification. 
.4.2 difficult to understand or lack of clarity 
and therefore ambiguous. 

.3 

.5 Infeasible .  ---------------------- .5.1 Requirement, which is unfeasible or 
impossible to achieve given other system 
factors, e.g., process speed, memory 
available. 

.6 

.6 Inconsistent  .6.1 External Conflicts 
.6.2 Internal Conflicts 

.6.1 Requirements that are pair-wise 
incompatible. 
.6.2 Requirements of cooperating systems, 
or parent/embedded systems, which taken 
pair-wise are incompatible. 

.7,.9 

.7 Over-specification   --------------------- .7.1 Requirements or specification limits 
that are excessive for the operational need, 
causing additional system cost. 

 
.12 

.8 Not Traceable .---------------------- .8.1 Requirement which cannot be traced to 
previous or subsequent phases. 

.14 

.9 Unachievable Item ----------------------- .9.1 Requirement that is specified but 
difficult to achieve. The requirement 
statement or functional description cannot 
be true in the reasonable lifetime of the 
product. 

.15 

.10 Non-Verifiable  
 
 
 
 

---------------------- .10.1 The Requirement statement or 
functional description cannot be verified by 
any reasonable testing methods 
Process exists to test satisfaction of each 
requirement. 
Every requirement is specified behaviorally. 

.16 

.11 Misplaced ----------------------- .11.1 Information which is in a different 
section in requirements document. 

.17 

.12 Intentional Deviation  ----------------------- .12.1 The Requirement that is specified at 
higher level but intentionally deviated at 
lower level from specifications. 

.18 

.13 Redundant or Duplicate  ----------------------- .13.1  Requirement was already specified 
elsewhere in the specification 

----------------------- 
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left the remaining requirement faults as one major 
category as each of these fault types do not overlap.     
Though the NUREG taxonomy included an operational 
environment incompatibility category, there is no such 
category in our revised requirement fault taxonomy. This 
is because the requirement sub-fault missing external 
constants subsumes operational environment 
incompatibility fault. This is a more detailed or 
decomposed lower level fault of missing external 
constants and we found that it is very difficult to make a 
clear distinction between these two faults during the 
requirements phase. In order to avoid overlap, we 
consider any     fault        dealing   with     operational    
environment incompatibility as the sub-fault missing 
external constants under the Omitted requirement major 
fault.  The resulting taxonomy has 13 categories and can 
be seen in Table A1. 
 
3.2 Examining requirements faults 
 
   Obtaining NASA project-specific fault data proved to 
be challenging.  As one would expect, there is a required 

level of security for the manned space flight programs.  
Fault reports cannot be made publicly available, and 
appropriate research agreements must be put in place to 
ensure the security of the fault data while still allowing 
researchers some latitude for publication of results.  The 
data was essential for the research.  We received and 
examined IV&V “comments” on requirement problems 
for four projects and Project fault reports (requirements-
related) for another two projects.  We noted that the level 
of detail of the fault data provided varied greatly.   
Analysis of the data provided insights that allowed us to 
improve our generic fault taxonomy and our taxonomy 
extension/tailoring processes. 

3.3 Process for extending the fault taxonomy  
 
   We have built and adopted a method for extending or 
tailoring the fault taxonomy, as mentioned in section 2.  
We split our process for extending the fault taxonomy 
into two parts: Class-process and Project-process.  Class-
process discusses all the activities that are to be 
performed to develop a class-specific taxonomy.  The 
outputs of Class-process are inputs to the Project-process 
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Figure 1. High-level process to extend a fault taxonomy. 
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(i.e., we take a class-specific taxonomy and perform all 
the activities described in the Project-process section to 
develop a project-specific taxonomy). 

   Our process for extending the fault taxonomy is shown 
in Figure 1.  The process builds on our generic 
taxonomy.  Just as NRC examined classes of software 
projects separately [10], we feel there will be a 
substantial difference in the proportion of faults between 
NASA software project classes.  First, we take our 
generic fault taxonomy, NASA project requirement faults 
and problem reports and perform Class-process as 
discussed below.  The result is a NASA software project 
class taxonomy.  The criteria for the classes are found in 
the NASA Software Safety Guidebook [15].  We 
grouped manned missions and manned exploration 
projects into Class A, aerospace, earth space, and science 
space projects into Class B, biological and physical 
projects into Class C, and the remaining projects which 
do not satisfy any of the prior class conditions into Class 
D.  Next, the Project-process is performed.  The result is 
a project-specific requirement fault taxonomy.  Finally, 
an optional activity is to perform tolerance analysis and 
to develop a prioritized  
 fault list for the project.  Due to space limitations, only 
the Class-process will be discussed in this paper.  The 
interested reader can see the NASA report [4] for more 
details on the Project-process and tolerance analysis.  

   The Process for developing the class-specific 
requirement fault taxonomy is shown in Table 2.  The 
table consists of six fields: entry criteria, activities, exit 

criteria, inputs, outputs, and process controls and metrics.  
The entry criteria field describes a checklist of pre-
conditions that must be met before the process activities 
can start.  All the information and data needed such as 
the generic fault taxonomy, NASA project requirement 
faults, problem reports and class project definitions must 
be available before the process starts.  NASA must 
authorize the use of project data.  In addition, it is 
necessary that NASA has authorized the taxonomy 
extension project.  
   The activities to be performed include selecting a 
generic requirement fault taxonomy, obtaining problem 
reports for projects in Class A, B, C, and D, categorizing 
the faults obtained for each project using our fault 
taxonomy, determining the number of faults for each 
category and the percentage of occurrences, and 
identifying the top five critical requirement faults for 
each Class A, B, C, and D.   
   We estimate fault frequency for different projects 
under each class.  For example, we use a table to 
accumulate fault frequency for aerospace, earth science 
and space science projects under the Class B category.  
Then, we identify the requirement fault types, fault 
frequency count, and percentage of fault occurrences for 

Entry Criteria Activities Exit Criteria 
1. All inputs are available 
2. NASA has authorized use of 

project data 
3. NASA has authorized the 

taxonomy extension 
project 

 

1. Select generic requirement fault 
taxonomy 

2. Examine problem reports for projects in 
Class A, B, C, and/or D 

3. Categorize the faults for each project 
according to the generic taxonomy 

4. Determine frequency fault types for each 
class and percent of fault 
occurrences 

5. Identify crucial fault categories for each 
class  

1. A Class-specific requirement 
fault taxonomy has been 
developed (Class A, B, C, 
and/or D) 

 

Inputs Process Controls/Metrics Outputs 
1. Generic fault taxonomy  
2. NASA project requirement 

faults/problem reports 
3. Class project definitions 
 
 

Controls: 
1. Maintenance of configuration control of 

taxonomy 
2. Maintenance and management of NASA 

project data by class 
Metrics: 
1. Person Hours of effort 
2. # of projects 
3. # faults 
4. frequency of fault 
5. % of fault occurrence 
6. Top 5 Historical Fault areas by class 

1. Frequency counts of faults per 
class and percent of fault 
occurrences 

2. Crucial fault categories for 
each class 

 

 

Table 2.  Class-process for extending a fault taxonomy for Classes (A-D) of NASA software projects.  
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each project.  Assume that 50 incomplete decomposition 
requirement faults exist in the Class B projects and that 
10 incomplete description faults exist.  Overall 1000 
requirement faults were found for Class B. The 
percentage of occurrence of incomplete requirement 
faults is therefore 6% for Class B.1 
   Finally, we will determine the historically most 
probable requirement faults for each class.  We list the 
top five major and sub-requirement faults for a Class of 
projects.  We then assign a complexity of high, medium, 
or low depending upon a fault’s frequency.  If certain 
faults are found more frequently for a certain class, then 
it is crucial to seek improvement in that area and to 
attempt to prevent and/or detect these fault types.  
   The outputs of this process are the frequency counts of 
the faults, percent of fault occurrence, and the crucial 
requirement faults for each class.  We repeat this process 
for each class for which we have project data until our 
exit criteria is met (i.e., we have developed a class-
specific requirement fault taxonomy).  The process 
controls ensure that all versions of our requirement fault 
taxonomy are properly maintained under configuration 
control.  Also, the NASA project data must be 
maintained by project class.  Process metrics include 
person hours for the effort, number of projects, number 
of requirements faults, etc. 
 

3.4 Implementing the fault taxonomy extension 
process 

   This research activity entailed implementing the 
method to extend the fault taxonomy to develop a class-
specific taxonomy (Class-process) and a project-specific 
taxonomy (Project-process).  Prior to beginning the 
Class-process, feedback from staff at the IV&V Facility 
in West Virginia corroborated the researcher's 
categorization of one project as NASA Class C; two 
projects as NASA Class B, and the ISS project as NASA 
Class A.  It is preferable to classify as many projects per 
class as possible.  Unfortunately, these were all the 
projects for which we had data.  We desired more project 
data, and would have certainly preferred more than one 
class A project and more than one Class C project.  
   Three verification and validation analysts 
independently examined and categorized project faults 
for the six data sources.  On average, the analysts had 
eight years of V&V experience.  Each analyst followed 
the fault taxonomy extension process for NASA software 
classes.  During this process, lessons learned from each 
analyst resulted in revisions, clarifications, deletions, and 

                                                                 
1 The author is aware that faults are not “created equally” and is currently working 

on advancing ideas from [17] on examining the relative semantic “size” of 
faults.  In the meantime, one problem report is equivalent to one fault. 

additions to the generic taxonomy as well as to the 
process itself.  Insight was also gained during a review of 
the orthogonality concept as applied to these taxonomy 
categories. Our conclusions on orthogonality are 
presented in Section 4.  It should also be noted that the 
analysts only consulted with each other to verify that they 
were following the categorization process consistently 
and had a shared understanding of the generic taxonomy 
and associated category definitions.   
   It was noted that in many cases across the six project 
data sources, multiple requirement faults were included 
in a single Project Problem Report (PR) or IV&V 
comment.  This warranted special attention by the 
analysts to properly count and categorize project fault 
data.  Based on this observation, one suggestion is for the 
projects and/or reviewing IV&V analysts to document 
each individual fault separately.  
   The three analysts, in conjunction with the author, 
made the following changes to the revised generic 
taxonomy (as can be seen in Table 3): 
 
� Descriptions of the several Fault and Sub-fault 

categories were clarified to reduce confusion among 
present and future analysts using this generic 
taxonomy.  Descriptions now align closely with the 
intent of the category or subcategory.  In some cases, 
elaborative comments or examples were added in the 
last column of the table.  All of the fault category 
item descriptions were clarified except for Category 
1.7. 

� Mainly for reasons of orthogonality, the following 
categories or subcategories were combined due to 
their similarity with or indistinguishability from 
other categories or subcategories:  Subcategories 
1.1.1 and 1.1.2 were combined; Subcategories 1.4.1 
and 1.4.2 were combined; and Categories 1.5 and 
1.9 were combined.  Category 1.9 is now "Reserved 
for future." 

� The following subcategory was deleted/removed 
from the taxonomy, again due to orthogonality or 
similarity issues: Subcategory 1.2.3. 

 
   Upon completion of the Class-process, review of our 
analysts' combined categorization data for six projects 
across three NASA classes (A, B, and C) allowed us to 
develop three class-specific taxonomies. The class-
specific taxonomy for Class A, a sub-set of the final 
generic taxonomy, is shown in Table 3.  It should be 
noted that this is a first "draft" taxonomy, as we only 
looked at data for one project in this class.  In the future 
we plan to repeat the Class-process for additional 
projects/systems in each class (including Class D) in 
order to refine and finalize class-specific taxonomies for 
each of the four NASA Classes. 
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   We were unable to completely implement the Project-
process.  This was due to logistical problems in obtaining 
project data, small fault sample sizes, lack of historical 
fault data for previous software versions, and the 
insufficient level of detail of the fault data provided by 
some of the NASA projects.  Hence, we could not 
produce an accurate and validated project-specific 
taxonomy for these projects.  However, we were able to 
perform the Class-process.  For Class B we found that 

83% of the faults fell under three categories: 
Incompleteness, Ambiguous, or Inconsistent.  From the 
Class C data, we found that 83% of the faults fell under 
three categories:  Incompleteness, Omitted, or Incorrect.  
We found that the NASA project managers were pleased 
to gain this insight into their programs.  Specifically, they 
asked how they could improve the writing of requirement 
specifications to decrease or eliminate these categories of 
mistakes.  

 
 

Table 3.  Draft class-specific requirement fault taxonomy for NASA Class A projects. 
 

 
Major Fault Sub-Faults Description of  Sub-Faults 
.1 Incompleteness 
 
 

----------------------- .1.1 An abstract specification from a higher level 
document exists in a lower level document, but it has 
not been fully elaborated or expanded. 

.2 Omitted/Missing 
 

.2.1 Omitted Requirement 
 

.2.1 An abstract specification or concept from a 
higher level document does not exist in or is 
completely omitted from a lower level document. 

 .2.2  Missing External 
Constant 

.2.2 Reference to an external constant that doesn’t 
exist or the value of an external constant is not 
specified. 

.3 Incorrect .3.1 Incorrect External 
Constant 

.3.1 Specification of an incorrect value or variable in 
a requirement that does not conflict with a 
cooperating or parent/embedded system. 

 .3.2 Incorrect Description 
of Input or Output 

.3.2 Incorrect description of system input or output. 
 

 .3.3 Incorrect Description 
of Initial System State 

.3.3 Incorrect description of initial system state, 
when that state is not equal to 0. 

 .3.4 Incorrect Assignment 
of Resources 

.3.4 Overstating or understating the computing 
resources assigned to a specification. 

.4 Ambiguous 
 

---------------------- .4.1 The requirement wording is difficult to 
understand due to poor grammar usage or word 
choice, resulting in misinterpretation or leading to 
multiple valid interpretations. 

.5 Infeasible  ---------------------- .5.1 Requirement that is specified, which is 
unfeasible and difficult or impossible to achieve 
given other system factors (e.g., process speed, 
memory available) and cannot be true in the 
reasonable lifetime of the product. 

.6 Inconsistent  .6.1 Internal Conflicts .6.1 Requirements that are pair-wise incompatible in 
same document or between requirement documents 
at the same level. 

 .6.2 External Conflicts 
 

.6.2 Requirements of cooperating systems, or 
parent/embedded systems, which taken pair-wise are 
incompatible.  Includes conflicting references to 
external functionality. 

.7 Over-specification   --------------------- .7.1 Requirements or specification limits that are 
excessive for the operational need, causing 
additional system cost. 

.8 Not Traceable ---------------------- .8.1 Requirement which is "out-of-the-blue" and 
cannot be traced to lower level or higher level 
specifications. 

.9 [Reserved for future] ---------------------- ---------------------- 



 . 

4. International Space Station 
 

   The International Space Station (ISS) represents a 
global partnership of sixteen nations and will have over 
two million lines of on-board and over ten million lines 
of ground support software [16].  Just as the Phase I 
research funding was expiring, we established a research 
agreement with the International Space Station (ISS).  
The project provided 6500+ Problem Reports (PRs), 
which we estimate described as many as 8500+ 
requirement faults (many individual PRs described 
multiple requirement faults).  ISS Fault data contained 
greater detail than we had seen for the Class B and C 
projects.  We were able to examine 10% of the project 
fault data.  Of the 10%, a fair number were not 
requirement faults and our final sample size of ISS 
requirement faults (486 faults) only represented 6% of all 
the fault data provided.    
   As discussed above, we performed the Class-process 
for Class A systems (even though we only had data from 
one project).  We began to perform the Project-process.  
It became apparent that to accurately develop and 
validate a project-specific taxonomy for the ISS project, 
we would still need additional information.  For example, 
we would need: more detail on some of the fault 
descriptions provided; to examine the appropriate 
referenced documents (i.e., the actual requirement 
specifications); to analyze a larger sample size; to review 
historical fault data, if available; and to engage in brief 
clarification discussions with project staff.  Hence, we 
did not complete the Project-process for the ISS project.  
The ISS project has expressed their desire to continue the 
research collaboration and we do plan to complete the 
Project-process in the near future. 
   Nonetheless, the classification analysis of the resulting 
486 ISS requirement faults did yield some initial data as 
shown in Table 4.  We presented the ISS data findings to 
the project in Houston, Texas in December, 2002.  We 
discussed the top three significant taxonomy categories 
into which their requirement faults fit as well as the 
percentage of faults in those categories.  These three fault 
categories and their percentages were: Incompleteness 
(20.9%), Omitted/Missing (32.9%), and Incorrect 
(23.9%).  Together, these three categories accounted for 
almost 80% of the requirement faults evaluated.  Project 
management stated that they found this data useful 
toward the development of future requirements.  
 

5. Discussion 
 

   We learned a number of interesting things from this 
study.  A lesson learned from the implementation of the 
Class-process had to do with re-examining the concept of 

orthogonality.  It was agreed, between the analysts and 
researchers, that the average analyst using the taxonomy 
to categorize requirement faults might determine that 
more than one category applied to a single requirement 
fault.  This stimulated a discussion as to whether a 
requirements fault taxonomy, or category within a 
taxonomy, could really be orthogonal.  We determined, 
that to eliminate any confusion by users of this process 
and its taxonomy, that an analyst must dig down to find 
the root cause of a requirement fault.  A single fault 
taxonomy category was then almost always apparent.   
   In many cases during our analysis, we found that we 
did not have access to all the information we needed to 
determine the root cause or to pick one sub-category over 
another (e.g., 1.6.1 versus 1.6.2). The Class-process has 
also been modified to guide the analyst to select the 
Major Fault Category when there is not enough 
information to select one of the subcategories (e.g., 
categorizing a fault as "inconsistent" Category 1.6 if one 
cannot select either 1.6.1 or 1.6.2).   The information we 
would have liked to receive (e.g., high level parent 
specification, detailed children or interface 
specifications, Configuration Control Board meeting 
minutes or other documents explaining project changes 
to specifications) was not easily obtainable from the 
projects participating in this study.  We concluded that 
data gathered by this approach could be improved 
through direct interaction with project personnel. 
 
Table 4.  ISS project categorization percentage 
data. 
   

Major Fault Percentage of ISS Faults by 
Category 

.1 Incompleteness 0.209 

.2 Omitted/Missing 0.329 

.3 Incorrect 0.239 

.4 Ambiguous 0.061 

.5 Infeasible 0.014 

.6 Inconsistent  0.047 

.7 Over-specification  0.063 

.8 Not Traceable 0.014 

.9 [Reserved for future] ------- 

.10 Non-Verifiable  0.005 

.11 Misplaced 0.007 

.12 Intentional Deviation  0.007 

.13 Redundant or 
Duplicate 

0.005 

 
   Even armed with enough information, it would seem 
reasonable, for example, that an analyst looking at a 



 . 

requirement fault documenting a "missing" requirement 
(Category 1.2) might think the following:  "If the 
requirement is missing or omitted, it is at the same time 
also untraceable (Category 1.8)".  While this may seem 
true, the root cause of the fault is the omission.  A 
requirement that appears "out of the blue" or 
unconnected to any other specification (child 
specification or same level specification, such as 
interface specification) is a root cause "not traceable" 
requirement (Category 1.8).   We clarified Category 1.8's 
definition and definitions of the other categories to make 
it as clear as possible into which category the root cause 
of a fault fits.  In sum, analysis of our taxonomy leads us 
to conjecture that it is largely orthogonal, although in a 
few instances multiple categories applied. 
 

6. Conclusions and future work 
 

In this work, we focused on building a taxonomy of 
requirement faults and a process for extending the 
taxonomy.  By eliminating faults at the earliest possible 
opportunity, we reduce the cost of fixing errors later in 
the lifecycle [1].  The research, to date, has resulted in a 
number of general findings: 

� A NASA specific taxonomy did not 
previously exist, is needed, and was 
developed. 

� A process for tailoring/extending a 
taxonomy did not previously exist, is 
needed, and was developed. 

� Sub-faults are useful for clarification only. 
� Classification can best be done at the fault 

level. 
� NASA Fault reports have varying levels of 

detail. 
� NASA Problem Reports (PRs) often cover 

multiple faults. 
� Source Codes of PRs (stating what phase of 

the lifecycle or what artifact resulted in the 
PR) are not always accurate. 

� Data needed for performing the Project-
process is considered sensitive and may be 
difficult to obtain. 

� New PRs are often written when old 
problems are not fully corrected. 

� It is not easy to determine into which class 
a NASA projects falls. 

� Use of multiple analysts and projects 
enhanced both our taxonomy and our 
processes. 

   Based on our work and the findings above, we made 
the following recommendations to NASA, many of 
which may apply generally to all software projects: 
 
� Publish a NASA specific requirement fault 

taxonomy. 
� Publish a process for extending a taxonomy. 
� Publish a “requirement writer’s guide.” 
� Recommend to projects that they write cohesive 

PRs, with one fault per PR. 
� Publish a list of NASA Projects by class. 
 
   Though we have made good progress in Phase I of this 
effort, much work remains to be done.  We have defined 
the future work in two phases, Phase II and Phase III.  
Our approach for Phase II will be:  research existing 
IV&V technique taxonomies; working with the NASA 
research community and one or more NASA projects, 
implement the process developed in Phase I to extend the 
IV&V techniques taxonomy (to fully cover NASA 
needs); perform a literature survey for evidence that 
IV&V techniques detect certain requirements faults; 
build a traceability matrix (what techniques can detect 
fault types); use expert opinion to fill in gaps in the 
matrix; working with the Jet Propulsion Laboratory, 
populate the Advanced Risk Reduction Tool (ARTT) 
implementation of DDP with this data; use expert 
opinion to validate the ARTT data (using different 
experts than for the matrix completion); and disseminate 
the findings.  In Phase III, we propose to:  design and 
implement an experimental pilot study [10] that has an 
IV&V agent and/or a NASA project use the process to 
extend a fault taxonomy for a specific project to assess 
its usefulness.  We plan to have an IV&V agent use the 
populated ARTT on a Goddard Space Flight Center 
Code S project to validate the usefulness of our 
technique-to-defect mapping.  We will also document 
our fault-based analysis technique and ARTT for broad 
use (to support technology transfer).   
   The ISS program has expressed interest in examining 
their requirement fault “profiles” over time.  For 
example, what would Table 4 look like for requirement 
problem reports from January 1, 1999 – December 31, 
2000, from January 1, 2000 – December 31, 2001, etc.?  
We hypothesize that the ISS fault taxonomy will remain 
fairly stable, but that it is possible that we may discover 
additional categories as we expand our examination of 
ISS problem reports.  We agree with the ISS personnel 
that at different points in time, there may have been 
differences in the proportion of faults per category.  
   Elimination of requirement faults represents our 
greatest cost saving opportunity and thus we have 
pursued this first.  Similarly, elimination of design faults 
is desirable.  To that end, future work beyond this will 
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concentrate on design techniques and faults, coding 
techniques and faults, etc. using the same approach that 
was used for requirements. 
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