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Abstract 
This paper presents an approach for generating test data 
for unit-level, and possibly integration-level, testing based 
on sampling over intervals of the input probability 
distribution, i.e., one that has been divided or layered 
according to criteria.  Our approach is termed “spathic” 
as it selects random values felt to be most likely or least 
likely to occur from a segmented input probability 
distribution.  Also, it allows the layers to be further 
segmented if additional test data is required later in the test  
cycle.    

The spathic approach finds a middle ground between the 
more difficult to achieve adequacy criteria and random test 
data generation, and requires less effort on the part of the 
tester.  It can be viewed as guided random testing, with the 
tester specifying some information about expected input.  
The spathic test data generation approach can be used to 
augment “intelligent” manual unit-level testing.  An initial 
case study suggests that spathic test sets detect more faults 
than random test data sets, and achieve higher levels of 
statement and branch coverage. 

1. Introduction 
 

    Test data is a common denominator of all testing.  Test 
data may be generated in order to maximize a particular test 
adequacy criterion, it may be randomly generated, it may be 
manually developed by a tester who possesses vast amounts 
of experience with the application under test.  Regardless of 
testing at the unit or system level, test data that exposes 
program faults is required.  Testing poses a question, is the 
test data “good” enough?  Efforts aimed at developing an 
adequate test set may usurp valuable test execution time.   

    The allocated time period for testing often includes test 
set development and the testing itself.  In order to stay 
within the allotted time period or to develop more code, 
unit testing may not be performed or may be assumed to be 
included in integration testing.   Within the framework of 

testing, negative testing, i.e., testing with rarely expected 
test values, and positive testing, i.e., functionality testing, 
should be employed.  It is also desirable to know how many 
test cases should be executed.  If we are able to specify the 
number of test cases required in advance of the testing 
execution, we can better estimate the test period.    

    We describe a new technique for unit testing.  The 
approach is called “spathic,” meaning layered or stratified, 
because a probability distribution is divided into layers and 
test values are selected from these layers.  The technique 
incorporates reliability-oriented methods and “intelligent” 
testing [7] and is intended to provide higher levels of defect 
detection and comparable levels of structural coverage as 
random testing.  The technique involves examining an input 
distribution related to a given unit under test and 
segmenting or stratifying it based on the goal of testing.  
For example, if negative testing is being performed, the 
input distribution is segmented to focus on the least likely 
inputs.  Test data are then selected from the layers.   

    We report an initial case study in which test data was 
generated for numerous programs as well as their fault-
seeded versions.  Spathic test data generation produced test 
data that resulted in similar levels of structural coverage 
and higher fault detection abilities than did simple random 
sampling, without requiring larger test sets.   

    The paper is organized into six sections.  Reliability 
testing and unit testing are discussed in Sections 2 and 3, 
respectively.   Our technique for generating test data is 
presented in Section 4.  Section 5 contains results of the 
case study.  Finally, conclusions and future work are 
presented in Section 6. 

2. Reliability Testing 
 

    Some researchers have categorized testing techniques 
into synthetic and operational [12].  Synthetic testing 
involves systematic selection of test data whereas 
operational testing has the intended users employ the 
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program in the field as they see fit.   Synthetic data is 
generated from non-operational means.  Operational test 
data refers to data that has been generated using specific 
knowledge of the software, i.e., an actual usage profile [23].  
Software reliability engineered testing [15,16] is an 
example of operational testing.   

    Software reliability engineered testing uses an 
operational profile or usage model to guide its executions 
and then measures the failure times to estimate the 
reliability of the system in the field.  A good operational 
profile or operational input distribution is key to the 
process.  The profile is a characterization of the program’s 
expected use.  As the profile is a probability distribution 
there is a probability of selection associated with each 
point, with all the probabilities summing to one.  Software 
reliability engineered testing then goes further to examine 
the failure density for a program.  The failure density, or 
failure probability, is the probability that the program will 
fail on a random input.  This technique estimates the 
reliability of a software system and is utilized after a system 
has been developed and integrated.  Note that this technique 
has been found unsuitable for life-critical real-time 
applications [22]. 

    The emphasis of this testing is estimating the reliability of 
a program in the field.  The better the operational profile, 
the better the reliability estimate.  Developing a good 
operational profile is very difficult.  For many programs, it 
would be cost- and time-prohibitive to develop an 
operational profile that provides point-by-point 
probabilities.  Also, a large number of tests are needed to 
achieve a modest level of confidence at a modest failure 
density bound [5,6,7].  To reduce the number of tests 
needed, it would be desirable to partition the system’s input 
domain into equivalence classes, such that a test of a 
representative of each class can be viewed as testing the 
entire class.  But we know that in general this is 
unattainable [19].   Some approaches have been offered to 
assist with these problems.  Woit presents a general method 
of operational profile specification allowing conditional and 
unconditional input dependencies to be specified [20].  
Podgurski et al [12] use stratified sampling to produce more 
accurate estimates of failure frequency by collecting 
execution profiles of beta-test executions and applying 
cluster analysis to the profiles to partition the executions.  
They selected a stratified random sample of the executions 
and used them to estimate the proportion of failure in the 
entire population of captured executions.   
  
    Ntafos [9] builds on Howden’s findings [19] that we 
want to produce homogeneous partitions or subdomains, 
those in which all inputs either result in a failure or produce 
correct results [9].  If we can achieve some level of 
homogeneity, we can take advantage of the well-known 
statistics result that stratified random sampling can lead to 

precise estimates using a smaller sample than simple 
random sampling [2,9].  Ntafos also presents some of the 
shortcomings of partition testing:  to achieve a true 
proportional allocation may be very costly because of the 
large number of test cases needed; and with a large number 
of test cases, random sampling allocation and proportional 
partition allocation tend to become similar [9].  Even if the 
number is large, it is often useful to know how many test 
cases will be required to satisfy a given objective.  
Statistical testing techniques have also been used to 
estimate the number of test cases needed to achieve a 
particular test objective (such as coverage) [17,18].   
 
    With this in mind, we look at testing in the unit case.  
From practical experience, we know that testers will 
generally not run large numbers of test cases when unit 
testing.  Our approach seeks to generate a reasonable 
number of test cases to overcome the limitations pointed 
out by Ntafos and others as well as to ensure that our 
technique is practical.  We use some aspects of software 
reliability engineered testing, but at the unit level.  We use 
an input distribution and sample over that distribution.  We 
use a form of stratified sampling, but we stratify or partition 
the input space, not the execution profiles.  We look at 
disjoint subdomains, but they have not been selected based 
on significant analysis such as in “intelligent” testing [7].  
As compared to reliability testing, we are not concerned 
with failure density, but with fault detection effectiveness.  
Our approach uses an input distribution at the unit or 
component level and allows the tester to guide the selection 
of random inputs without requiring knowledge of a special 
notation or formal specification technique.  Having 
discussed operational testing, we now turn to synthetic 
testing.  But first, we will establish unit testing as our 
context. 
 
3. Approaches to Unit Testing 
    In this paper we consider a unit to be the smallest 
compilable element of an application1. Unit testing is often 
overlooked or replaced with integration testing.  These are 
not advisable practices since unit testing provides the 
opportunity to perform thorough structural testing, 
concentrating on the internal structure and implementation 
details of the small element. 

    Recalling our dichotomy of techniques as operational or 
synthetic, Podgurski et al propose that synthetic testing 
does not provide a good estimate of reliability, but may 
help to make software reliable enough to proceed to 
operational testing [12].  Also, we saw in the previous 

                                                                 
1 Note that this may be a class in Java and that some view such 

testing as integration level testing. In this paper, we consider it 
to be unit testing. 
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section that operational testing occurs at the system level.  
Our concentration is on unit testing, so we will look to 
synthetic testing for assistance.  Though many types of 
synthetic testing have been developed and examined in the 
literature, it is important to find better ways to generate 
synthetic test data.  We now examine several synthetic 
techniques that can be applied to unit testing. 

3.1 Structural Testing 
 

    Many structural testing techniques exist such as statement 
testing, branch testing, def-use association testing [14].  
These techniques generate test cases in order to maximize 
compliance with a test adequacy criterion.  For example, 
branch testing generates test cases such that every branch in 
a unit is exercised at least once.  If the tests do execute 
every branch they are said to achieve 100% branch 
coverage. 

3.2 Specification-based Testing 
 

    Specification-based testing is a method that concentrates 
on what software is supposed to do as opposed to how it is 
accomplished.  This is in contrast to structural testing that 
focuses on specific structural components of a program, 
generally in keeping with a selected structural testing 
criterion, and ensures that they are adequately exercised.  
Specification-based testing is often referred to as “black 
box testing” and structural testing is referred to as “white 
box” or “glass box” testing. 

    Equivalence testing decreases the number of tests one 
must execute through the use of equivalence classes or 
equivalence partitions.  An equivalence class is a subset of 
a program’s input or output domain such that testing of a 
single item of the class theoretically tests that entire class.  
Testers examine both the program structure and 
specification in order to develop equivalence classes. 

    A related specification-based testing method that we have 
seen used in industry is category-partition testing [1,11].  In 
category-partition testing, the engineer defines categories 
for the program under test and then partitions these 
categories into equivalence classes.  An input is then 
selected from each equivalence class, called a choice 
[1,11].  Ammann and Offutt [1] extended this by defining a 
coverage criterion for category-partition test specifications 
using formal schema-based functional specifications. 

   Programs that have been represented at some point in the 
lifecycle by formal specification are excellent candidates 
for specification-based testing.  For example, the formal 
specification may be in an executable form, such as a finite 
state machine or a state chart.  Aspects of such formal 
models can be represented in the form of a directed graph.  

This allows us to select test values to “cover” the graph.  
That is, the program-based adequacy criteria based on the 
flow-graph model can be adapted for specification-based 
testing [Fujiwara et al. 1991; Hall and Hierons 1991; Ural 
and Yang 1988; 1993].    

3.3 Positive/NegativeTesting 
 

    We have noted that many industrial development 
undertakings characterize testing as either positive 
(sometimes called constructive) or negative (sometimes 
called destructive).  Positive testing has as its goal to 
demonstrate that software performs its intended functions, 
though we can never prove correctness [19].  Test values 
that are most likely to be encountered operationally are 
used.  Developers often perform this testing on their own 
software.  Negative testing attempts to “break” the software 
and to uncover weaknesses in the application.  Here, test 
values that are least likely to be encountered are often used.  
Negative testing may be performed by an independent 
organization (not the developers).  Positive and negative 
testing can be applied at any level of testing, unit through 
system.   

    Though a good testing process combines both of these 
types of testing, a conceptual separation of the two may 
result in better test data and therefore better testing.  In 
requirements engineering, separation of what/how has 
helped us to focus on the problem to be solved while 
delaying implementation details.  Also, the 
aggregation/decomposition perspective has helped us to 
reduce the complexity of an overall system by breaking it 
into smaller elements that we can understand all at once.  
Similarly, for testing we can view the generation of 
negative/positive test data as a viewpoint or perspective.  
This viewpoint may cause us to think of other test cases that 
we may not have otherwise considered. 

3.4 Tester Effort 
 

    It is clear that the aforementioned testing techniques fall 
under the category of “intelligent” or guided testing, i.e. 
testers make choices of tests that are more likely to reveal 
faults than random sampling over an operational 
distribution [7].  However, depending on the testing method 
selected, a great deal of time and effort must be exerted by 
a tester to develop the required test cases.  There are testing 
tools available to help automate aspects of test data 
generation, but the task can still be daunting and time 
consuming.  It has been our experience that it is relatively 
easy to obtain 80% coverage for numerous criteria (such as 
branch), but that to generate the additional data required to 
achieve 90-100% coverage is difficult.  Also, it can be the 
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case that large numbers of test cases are required to achieve 
high levels of adequacy criteria. 
  

    As discussed in section 2, our approach seeks to generate 
a practical number of test cases, such that a tester would 
execute them all even without tool support.  We use aspects 
of equivalence- and category-partition testing in that we 
have the tester characterize the input space, the input space 
is then segmented or layered, and a criterion is used to 
select points from within the layers.  We have evaluated the 
structural adequacy of our generated test data and found it 
to achieve similar levels of branch and statement coverage 
as random sampling. 

4. Spathic Test Data Generation 
 

    The spathic test data generation approach is an 
“intelligent” random testing method.  It is suitable for unit 
testing and may also be suitable for integration testing, 
though not explored in this paper.  The spathic method 
provides testers a procedure for generating test data.  The 
tester has two main tasks:  1) to indicate the type of test 
data desired, and 2) to characterize the input space.  The 
approach is detailed below. 

4.1 Process 
 

    The steps in the spathic test data generation method that 
result in test data are as follows. 

1. Determine the type of data desired as either most 
probable (positive) or least probable (negative). 

2. Briefly analyze the specification to understand at a 
high level what the component does. 

3. Characterize the input domain by: 

a. selecting an input probability distribution 
(Gaussian, Poisson, etc.)  

b. specifying the number of test values 
desired, and 

c. specifying the mean and deviation from 
the mean. 

4. Solve several equations to generate the test data 
(or use our tool to solve the equations and generate 
the data). 

    We now examine these steps at a high level and then 
present the underlying mathematics.  Let us examine steps 2 
through 4 and then come back to step 1.  In step 2, the tester 
needs a high level understanding of what the component 
does to be able to perform step 3.  For example, if a 
component guesses a person’s age based on their weight in 
pounds, the tester would surmise that the most common, or 
perhaps better phrased as “most probable”, inputs would be 

positive integers (or real) less than 400.  The tester may 
also assume that weights of humans tend to be normally 
distributed.  The tester would specify the mean of the 
expected input, say 140 pounds in this case, and the 
deviation from the mean.  We generally use 50% of the 
mean as the deviation, based on experience.  Finally, the 
tester specifies how many test values are desired.  If the 
component accepts only one value as input, the tester may 
choose to generate 15 values and execute the component 15 
times, once with each test value.  Or, if the component 
accepts 25 inputs, the tester may generate 25 values and 
execute the component only once with these values. 

    Now we return to step 1.  When the tester is undertaking 
positive testing, the focus is on “most common” or “most 
expected” data.  That is, we tend to select data values that 
have a high probability of being selected at random from 
under a probability distribution.  If we think of the often 
cited “grading on a curve” example we see that student 
grades are normally distributed and that it is most likely that 
a grade selected at random from the class roster will fall 
under the bell shaped portion of the distribution.  It is not 
likely that the selected grade will fall under either of the tail 
areas of the distribution.  The same is true for spathic test 
data generation.  If the tester selects positive testing, most 
probable data are selected, i.e., weighted sampling from 
under the most dense portions of the probability 
distribution.  When negative testing is selected, we sample 
under the least dense probability regions, i.e., the tail areas 
in our prior example. 

    The name “spathic test data generation” comes from this 
notion of positive/negative testing for a given probability 
distribution, mean, deviation, and number of test cases.  In 
effect, we look at the desired number of test cases and we 
segment or layer the probability distribution into that many 
layers.  If the tester asks for ten test values, we layer the 
specified input distribution into ten layers.  In the future we 
plan to allow testers to specify the number of layers as well 
as the number of test values.   Note that these subdomains 
are disjoint.  We then see if positive or negative testing has 
been specified.  If positive testing has been specified, we 
generate ten test values by sampling over our ten-layered 
probability distribution.  We do not necessarily select a 
value from every layer.  We decide how many test values to 
select from each layer based on the probability density of 
that layer.  If a particular layer has a high probability 
density, we may select three of the ten values from it.  After 
we decide how many values to select from each layer, we 
select values from the selected layers and output the values.   

    For negative testing, we follow the same process but we 
select more test values from the layers having the least 
probability density.  That is, negative testing results in 
selection of least likely to occur test values.  This is similar 
to Voas’ inverse profile for the system-level extended 
propagation analysis method [25].  Our approach also 
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allows a tester to generate additional test cases.  Often we 
may need to continue testing, but we want to follow our 
original test data generation method and not duplicate the 
former sampling.  We address this by basically splitting the 
layers or lamella in half and sampling at the center point, 
depending on the number of additional test values 
requested.  This will be shown in more detail in section 4.2. 

4.2 Probability Distributions 
 

    The spathic test data generation method is not dependent 
on a particular probability distribution.  It could be used 
with Weibull distribution, Poisson distribution, exponential 
distribution, etc.  To date, we have investigated the 
Gaussian distribution.  We first present some basic 
information about the Gaussian distribution. 

    The Gaussian distribution is also called normal 
distribution.  There are two parameters that define the 
distribution, the mean and the standard deviation.  If the 
normal distribution has a mean µ and a variance σ2, it can 
be expressed by N(µ,σ2).  The probability density function 
for N(µ,σ2) is given by                               

      (1) 

                                                 

                                                             

If Y is N(µ,σ2), then X=(y-µ)/σ is N(0,1). Here N(0,1) is 
called the standard normal distribution. 

    A tenet of this approach is that the input distribution is 
related to the software’s intended function.  The tester must 
select the appropriate distribution to achieve the best 
results.  Guidance for selecting distributions is provided in 
[21].  If a suitable distribution cannot be used, it is 
suggested that a small number of Gaussian distributed test 
values be generated.  If these do not appear to be effective, 
than a different test data technique should be pursued.   

4.3 Sampling 
 

    This section presents the equations we use to determine 
the layers and to select test values from the layers.  Figure 1 
presents a graphical depiction of the test data distribution.  
We explain the “most probable” or positive case first.  Let’s 
assume that we have the standard normal distribution and 
its deviation is σ.  The sampling data should meet the 
following requirements: 

1) The data should be in the domain of [-3σ, 3σ]. Here we 
take 3σ since outside of the domain, the probability is 
less than 0.003. 

2) The interval of the data should have a corresponding 
distribution. That means that if a point has a large 
density value, the interval or layer should be small 
(narrower), otherwise it should be large (wider). 

 
     Suppose that the number of samples is N+1 in half of the 
domain, [0,3σ], and the data is expressed by x0, x1, x2,…,xN. 
According to the domain definition, x1=0, and xN=3σ.  We 
can define intervals d1=x1-x0, d2=x2-x1,…,dN=xN-xN-1. The di 
(i=1,2,…,N) should comply with the standard normal 
distribution, which has a deviation σ'.  The di are evenly 
located on the domain [0,3σ'].  That means ∆u=ui+1-ui, 
uN=0, and u1=3σ'.  So we have ∆u=3σ'/(N-1), and  

 

                                  

           (2) 

      
       

And then from the density function we can get di 
 

 

                                         (3)                                                                 

 

The summation of the dI (i=1,2,..,N) should be 3σ. 

Next, we determine the distribution parameter for the new 
data sampling, d1,d2,…,dN.  From the preceding, we know 
that  

 
                                           (4)                                                 

  

 

 

 

Substitute the di with equation (3), we get 
 

            (5)             

                                  

 

 

 

 

 

 

 

Figure 1.  The test data distribution.
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Replace ui with equation (2) in the previous equation, we 
have 

 

                     (6)                                                                     

 

Here  

                             (7) 

                                              

 

So we can get the new parameter from the equation (6), and 
 

                (8) 

                                     

 

Since we suppose the original distribution is a standard 
normal distribution, σ=1, so the last equation can be written 
as 

          (9)                                            
 

 

To generate the least likely values (for negative testing), we 
perform the same procedure, but xi=xi-1+dN-i, here i=1, 
2,…,N. 

   Now assume that we have an operational profile, which 
satisfies the normal distribution.  The distribution parameter 
is µ and σ.  We want to generate N test values. By using the 
preceding method, we can get the test sample as follows: 

1) Determine the distribution parameter σ' for the 
sampling data (from equation (8)); 

2) Calculate the sampling data di under the standard 
normal distribution (from equation (3)); 

3) Calculate xi, xi=xi-1+di, here i=1, 2,…,N;  

4) Inverse the sampling data to the original distribution 
yi=µ+xi*σ. 

4.4 Additional Sampling 
 

    As mentioned in section 4.1, there are situations when we 
test an application and then realize that additional testing is 
required and more test data is needed.  With random test 
data generators, we sometimes encounter duplicate test 
data.  We’d prefer to generate additional test data following 
our original approach, but not duplicate the former 
sampling.  

   Suppose the former sampling has N+1 data, and we want 
to generate another M test values. The previous data are x0, 
x1, …, xN, and the new data will be y1, y2, …, yM.  

(1) If N==M, then we simply insert yi into the center 
of xi-1, and xI, here (i=1, 2, …,M) 

(2)  If N>M, then we insert yi into the center of xi-1, 
and xI, here (i=1, 2, …,M). 

(3) If N<M, and K1=M/N, and K2=M%N (note that % 
is a modulus operation, so 8%5 equals 3, and 2%5 
equals 2), then if k2=0; we insert K1 points at every 
space xi-1, and xI; If k2>0; we first insert K1 point at 
every space xi-1, and xI, then for k2 data, we repeat 
step (2), but we ensure that the N is changed to 
(k1+1)N, and that M is replaced by k2. 

4.5 The IntegerSort Example 
 

    Our spathic test data generation method has been 
implemented in Java, but thus far only for the Gaussian 
distribution.  It has been developed in a modular fashion so 
that other probability distributions can easily be added.  To 
do so, we need only include a new function with the 
distribution’s name in the approach class and insert a 
command line into our Graphical User Interface (GUI) 
class.  Figure 2 shows the GUI of our spathic test data tool.  
We found this tool very easy to use.  

 
Figure 2.  The Spathic Test Data Generation Tool. 

    We now demonstrate our approach on an example 
component.  IntegerSort is a simple Java component (one 
method) that accepts a list of integers and sorts them into 
descending order and outputs the sorted list.  As shown in 
the Appendix, we randomly generated 20 test values for the 
application.  We also generated 20 values using the most 
probable method (positive testing, also called Gauss 
method on our tool interface).  We specified 0 as the mean 
and 30,000 as the deviation.  We generated 20 values using 
the least probable method (negative testing, inverse 
Gaussian, also called revGauss method on our tool 
interface).  The same mean and deviation were used as 
above. 
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    We used the test coverage analysis tool JCover [8] to 
analyze statement and branch coverage of this test data.  
The random data achieved 78.57% branch coverage and 
72.73% statement coverage.  The spathic test data (positive 
and negative) achieved 85.71% branch coverage and 
77.27% statement coverage.  Though these coverage levels 
are very low and not useful per Frankl and Weiss [24], they 
are still comparable to the levels achieved by the random 
data.  Next, we used the additional test data capability and 
generated an additional ten test values for positive testing 
(Gauss, most probable).  We also generated ten additional 
values for negative testing (revGauss, least probable). 

5. Evaluation 
 
    An initial case study was carried out to evaluate the 
method’s performance in generating effective test data.  To 
compare fault detection ability of test data we used fault 
detection effectiveness.  Fault detection effectiveness 
(FDE) is the percentage of seeded faults detected.  It is 
synonymous with average percentage of faults detected 
(APFD) used by Elbaum, Gable, and Rothermel [4].  We 
studied the subject programs, the faults introduced into the 
subject programs, and the test data generation method.  A 
description of the case study follows. 

    First, nine subject Java programs were selected from 
publicly available source code repositories and from a 
repository of graduate student programs.  A random test 
data generator was used to develop tests for each subject 
program.  The tester continued generating values until 80 - 
90% branch coverage was achieved (measured per class 
using JCover) or until it became obvious that additional 
random values would not increase the coverage.  The 
number of test values was recorded, as were the output 
results of each test execution (one execution of the 
component with some number of test values).  Second, the 
spathic test data tool was used to generate the same number 
of test values.  Here, the tester made a decision (based on 
experience) on the mean of the data and used 50% of the 
mean as the deviation.  Data was generated using Gauss and 
revGauss.  The test values were then also run on the subject 
program, looking at outputs and branch and statement 
coverage.   

    Third, the subject programs were seeded with faults.  We 
based our faults on commonly made Java mistakes [3,13].  
Most of the faults were singular syntactic changes (e.g., a 
relational operator was switched for another one), small 
syntactic faults [10].  We did not examine their semantic 
size.  The test values for most probable and for least 
probable cases were then executed on the faulty versions.  
The results were compared to the results from testing the 
unmodified subject program.  If the output of the faulty 
version did not match the output of the original subject 
program, the fault was said to be detected.  Fault detection 

effectiveness was measured as the percentage of faults that 
were detected by a method.  So for example, if the spathic 
most probable method (Gauss) found four of eight faults, it 
is said to have an FDE of 50%. 

    The study is detailed in Table 1.  The first column shows 
the subject programs used in the case study.  Weight 
processes a list of human weights.  Score processes test 
scores.  IntegerSort was described in Section 4.  
LetterGrade processes grades and outputs a report.  
Calculate2 takes three numeric inputs and calculates the 
sum and product.  LargeSmall takes five numeric inputs and 
outputs the largest and smallest values.  Perfect takes 
numerical input and indicates if the number is deficient or 
abundant.  SortArray sorts a given list of values into 
ascending or descending order.   IntegerStats calculates the 
mean and standard deviation of a list of values.  The 
programs varied from 73 to 284 lines of code.  Recall that 
we are interested in applying input probability distribution 
testing at the unit level, so we tried to use programs that 
were “unit” sized. 

    The second column shows the number of faulty versions 
of each subject program.  One fault was seeded in each 
version.  The third column indicates how many random test 
data sets were used for the subject program, with the 
number of test values in each set given in square brackets.   
For example, we executed 40 random method test sets on 
“buggy” versions of Weight (ten test sets per fault-seeded 
version) with seven test values in each test set.  The fourth 
and fifth columns provide the same information for the 
spathic Gauss and spathic revGauss methods. 

Table 1. Study design. 

Subject 
Program 

Number 
of Faulty 
Versions 

Number 
of 

Random 
Test Sets 
[Number 

of test 
values in 
each set] 

Number 
of Spathic 

Gauss 
Test Sets 
[Number 

of test 
values in 
each set] 

Number 
of Spathic 
revGauss 
Test Sets 
[Number 

of test 
values in 
each set] 

Weight 4 40 [7] 4 [7] 4 [7] 

Score 4 40 [7] 4 [7] 4 [7] 

IntegerSort 6 60 [20] 6 [20] 6 [20] 

LetterGrade 4 40 [10] 4 [10] 4 [10] 

Calculate2 8 8 [3] 8 [3] 8 [3] 

LargeSmall 3 3 [5] 3 [5] 3 [5] 

Perfect 3 3 [7] 3 [7] 3 [7] 

SortArray 5 5 [20] 5 [20] 5 [20] 

IntegerStats 3 3 [20] 3 [20] 3 [20] 
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    The results are detailed in Tables 2 and 3.  The first 
column lists the subject program.  The second column gives 
the fault detection effectiveness of the random data sets.  
The third and fourth columns provide the same information 
for the spathic Gauss and spathic revGauss test sets. 

    In Table 2, it should be noted (from Table 1) that for 
faulty versions where spathic data outperformed random 
data, we generated many more sets of random test values 
than of spathic Gauss or revGauss to ensure conservative 
results.  That is, ten times more random test values may 
have been needed to achieve the shown fault detection 
levels.  For example, for the LetterGrade program, we 
generated ten sets of ten test values for each fault-seeded 
version.  Of those ten sets, only three of the ten sets found 
bug1, two out of ten found bug2, and four out of ten found 
bug3. 

    Table 3 shows the average branch and statement 
coverage achieved by the test sets.  Column 1 lists the 
subject program.  Column 2 lists the average branch 
coverage of the random data, with the statement coverage 
average in square brackets.  For example, SortArray 
random data achieved, on average, 81% branch coverage 
and 88% statement coverage. The third and fourth columns 
provide the same information but for spathic Gauss and 
spathic revGauss test sets.  Upon examining the code, we 
noted that the programs with low coverage had numerous 
error checking branches that our test data would never 
execute.  For example, “report error if no input values are 
specified.” 

Table 2. Study results - FDE. 

Percent of Faults Detected 
(FDE) 

Subject 
Program 

Random 
Test 
Data 

Gauss 
Test 
Data 

revGauss 
Test 
Data 

Weight 0 75 0 

Score 0 75 75 

IntegerSort 60 60 60 

LetterGrade 25 50 50 

Calculate2 66.67 66.67 66.67 

LargeSmall 33.33 33.33 33.33 

Perfect 33.33 33.33 33.33 

SortArray 20 20 20 

IntegerStats 100 100 100 

 
    Informally, we also looked at the performance of 
generated “additional test data.”  For example, for the 
program Weight we generated five additional values using 

all three methods.  The revGauss values found 50% of the 
bugs, while the other two methods found none.  For 
LetterGrade, all three methods found 25% of the faults 
when five additional values were generated for each. 

Table 3. Study results – coverage. 

Average Branch Coverage [Average 
Statement Coverage] 

Subject 
Program 

Random Test 
Data Sets 

Gauss Test 
Data Sets 

revGauss 
Test Data 

Sets 

Weight 50 [48] 60 [52] 50 [48] 

Score 50 [38] 50 [38] 50 [38] 

IntegerSort 79 [73] 86 [77] 86 [77] 

LetterGrade 79 [71] 86 [76] 79 [71] 

Calculate2 50[93] 50[93] 50[93] 

LargeSmall 50[77] 50[87] 50[87] 

Perfect 77[77] 83[80] 83[80] 

SortArray 81[88] 81[88] 81[88] 

IntegerStats 72[78] 72[78] 72[78] 

 
    As can be seen, the spathic test data generation method 
found more faults than the random test data, while 
achieving higher branch and statement coverage (though 
not impressive coverage levels).  The test sets were the 
same size with the exception of some random test sets that 
were larger (to ensure that bias was in favor of the control 
method).  It must also be noted that many faults went 
undetected by all three testing methods.  We found the 
method to be very easy to use.  It did require us to 
determine the number of test cases desired, but this is an 
activity already routinely performed by practitioners. 

    The initial study is viewed as a proof of principle test, 
i.e., does the spathic method have sufficient potential to 
warrant additional testing?  The initial results are promising 
and additional testing is warranted.  The results, however, 
are limited and the effectiveness of the method on a broader 
scale remains to be seen. 

    Though this was a small study, we did consider threats to 
its validity.  Internal validity threats deal with the causal 
relationship between the independent and dependent 
variables.  We attempted to limit the threat by validating the 
tools and processes we used for data collection.  For 
example, we used a commercially available coverage tool 
and we validated the performance of the spathic test data 
generation tool before undertaking the study.  A major 
threat to external validity (generalization of results) for our 
study is the representativeness of our subject programs and 
faults as well as our small sample size.  We attempted to 
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control this threat by selecting programs from Internet 
repositories and selecting sample faults from lists of 
common Java errors.  There is also the threat of lack of 
construct validity (are the measures appropriate?).  The 
dependent variable FDE does not account for fault severity, 
fault “hardness” (how difficult to detect), etc. 

    These are initial results based on a small sample.  Further 
study and research is required before any generalizations or 
broad conclusions can be reached.  However, the initial 
results encourage us that this technique may have merit. 

6. Conclusions And Future Work 
 

    In this paper, we have proposed a method for generating 
test data and presented preliminary data to support this 
method.  The proposed method is applicable to unit level 
testing and requires less effort on the part of the tester than 
many specification-based or structural criteria-based 
techniques.   The approach also supports the generation of 
additional non-duplicative test data later in the testing 
cycle. 

    Our initial evaluation of the proposed method shows that 
the generated spathic test data achieves similar or higher 
levels of branch and statement coverage, and that it has 
higher fault detection effectiveness (FDE) than randomly 
generated test data.  We believe the approach works well 
with either small or large input ranges, when a small 
amount of white box testing information is available.  If a 
tester has some knowledge of the most likely problem areas 
or if this is self-evident from the type of application or 
component, the approach works well.  The white box 
information may be as simple as “it is most likely that 
negative integers will detect faults.”  As noted above, the 
initial results are promising but very limited in scope.  A 
much larger scale study with a variety of distribution 
functions is required before any broad conclusions can be 
reached. 
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Appendix 
         Initial Values                  Additional Values 

 
Under Initial Values, Column 1 shows the 20 randomly generated test values.  Column 2 shows the 20 test values generated using the most 
probable method (called Gauss method on our tool interface) – the mean was 0 and the deviation was 30,000.  Column 3 shows the 20 
values generated using the least probable method (inverse Gaussian, also called revGauss method on our tool interface) – we used the same 
mean and deviation as above.  Under Additional Values, we generated 10 additional test values using the Gauss and RevGauss methods. 

Random Gauss RevGauss Gauss RevGauss
0  -87747 0  -89894 0  -89894 10 addt'l 10 addt'l
1  -84074 1  -66485 1  -89622 0  -78189 0  -89758
2  -70291 2  -46032 2  -88982 1  -56258 1  -89302
3  -65583 3  -29700 3  -87608 2  -37866 2  -88295
4  -64117 4  -17781 4  -84908 3  -23740 3  -86258
5  -63983 5  9831 5  -80062 4  -13806 4  -82485
6  -63606 6  4985 6  -72112 5  -7408 5  -76087
7  -55221 7  2286 7  -60194 6  -3636 6  -66153
8  -30224 8  -911 8  -43862 7  -1598 7  -52028
9  -22852 9  -272 9  -23409 8  -591 8  -33635
10   4913 10  0 10  0 9  -136 9  -11704
11  7266 11  272 11  23409
12  35937 12  911 12  43862
13  36928 13  2286 13  60194
14  58397 14  4985 14  72112
15  62578 15  9831 15  80062
16  74871 16  17781 16  84908
17  76147 17  29700 17  87608
18  81743 18  46032 18  88982
19  84565 19  66485 19  89622


