

Building a Requirement Fault Taxonomy: Experiences from a NASA Verification

and Validation Research Project∗∗∗∗

∗ This work is supported by NASA under contract NAS2-98028.

 Jane Huffman Hayes
Computer Science Department
Lab for Advanced Networking

University of Kentucky
hayes@cs.uky.edu

EXPERIENCE REPORT
Abstract

Fault-based analysis is an early lifecycle approach to
improving software quality by preventing and/or
detecting pre-specified classes of faults prior to
implementation. It assists in the selection of verification
and validation techniques that can be applied in order to
reduce risk. This paper presents our methodology for
requirements-based fault analysis and its application to
National Aeronautics and Space Administration (NASA)
projects. The ideas presented are general enough to be
applied immediately to the development of any software
system. We built a NASA-specific requirement fault
taxonomy and processes for tailoring the taxonomy to a
class of software projects or to a specific project. We
examined requirement faults for six systems, including
the International Space Station (ISS), and enhanced the
taxonomy and processes. The developed processes,
preliminary tailored taxonomies for
Critical/Catastrophic High-Risk (CCHR) systems,
preliminary fault occurrence data for the ISS project,
and lessons learned are presented and discussed.

1. Introduction

 Verification and validation (V&V) activities are a
subset of the overall development process and are
sometimes performed by a third party, referred to as an
Independent Verification and Validation (IV&V) agent.
We are never able to perform all the V&V or IV&V
activities that we would like to perform. We need a way
to ensure that the activities that we do perform will be the
most effective at reducing risk for the project. Fault-
based analysis is one way to approach these challenges.
 Fault-based testing generates test data to demonstrate
the absence of a set of pre-specified faults. Similarly,

fault-based analysis identifies static techniques (such as
traceability analysis) and even specific activities within
those techniques (e.g., perform back-tracing to identify
unintended functions) that should be performed to ensure
that a set of pre-specified faults do not exist. As part of
fault-based analysis, a project manager can use historical
data to determine what fault types are most likely to be
introduced or can perform a risk analysis to determine
what fault types would be most devastating if
overlooked. Static techniques that prevent or detect
these fault types are then applied as part of the V&V
and/or IV&V effort. Fault-based analysis can be used to
improve the efficiency of the V&V or IV&V effort for
any software development effort, though it is most
commonly applied to development of CCHR systems.
Note that fault-based analysis is an early lifecycle
approach that can be applied prior to implementation.
 One form of fault-based analysis, focused on
requirement faults, can help us prevent and/or detect
faults prior to developing design or writing code. A
requirement fault is a fault that originates in the
requirements phase (e.g., omitted requirement,
incomplete requirement description). Eliminating faults
as early as possible in the software lifecycle results in
significant cost savings [1]. To provide a requirements-
based fault analysis approach, we have defined an overall
methodology [4]: (i) build a requirement fault taxonomy
and a process for tailoring it; (ii) build a taxonomy of
V&V techniques and build a matrix of their validated
fault detection capabilities; and (iii) develop guidance to
V&V agents and software projects for use of the fault-
based analysis methodology and assist in its adoption.
 The first phase of the research involved several
objectives: select a fault taxonomy as the basis for the
work, examine requirements faults from various projects,
adopt or build a method for extending the fault
taxonomy, and implement the method to extend the fault

 .

taxonomy. In this paper, we present our methodology
and application of its first phase at NASA.
 The paper is organized as follows. Section 2 discusses
related work in fault-based analysis. Section 3 describes
our work and the results of the aforementioned research
activities. Section 4 discusses the results of applying our
fault taxonomy extension process to requirement fault
data provided by the International Space Station.
Section 5 presents a discussion of some lessons that we
learned as we performed the research activities. Finally,
conclusions and future work are presented in Section 6.

2. Related work

 It is first necessary to define some of the terms that will
be used in this paper. The IEEE standard definition of an
error is a mistake made by a developer. An error may
lead to one or more faults [7]. A Requirement Fault is a
fault that originates in the requirements phase (e.g.,
omitted requirement, incomplete requirement
description). We define Fault Taxonomy as an orderly
classification of software faults according to their
characteristics and relationships. We define
Requirements Analysis as analysis of requirements to
ensure completeness, consistency, clarity, explicitness,
etc. [3]. A NASA Software Class is one of four possible
classes (A through D) based on the NASA software
classification scheme that considers the combined factors
of cost, size, complexity, lifespan, risk, and
consequences of failure. For each class there is a
corresponding set of minimum requirements for software
management, assurance, and engineering activities. This
scheme is detailed in the NASA Software Safety
Standard [15]. Class-Specific Taxonomy defines a
taxonomy specific to a NASA software project Class.
We introduce a process (termed Class-process) for
developing this taxonomy. Project-Specific Taxonomy
defines a taxonomy specific to a NASA project. We
introduce a process (termed Project-process) that utilizes
the results of Class-process as well as additional project-
specific information and results in a project-specific
taxonomy.
 There are numerous fault-based testing techniques.
These use a list of potential faults to generate test cases,
generally for unit- and integration-level testing [13,2].
Research has been performed in the area of software
safety fault identification also [12]. This includes
research into numerous fault analysis techniques such as
petri-net safety analysis [8], Failure Mode, Effects,
Criticality Analysis (FMECA) [11], and criticality
analysis [20]. A detailed literature survey into fault
analysis techniques was performed and over 60
references are presented in [4].

 As mentioned above, fault-based analysis has
similarities to fault-based testing, where we target the
strongest fault class while designing test generation
algorithms in order to increase the effectiveness of the
tests without unduly introducing overlap [6]. It is also
risk driven, and attempts to select V&V techniques for
application in order to achieve a project’s goals. In this
way, it is similar to test case selection during regression
testing, where we attempt to reduce the time required to
retest a modified program by selecting some subset of the
existing test suite [18].
 von Mayrhauser, Ohlsson, and Wohlin [19] determine
what components are fault-prone using historical defect
data and coupling and cohesion measures and derives
related fault architectures. Our approach uses historical
requirement defect data to understand what types of
requirement faults are most prevalent for a particular
NASA project or class of projects. Lutz [9] examines the
root cause of software errors in embedded, safety-critical
systems and identifies methods by which safety-related
requirements errors can be prevented. Helmer et al [5]
use a software fault tree for requirement identification
and analysis in an intrusion detection system. We do not
use a formal fault-tree analysis method to categorize our
requirement defects, but we do consider the “root” cause
when it appears that a fault might belong in more than
one category.
 Orthogonal Defect Classification, or ODC, classifies
defects into non-overlapping categories and also
examines defect triggers to lead to improvements in the
software process [21]. ODC emphasizes design and code
whereas our approach emphasizes requirements. ODC
uses a fixed set of trigger and defect types. Our
approach is based on tailored fault taxonomies. Munson
and Nikora [14] count the number of faults associated
with a failure using language-specific tokenizing. We
have also found it difficult to “count” requirement faults.
Often, more than one fault is described in a single
Problem Report. We have performed some preliminary
work in the area of fault “counting” and feel that this area
requires further research [17].

Our research goes beyond that mentioned above in
several ways. It aims to develop a general approach to
fault-based analysis that can be applied to any software
system development. To date, we have focused on
requirement-based analysis and on NASA software
systems. We have examined NASA requirement faults
and have developed a generic taxonomy of these faults.
One of our larger research goals focuses on V&V and
IV&V techniques and their requirements fault
detection/prevention capabilities. In future phases, we
will work specifically to identify those techniques that
will help reduce the requirements risks of NASA
projects. We have identified new types of faults that

 .

were not in existing fault taxonomies. Also, it is possible
that our work will identify faults that are not detected (or
not easily) by existing techniques (meaning that an
outgrowth of this work may be the development of new
or improved techniques).

3. Fault-based analysis at NASA

 The problem addressed by this research is that there is
never enough time or money to perform V&V on
everything associated with a software project. We have
only high-level knowledge of how the potential existence
of specific requirements faults increases the risk of
software projects. We have only high-level knowledge of
how specific V&V techniques (requirements tracing,
code analysis, etc.) contribute to improved system
software reliability and reduced risk.
 Therefore, there is a need to wisely select techniques to
apply when performing V&V or IV&V on software
programs. Resources are constrained, and we seek to
lower program risk as much as possible with the least
expenditure of time and money as possible. Specifically,
we need to improve how we focus our resources for
IV&V of Critical/Catastrophic High-Risk (CCHR)
software functions. The nuclear power industry has
found that a fault-based analysis method results in the
optimal application of resources to V&V and IV&V of
their critical software applications. They have identified
the types of faults that are common in nuclear power
system software requirements, and then have identified
the requirements analysis techniques that can best
prevent or detect these types of requirements faults [10].
This research categorized software systems as Class I, II,
or III, where a malfunction of a Class I system could
result in loss of life.
 For the first phase of the research, the objectives were
to: select a fault taxonomy as the basis for the work,
examine NASA-specific requirements faults, build a list
of IV&V techniques, adopt or build a method for
extending the fault taxonomy, and implement the method
to extend the fault taxonomy. Each will be discussed
below.

3.1 Selecting a fault taxonomy

We chose the Nuclear Regulatory Commission (NRC)
requirement fault taxonomy from NUREG/CR-6316 [10]
as the basis for our work. We selected this taxonomy
based on two key criteria:
� The fault categories were mutually exclusive, and
� The fault categories were not specific to a particular

language, environment, or system development
approach.

Also, as one of the developers of this taxonomy, the
author was very familiar with it. The NUREG fault
categories are listed below (subcategories can be seen in
[10]):

1. Requirement Faults
 1.1 Incomplete decomposition

 1.2 Omitted requirement

 1.3 Improper translation

 1.4 Operational environment incompatibility

 1.5 Incomplete requirement description

 1.6 Infeasible requirement

 1.7 Conflicting requirement

 1.8 Incorrect assignment of resources

 1.9 Conflicting inter-system specification

 1.10 Incorrect or missing external constants

 1.11 Incorrect or missing description of initial system state

 1.12 Over-specification of requirements

 1.13 Incorrect input or output descriptions

 We found many papers that confirmed our
requirements fault types and found only a few papers that
described “new” requirement faults (see [4]). Note that
the above list, with the addition of not traceable, non-
verifiable, unachievable, misplaced, and intentional
deviation fault types, should serve as a good starting
taxonomy for the fault-based analysis of any software
system. Examination of NASA requirement faults
resulted in a number of changes to the taxonomy, as
discussed below. The resulting new set of 13 fault
categories was considered to be relevant as a “generic”
NASA fault taxonomy as shown in Table 1.
 We added a category for each “new” fault type such as
not traceable, non-verifiable, unachievable, misplaced,
and intentional deviation, bringing the taxonomy to 18
fault types. We consider omitted or missing
requirement as one major category. The sub-fault
categories identified under this category are: 1) Omitted
requirement, 2) Missing external constants, and 3)
Missing description of initial system state. We identified
incorrect as one major category. The sub-fault
categories are: 1) Incorrect external constants, 2)
Incorrect input or output descriptions, 3) Incorrect
description of initial system state, and 4) Incorrect
assignment of resources.
 We added one major requirement fault, ambiguous,
and under it we grouped: 1) Improper translation, and
added a new sub-fault category 2) Lack of clarity. We
grouped conflicting requirements into one major fault
category, inconsistent, and the sub-faults under this
category are: 1) External conflicts, and 2) Internal
conflicts. We added a new major requirement fault,
redundant, to cover the situation where a requirement
appears duplicated elsewhere in the specification. We

 .

Table 1. Revised requirement fault taxonomy.

Major Fault Sub-Faults Description of Sub-Faults Earlier version
taxonomy faults that
are mapped here

1. Requirements riginate in Requirements phase; found in the Requirements Specification
.1 Incompleteness

.1.1 Incomplete
Decomposition
.1.2 Incomplete Requirement
Description

.1.1 Failure to adequately decompose a
more abstract specification.
.1.2 Failure to fully describe all
requirements of a function.

.1,.5

.2 Omitted/Missing

.2.1 Omitted Requirement

.2.2 Missing External
Constants
.2.3 Missing Description of
Initial System State

.2.1 Failure to specify one or more of the
next lower levels of abstraction of a higher
level specified.
.2.2 Specification of a Missing value or
variable in a requirement.
.2.3 Failure to specify the initial system
state, when that state is not equal to 0.

.2,.10,.11

.3 Incorrect .3.1 Incorrect External
Constants
.3.2 Incorrect Input or Output
Descriptions
.3.3 Incorrect Description of
Initial System State
.3.4 Incorrect Assignment of
Resources

.3.1 Specification of an incorrect value or
variable in a requirement.
.3.2 Failure to fully describe system input or
output.
.3.3 Failure to specify the initial system
state, when that state is not equal to 0.
.3.4 Over-or-under stating the computing
resources assigned to a specification.

.10,.11, .13, .8

.4 Ambiguous

.4.1 Improper Translation

.4.2 Lack of Clarity
.4.1 Failure to carry detailed requirement
through decomposition process, resulting in
ambiguity in the specification.
.4.2 difficult to understand or lack of clarity
and therefore ambiguous.

.3

.5 Infeasible . ---------------------- .5.1 Requirement, which is unfeasible or
impossible to achieve given other system
factors, e.g., process speed, memory
available.

.6

.6 Inconsistent .6.1 External Conflicts
.6.2 Internal Conflicts

.6.1 Requirements that are pair-wise
incompatible.
.6.2 Requirements of cooperating systems,
or parent/embedded systems, which taken
pair-wise are incompatible.

.7,.9

.7 Over-specification --------------------- .7.1 Requirements or specification limits
that are excessive for the operational need,
causing additional system cost.

.12

.8 Not Traceable .---------------------- .8.1 Requirement which cannot be traced to
previous or subsequent phases.

.14

.9 Unachievable Item ----------------------- .9.1 Requirement that is specified but
difficult to achieve. The requirement
statement or functional description cannot
be true in the reasonable lifetime of the
product.

.15

.10 Non-Verifiable

---------------------- .10.1 The Requirement statement or
functional description cannot be verified by
any reasonable testing methods
Process exists to test satisfaction of each
requirement.
Every requirement is specified behaviorally.

.16

.11 Misplaced ----------------------- .11.1 Information which is in a different
section in requirements document.

.17

.12 Intentional Deviation ----------------------- .12.1 The Requirement that is specified at
higher level but intentionally deviated at
lower level from specifications.

.18

.13 Redundant or Duplicate ----------------------- .13.1 Requirement was already specified
elsewhere in the specification

 .

left the remaining requirement faults as one major
category as each of these fault types do not overlap.
Though the NUREG taxonomy included an operational
environment incompatibility category, there is no such
category in our revised requirement fault taxonomy. This
is because the requirement sub-fault missing external
constants subsumes operational environment
incompatibility fault. This is a more detailed or
decomposed lower level fault of missing external
constants and we found that it is very difficult to make a
clear distinction between these two faults during the
requirements phase. In order to avoid overlap, we
consider any fault dealing with operational
environment incompatibility as the sub-fault missing
external constants under the Omitted requirement major
fault. The resulting taxonomy has 13 categories and can
be seen in Table A1.

3.2 Examining requirements faults

 Obtaining NASA project-specific fault data proved to
be challenging. As one would expect, there is a required

level of security for the manned space flight programs.
Fault reports cannot be made publicly available, and
appropriate research agreements must be put in place to
ensure the security of the fault data while still allowing
researchers some latitude for publication of results. The
data was essential for the research. We received and
examined IV&V “comments” on requirement problems
for four projects and Project fault reports (requirements-
related) for another two projects. We noted that the level
of detail of the fault data provided varied greatly.
Analysis of the data provided insights that allowed us to
improve our generic fault taxonomy and our taxonomy
extension/tailoring processes.

3.3 Process for extending the fault taxonomy

 We have built and adopted a method for extending or
tailoring the fault taxonomy, as mentioned in section 2.
We split our process for extending the fault taxonomy
into two parts: Class-process and Project-process. Class-
process discusses all the activities that are to be
performed to develop a class-specific taxonomy. The
outputs of Class-process are inputs to the Project-process

Optional Activity

Generic fault
taxonomy

Class-process to extend a fault
for a software project Class

NASA project
requirements
faults/problem reports

2) Class B
(e.g., Aerospace,
Earth Science,
Space Science
projects)

Fault taxonomy for a
specific project

3) Class C
(e.g., Biological/
Physical projects)

1) Class A
(e.g., Manned
Exploration,
Manned
Missions)

Project -
specific
information
(goals,
priorities)

Prioritized fault list for

a project

Tolerance Analysis

4) Class D
(e.g., Other
projects which
do not fall into
Class A, B or C)

Project-process to extend a
taxonomy for a project

shaded

Figure 1. High-level process to extend a fault taxonomy.

 .

(i.e., we take a class-specific taxonomy and perform all
the activities described in the Project-process section to
develop a project-specific taxonomy).

 Our process for extending the fault taxonomy is shown
in Figure 1. The process builds on our generic
taxonomy. Just as NRC examined classes of software
projects separately [10], we feel there will be a
substantial difference in the proportion of faults between
NASA software project classes. First, we take our
generic fault taxonomy, NASA project requirement faults
and problem reports and perform Class-process as
discussed below. The result is a NASA software project
class taxonomy. The criteria for the classes are found in
the NASA Software Safety Guidebook [15]. We
grouped manned missions and manned exploration
projects into Class A, aerospace, earth space, and science
space projects into Class B, biological and physical
projects into Class C, and the remaining projects which
do not satisfy any of the prior class conditions into Class
D. Next, the Project-process is performed. The result is
a project-specific requirement fault taxonomy. Finally,
an optional activity is to perform tolerance analysis and
to develop a prioritized
 fault list for the project. Due to space limitations, only
the Class-process will be discussed in this paper. The
interested reader can see the NASA report [4] for more
details on the Project-process and tolerance analysis.

 The Process for developing the class-specific
requirement fault taxonomy is shown in Table 2. The
table consists of six fields: entry criteria, activities, exit

criteria, inputs, outputs, and process controls and metrics.
The entry criteria field describes a checklist of pre-
conditions that must be met before the process activities
can start. All the information and data needed such as
the generic fault taxonomy, NASA project requirement
faults, problem reports and class project definitions must
be available before the process starts. NASA must
authorize the use of project data. In addition, it is
necessary that NASA has authorized the taxonomy
extension project.
 The activities to be performed include selecting a
generic requirement fault taxonomy, obtaining problem
reports for projects in Class A, B, C, and D, categorizing
the faults obtained for each project using our fault
taxonomy, determining the number of faults for each
category and the percentage of occurrences, and
identifying the top five critical requirement faults for
each Class A, B, C, and D.
 We estimate fault frequency for different projects
under each class. For example, we use a table to
accumulate fault frequency for aerospace, earth science
and space science projects under the Class B category.
Then, we identify the requirement fault types, fault
frequency count, and percentage of fault occurrences for

Entry Criteria Activities Exit Criteria
1. All inputs are available
2. NASA has authorized use of

project data
3. NASA has authorized the

taxonomy extension
project

1. Select generic requirement fault
taxonomy

2. Examine problem reports for projects in
Class A, B, C, and/or D

3. Categorize the faults for each project
according to the generic taxonomy

4. Determine frequency fault types for each
class and percent of fault
occurrences

5. Identify crucial fault categories for each
class

1. A Class-specific requirement
fault taxonomy has been
developed (Class A, B, C,
and/or D)

Inputs Process Controls/Metrics Outputs
1. Generic fault taxonomy
2. NASA project requirement

faults/problem reports
3. Class project definitions

Controls:
1. Maintenance of configuration control of

taxonomy
2. Maintenance and management of NASA

project data by class
Metrics:
1. Person Hours of effort
2. # of projects
3. # faults
4. frequency of fault
5. % of fault occurrence
6. Top 5 Historical Fault areas by class

1. Frequency counts of faults per
class and percent of fault
occurrences

2. Crucial fault categories for
each class

Table 2. Class-process for extending a fault taxonomy for Classes (A-D) of NASA software projects.

 .

each project. Assume that 50 incomplete decomposition
requirement faults exist in the Class B projects and that
10 incomplete description faults exist. Overall 1000
requirement faults were found for Class B. The
percentage of occurrence of incomplete requirement
faults is therefore 6% for Class B.1
 Finally, we will determine the historically most
probable requirement faults for each class. We list the
top five major and sub-requirement faults for a Class of
projects. We then assign a complexity of high, medium,
or low depending upon a fault’s frequency. If certain
faults are found more frequently for a certain class, then
it is crucial to seek improvement in that area and to
attempt to prevent and/or detect these fault types.
 The outputs of this process are the frequency counts of
the faults, percent of fault occurrence, and the crucial
requirement faults for each class. We repeat this process
for each class for which we have project data until our
exit criteria is met (i.e., we have developed a class-
specific requirement fault taxonomy). The process
controls ensure that all versions of our requirement fault
taxonomy are properly maintained under configuration
control. Also, the NASA project data must be
maintained by project class. Process metrics include
person hours for the effort, number of projects, number
of requirements faults, etc.

3.4 Implementing the fault taxonomy extension
process

 This research activity entailed implementing the
method to extend the fault taxonomy to develop a class-
specific taxonomy (Class-process) and a project-specific
taxonomy (Project-process). Prior to beginning the
Class-process, feedback from staff at the IV&V Facility
in West Virginia corroborated the researcher's
categorization of one project as NASA Class C; two
projects as NASA Class B, and the ISS project as NASA
Class A. It is preferable to classify as many projects per
class as possible. Unfortunately, these were all the
projects for which we had data. We desired more project
data, and would have certainly preferred more than one
class A project and more than one Class C project.
 Three verification and validation analysts
independently examined and categorized project faults
for the six data sources. On average, the analysts had
eight years of V&V experience. Each analyst followed
the fault taxonomy extension process for NASA software
classes. During this process, lessons learned from each
analyst resulted in revisions, clarifications, deletions, and

1 The author is aware that faults are not “created equally” and is currently working

on advancing ideas from [17] on examining the relative semantic “size” of
faults. In the meantime, one problem report is equivalent to one fault.

additions to the generic taxonomy as well as to the
process itself. Insight was also gained during a review of
the orthogonality concept as applied to these taxonomy
categories. Our conclusions on orthogonality are
presented in Section 4. It should also be noted that the
analysts only consulted with each other to verify that they
were following the categorization process consistently
and had a shared understanding of the generic taxonomy
and associated category definitions.
 It was noted that in many cases across the six project
data sources, multiple requirement faults were included
in a single Project Problem Report (PR) or IV&V
comment. This warranted special attention by the
analysts to properly count and categorize project fault
data. Based on this observation, one suggestion is for the
projects and/or reviewing IV&V analysts to document
each individual fault separately.
 The three analysts, in conjunction with the author,
made the following changes to the revised generic
taxonomy (as can be seen in Table 3):

� Descriptions of the several Fault and Sub-fault

categories were clarified to reduce confusion among
present and future analysts using this generic
taxonomy. Descriptions now align closely with the
intent of the category or subcategory. In some cases,
elaborative comments or examples were added in the
last column of the table. All of the fault category
item descriptions were clarified except for Category
1.7.

� Mainly for reasons of orthogonality, the following
categories or subcategories were combined due to
their similarity with or indistinguishability from
other categories or subcategories: Subcategories
1.1.1 and 1.1.2 were combined; Subcategories 1.4.1
and 1.4.2 were combined; and Categories 1.5 and
1.9 were combined. Category 1.9 is now "Reserved
for future."

� The following subcategory was deleted/removed
from the taxonomy, again due to orthogonality or
similarity issues: Subcategory 1.2.3.

 Upon completion of the Class-process, review of our
analysts' combined categorization data for six projects
across three NASA classes (A, B, and C) allowed us to
develop three class-specific taxonomies. The class-
specific taxonomy for Class A, a sub-set of the final
generic taxonomy, is shown in Table 3. It should be
noted that this is a first "draft" taxonomy, as we only
looked at data for one project in this class. In the future
we plan to repeat the Class-process for additional
projects/systems in each class (including Class D) in
order to refine and finalize class-specific taxonomies for
each of the four NASA Classes.

 .

 We were unable to completely implement the Project-
process. This was due to logistical problems in obtaining
project data, small fault sample sizes, lack of historical
fault data for previous software versions, and the
insufficient level of detail of the fault data provided by
some of the NASA projects. Hence, we could not
produce an accurate and validated project-specific
taxonomy for these projects. However, we were able to
perform the Class-process. For Class B we found that

83% of the faults fell under three categories:
Incompleteness, Ambiguous, or Inconsistent. From the
Class C data, we found that 83% of the faults fell under
three categories: Incompleteness, Omitted, or Incorrect.
We found that the NASA project managers were pleased
to gain this insight into their programs. Specifically, they
asked how they could improve the writing of requirement
specifications to decrease or eliminate these categories of
mistakes.

Table 3. Draft class-specific requirement fault taxonomy for NASA Class A projects.

Major Fault Sub-Faults Description of Sub-Faults
.1 Incompleteness

----------------------- .1.1 An abstract specification from a higher level
document exists in a lower level document, but it has
not been fully elaborated or expanded.

.2 Omitted/Missing

.2.1 Omitted Requirement

.2.1 An abstract specification or concept from a
higher level document does not exist in or is
completely omitted from a lower level document.

 .2.2 Missing External
Constant

.2.2 Reference to an external constant that doesn’t
exist or the value of an external constant is not
specified.

.3 Incorrect .3.1 Incorrect External
Constant

.3.1 Specification of an incorrect value or variable in
a requirement that does not conflict with a
cooperating or parent/embedded system.

 .3.2 Incorrect Description
of Input or Output

.3.2 Incorrect description of system input or output.

 .3.3 Incorrect Description
of Initial System State

.3.3 Incorrect description of initial system state,
when that state is not equal to 0.

 .3.4 Incorrect Assignment
of Resources

.3.4 Overstating or understating the computing
resources assigned to a specification.

.4 Ambiguous

---------------------- .4.1 The requirement wording is difficult to
understand due to poor grammar usage or word
choice, resulting in misinterpretation or leading to
multiple valid interpretations.

.5 Infeasible ---------------------- .5.1 Requirement that is specified, which is
unfeasible and difficult or impossible to achieve
given other system factors (e.g., process speed,
memory available) and cannot be true in the
reasonable lifetime of the product.

.6 Inconsistent .6.1 Internal Conflicts .6.1 Requirements that are pair-wise incompatible in
same document or between requirement documents
at the same level.

 .6.2 External Conflicts

.6.2 Requirements of cooperating systems, or
parent/embedded systems, which taken pair-wise are
incompatible. Includes conflicting references to
external functionality.

.7 Over-specification --------------------- .7.1 Requirements or specification limits that are
excessive for the operational need, causing
additional system cost.

.8 Not Traceable ---------------------- .8.1 Requirement which is "out-of-the-blue" and
cannot be traced to lower level or higher level
specifications.

.9 [Reserved for future] ---------------------- ----------------------

 .

4. International Space Station

 The International Space Station (ISS) represents a
global partnership of sixteen nations and will have over
two million lines of on-board and over ten million lines
of ground support software [16]. Just as the Phase I
research funding was expiring, we established a research
agreement with the International Space Station (ISS).
The project provided 6500+ Problem Reports (PRs),
which we estimate described as many as 8500+
requirement faults (many individual PRs described
multiple requirement faults). ISS Fault data contained
greater detail than we had seen for the Class B and C
projects. We were able to examine 10% of the project
fault data. Of the 10%, a fair number were not
requirement faults and our final sample size of ISS
requirement faults (486 faults) only represented 6% of all
the fault data provided.
 As discussed above, we performed the Class-process
for Class A systems (even though we only had data from
one project). We began to perform the Project-process.
It became apparent that to accurately develop and
validate a project-specific taxonomy for the ISS project,
we would still need additional information. For example,
we would need: more detail on some of the fault
descriptions provided; to examine the appropriate
referenced documents (i.e., the actual requirement
specifications); to analyze a larger sample size; to review
historical fault data, if available; and to engage in brief
clarification discussions with project staff. Hence, we
did not complete the Project-process for the ISS project.
The ISS project has expressed their desire to continue the
research collaboration and we do plan to complete the
Project-process in the near future.
 Nonetheless, the classification analysis of the resulting
486 ISS requirement faults did yield some initial data as
shown in Table 4. We presented the ISS data findings to
the project in Houston, Texas in December, 2002. We
discussed the top three significant taxonomy categories
into which their requirement faults fit as well as the
percentage of faults in those categories. These three fault
categories and their percentages were: Incompleteness
(20.9%), Omitted/Missing (32.9%), and Incorrect
(23.9%). Together, these three categories accounted for
almost 80% of the requirement faults evaluated. Project
management stated that they found this data useful
toward the development of future requirements.

5. Discussion

 We learned a number of interesting things from this
study. A lesson learned from the implementation of the
Class-process had to do with re-examining the concept of

orthogonality. It was agreed, between the analysts and
researchers, that the average analyst using the taxonomy
to categorize requirement faults might determine that
more than one category applied to a single requirement
fault. This stimulated a discussion as to whether a
requirements fault taxonomy, or category within a
taxonomy, could really be orthogonal. We determined,
that to eliminate any confusion by users of this process
and its taxonomy, that an analyst must dig down to find
the root cause of a requirement fault. A single fault
taxonomy category was then almost always apparent.
 In many cases during our analysis, we found that we
did not have access to all the information we needed to
determine the root cause or to pick one sub-category over
another (e.g., 1.6.1 versus 1.6.2). The Class-process has
also been modified to guide the analyst to select the
Major Fault Category when there is not enough
information to select one of the subcategories (e.g.,
categorizing a fault as "inconsistent" Category 1.6 if one
cannot select either 1.6.1 or 1.6.2). The information we
would have liked to receive (e.g., high level parent
specification, detailed children or interface
specifications, Configuration Control Board meeting
minutes or other documents explaining project changes
to specifications) was not easily obtainable from the
projects participating in this study. We concluded that
data gathered by this approach could be improved
through direct interaction with project personnel.

Table 4. ISS project categorization percentage
data.

Major Fault Percentage of ISS Faults by
Category

.1 Incompleteness 0.209

.2 Omitted/Missing 0.329

.3 Incorrect 0.239

.4 Ambiguous 0.061

.5 Infeasible 0.014

.6 Inconsistent 0.047

.7 Over-specification 0.063

.8 Not Traceable 0.014

.9 [Reserved for future] -------

.10 Non-Verifiable 0.005

.11 Misplaced 0.007

.12 Intentional Deviation 0.007

.13 Redundant or
Duplicate

0.005

 Even armed with enough information, it would seem
reasonable, for example, that an analyst looking at a

 .

requirement fault documenting a "missing" requirement
(Category 1.2) might think the following: "If the
requirement is missing or omitted, it is at the same time
also untraceable (Category 1.8)". While this may seem
true, the root cause of the fault is the omission. A
requirement that appears "out of the blue" or
unconnected to any other specification (child
specification or same level specification, such as
interface specification) is a root cause "not traceable"
requirement (Category 1.8). We clarified Category 1.8's
definition and definitions of the other categories to make
it as clear as possible into which category the root cause
of a fault fits. In sum, analysis of our taxonomy leads us
to conjecture that it is largely orthogonal, although in a
few instances multiple categories applied.

6. Conclusions and future work

In this work, we focused on building a taxonomy of
requirement faults and a process for extending the
taxonomy. By eliminating faults at the earliest possible
opportunity, we reduce the cost of fixing errors later in
the lifecycle [1]. The research, to date, has resulted in a
number of general findings:

� A NASA specific taxonomy did not
previously exist, is needed, and was
developed.

� A process for tailoring/extending a
taxonomy did not previously exist, is
needed, and was developed.

� Sub-faults are useful for clarification only.
� Classification can best be done at the fault

level.
� NASA Fault reports have varying levels of

detail.
� NASA Problem Reports (PRs) often cover

multiple faults.
� Source Codes of PRs (stating what phase of

the lifecycle or what artifact resulted in the
PR) are not always accurate.

� Data needed for performing the Project-
process is considered sensitive and may be
difficult to obtain.

� New PRs are often written when old
problems are not fully corrected.

� It is not easy to determine into which class
a NASA projects falls.

� Use of multiple analysts and projects
enhanced both our taxonomy and our
processes.

 Based on our work and the findings above, we made
the following recommendations to NASA, many of
which may apply generally to all software projects:

� Publish a NASA specific requirement fault

taxonomy.
� Publish a process for extending a taxonomy.
� Publish a “requirement writer’s guide.”
� Recommend to projects that they write cohesive

PRs, with one fault per PR.
� Publish a list of NASA Projects by class.

 Though we have made good progress in Phase I of this
effort, much work remains to be done. We have defined
the future work in two phases, Phase II and Phase III.
Our approach for Phase II will be: research existing
IV&V technique taxonomies; working with the NASA
research community and one or more NASA projects,
implement the process developed in Phase I to extend the
IV&V techniques taxonomy (to fully cover NASA
needs); perform a literature survey for evidence that
IV&V techniques detect certain requirements faults;
build a traceability matrix (what techniques can detect
fault types); use expert opinion to fill in gaps in the
matrix; working with the Jet Propulsion Laboratory,
populate the Advanced Risk Reduction Tool (ARTT)
implementation of DDP with this data; use expert
opinion to validate the ARTT data (using different
experts than for the matrix completion); and disseminate
the findings. In Phase III, we propose to: design and
implement an experimental pilot study [10] that has an
IV&V agent and/or a NASA project use the process to
extend a fault taxonomy for a specific project to assess
its usefulness. We plan to have an IV&V agent use the
populated ARTT on a Goddard Space Flight Center
Code S project to validate the usefulness of our
technique-to-defect mapping. We will also document
our fault-based analysis technique and ARTT for broad
use (to support technology transfer).
 The ISS program has expressed interest in examining
their requirement fault “profiles” over time. For
example, what would Table 4 look like for requirement
problem reports from January 1, 1999 – December 31,
2000, from January 1, 2000 – December 31, 2001, etc.?
We hypothesize that the ISS fault taxonomy will remain
fairly stable, but that it is possible that we may discover
additional categories as we expand our examination of
ISS problem reports. We agree with the ISS personnel
that at different points in time, there may have been
differences in the proportion of faults per category.
 Elimination of requirement faults represents our
greatest cost saving opportunity and thus we have
pursued this first. Similarly, elimination of design faults
is desirable. To that end, future work beyond this will

 .

concentrate on design techniques and faults, coding
techniques and faults, etc. using the same approach that
was used for requirements.

7. Acknowledgments

 Our work is funded by NASA under contract NAS2-
98028. Our thanks to Ken McGill, Tim Menzies,
Stephanie Ferguson, Pete Cerna, Mike Norris, Bill
Gerstenmaier, Bill Panter, and the International Space
Station project. We thank D.N. American, Bill Wyatt,
and Pam Skotak, Jack Abraham, Leo Kotowski, and Rick
Hallsworth of SAIC for their contribution to the project.
Thanks to Professors Jeff Offutt and Gregg Rothermel
for comments and suggestions that greatly improved this
paper.

8. References

[1] Boehm, B. Software Engineering Economics. Prentice-
Hall, Inc., 1981.

[2] Chen, Tsong and Lau, Man, “Test Suite Reduction and
Fault Detecting Effectiveness: An Empirical Evaluation,”
Lecture Notes in Computer Science, Volume 2043,
Springer-Verlag, pp. 253 – 265.

[3] Davis, A. Software Requirements: Analysis and
Specification. Prentice-Hall, Inc., New York, 1990.

[4] Hayes, J. Huffman, SAIC, D.N. American. Final Report
for Fault-Based Analysis: Improving Independent
Verification and Validation (IV & V) through
Requirements Risk Reduction. SAIC-NASA-98028. 20
December 2002.

[5] Helmer, G., Wong, J., Slagell, M., Honaar, V., Miller, L.,
and Lutz, R. ``A Software Fault Tree Approach to
Requirements Analysis of an Intrusion Detection System,"
Symposium on Requirements Engineering for Information
Security (SREIS'01), March 5-6, 2001, Indianapolis,
Indiana, Postscript. Extended version invited for Special
Issue of The Requirements Engineering Journal, to
appear.

[6] Kuhn, D.R. Fault classes and error detection capability of
specification-based testing. ACM Transactions on
Software Engineering and Methodology (TOSEM)
Volume 8 , Issue 4 (October 1999).

[7] IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990, 1990.

[8] Leveson, N., and Stolzy, J., Safety Analysis Using Petri
Nets, IEEE Transactions on Software Engineering, SE-
13(3), 1987.

[9] Lutz, R. "Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems", Proc. RE'93: First

1EEE International Symposium on Requirements
Engineering, January 1993, 126-133.

[10] Miller, L.A., Groundwater, E.H., Hayes J.E, Mirsky, S.M.,
“Guidelines for the Verification and Validation of Expert
System Software and Conventional Software,”
NUREG/CR-6316, SAIC-95/1028, Volume 1.

[11] MIL-STD-1629A, Notice 2, Military Standard,
Procedures for Performing a Failure Modes Effects and
Criticality Analysis, Department of Defense, Washington,
D.C., November 28, 1984 (though subsequently cancelled
in August 1998, this standard is still quite useful).

[12] Mojdehbakhsh, Ramin, “Software Lifecycle and Analysis
Techniques for Safety-Critical Computer-Controlled
Systems,” Dissertation, George Mason University, 1994.

[13] Morell, Larry, “Theoretical Insights into Fault-based
Testing,” Proceedings of the Second Workshop on
Software Testing, Verification, and Analysis 1998, 19 –
21 Ju;y 1998, pp. 45 – 62.

[14] Munson, J.C., Nikora, A.P. Toward a quantifiable
definition of software faults. 13th International
Symposium on Software Reliability Engineering, 2002, p.
388 –395.

[15] NASA Software Safety Guidebook. MIL-STD-882C.

[16] NASA Space Link,
http://spacelink.nasa.gov/NASA.Projects/Human.Explorat
ion.and.Development.of.Space/Human.Space.Flight/Inter
national.Space.Station/.

[17] Offutt, J. and Hayes, J. Huffman. "A Semantic Model of
Program Faults," published in The Proceedings of the
International Symposium on Software Testing and
Analysis, pages 195-200, ACM, San Diego, California,
January 1996.

[18] Rothermel, G., Harrold, M.J., Analyzing regression test
selection techniques. IEEE Transactions on Software
Engineering, 22(8), Aug. 1996.

[19] von Mayrhauser, A., J. Wang, M.C. Ohlsson and C.
Wohlin, Deriving a Fault Architecture from Defect
History, Proceedings of the International Symposium on
Software Reliability Engineering, ISSRE99, pp. 295-303,
November 1999, Boca Raton, Florida, USA.

[20] Wallace, D., and Fujii, R., Software Verification and
Validation: An Overview, IEEE Software, Volume 6, No.
3, May 1989.

[21] Chillarege, R., Bhandafi, I., Chaar, J., Halliday, M.,
Moebus, D., Ray, B., and Wong, M. "Orthogonal Defect
Classification A Concept for In-Process Measurements,"
1EEE TSE, vol. 18, no. 11 (Nov. 1992), pp. 943-956.

