

Fault Detection Effectiveness of Spathic Test Data

Jane Huffman Hayes
Computer Science Department
Lab for Advanced Networking

University of Kentucky
301 Rose Street

Lexington, KY 40506-0495 USA
+1 859 257 3171

hayes@cs.uky.edu

Pifu Zhang
Computer Engineering Department

Changsha Communications
University

42 Ciling Road
Changsha, Hunan, 410076 China

+86 731 521 9108
pifuzhang8@hotmail.com

Abstract
This paper presents an approach for generating test data
for unit-level, and possibly integration-level, testing based
on sampling over intervals of the input probability
distribution, i.e., one that has been divided or layered
according to criteria. Our approach is termed “spathic”
as it selects random values felt to be most likely or least
likely to occur from a segmented input probability
distribution. Also, it allows the layers to be further
segmented if additional test data is required later in the test
cycle.

The spathic approach finds a middle ground between the
more difficult to achieve adequacy criteria and random test
data generation, and requires less effort on the part of the
tester. It can be viewed as guided random testing, with the
tester specifying some information about expected input.
The spathic test data generation approach can be used to
augment “intelligent” manual unit-level testing. An initial
case study suggests that spathic test sets detect more faults
than random test data sets, and achieve higher levels of
statement and branch coverage.

1. Introduction

 Test data is a common denominator of all testing. Test
data may be generated in order to maximize a particular test
adequacy criterion, it may be randomly generated, it may be
manually developed by a tester who possesses vast amounts
of experience with the application under test. Regardless of
testing at the unit or system level, test data that exposes
program faults is required. Testing poses a question, is the
test data “good” enough? Efforts aimed at developing an
adequate test set may usurp valuable test execution time.

 The allocated time period for testing often includes test
set development and the testing itself. In order to stay
within the allotted time period or to develop more code,
unit testing may not be performed or may be assumed to be
included in integration testing. Within the framework of

testing, negative testing, i.e., testing with rarely expected
test values, and positive testing, i.e., functionality testing,
should be employed. It is also desirable to know how many
test cases should be executed. If we are able to specify the
number of test cases required in advance of the testing
execution, we can better estimate the test period.

 We describe a new technique for unit testing. The
approach is called “spathic,” meaning layered or stratified,
because a probability distribution is divided into layers and
test values are selected from these layers. The technique
incorporates reliability-oriented methods and “intelligent”
testing [7] and is intended to provide higher levels of defect
detection and comparable levels of structural coverage as
random testing. The technique involves examining an input
distribution related to a given unit under test and
segmenting or stratifying it based on the goal of testing.
For example, if negative testing is being performed, the
input distribution is segmented to focus on the least likely
inputs. Test data are then selected from the layers.

 We report an initial case study in which test data was
generated for numerous programs as well as their fault-
seeded versions. Spathic test data generation produced test
data that resulted in similar levels of structural coverage
and higher fault detection abilities than did simple random
sampling, without requiring larger test sets.

 The paper is organized into six sections. Reliability
testing and unit testing are discussed in Sections 2 and 3,
respectively. Our technique for generating test data is
presented in Section 4. Section 5 contains results of the
case study. Finally, conclusions and future work are
presented in Section 6.

2. Reliability Testing

 Some researchers have categorized testing techniques
into synthetic and operational [12]. Synthetic testing
involves systematic selection of test data whereas
operational testing has the intended users employ the

 .

program in the field as they see fit. Synthetic data is
generated from non-operational means. Operational test
data refers to data that has been generated using specific
knowledge of the software, i.e., an actual usage profile [23].
Software reliability engineered testing [15,16] is an
example of operational testing.

 Software reliability engineered testing uses an
operational profile or usage model to guide its executions
and then measures the failure times to estimate the
reliability of the system in the field. A good operational
profile or operational input distribution is key to the
process. The profile is a characterization of the program’s
expected use. As the profile is a probability distribution
there is a probability of selection associated with each
point, with all the probabilities summing to one. Software
reliability engineered testing then goes further to examine
the failure density for a program. The failure density, or
failure probability, is the probability that the program will
fail on a random input. This technique estimates the
reliability of a software system and is utilized after a system
has been developed and integrated. Note that this technique
has been found unsuitable for life-critical real-time
applications [22].

 The emphasis of this testing is estimating the reliability of
a program in the field. The better the operational profile,
the better the reliability estimate. Developing a good
operational profile is very difficult. For many programs, it
would be cost- and time-prohibitive to develop an
operational profile that provides point-by-point
probabilities. Also, a large number of tests are needed to
achieve a modest level of confidence at a modest failure
density bound [5,6,7]. To reduce the number of tests
needed, it would be desirable to partition the system’s input
domain into equivalence classes, such that a test of a
representative of each class can be viewed as testing the
entire class. But we know that in general this is
unattainable [19]. Some approaches have been offered to
assist with these problems. Woit presents a general method
of operational profile specification allowing conditional and
unconditional input dependencies to be specified [20].
Podgurski et al [12] use stratified sampling to produce more
accurate estimates of failure frequency by collecting
execution profiles of beta-test executions and applying
cluster analysis to the profiles to partition the executions.
They selected a stratified random sample of the executions
and used them to estimate the proportion of failure in the
entire population of captured executions.

 Ntafos [9] builds on Howden’s findings [19] that we
want to produce homogeneous partitions or subdomains,
those in which all inputs either result in a failure or produce
correct results [9]. If we can achieve some level of
homogeneity, we can take advantage of the well-known
statistics result that stratified random sampling can lead to

precise estimates using a smaller sample than simple
random sampling [2,9]. Ntafos also presents some of the
shortcomings of partition testing: to achieve a true
proportional allocation may be very costly because of the
large number of test cases needed; and with a large number
of test cases, random sampling allocation and proportional
partition allocation tend to become similar [9]. Even if the
number is large, it is often useful to know how many test
cases will be required to satisfy a given objective.
Statistical testing techniques have also been used to
estimate the number of test cases needed to achieve a
particular test objective (such as coverage) [17,18].

 With this in mind, we look at testing in the unit case.
From practical experience, we know that testers will
generally not run large numbers of test cases when unit
testing. Our approach seeks to generate a reasonable
number of test cases to overcome the limitations pointed
out by Ntafos and others as well as to ensure that our
technique is practical. We use some aspects of software
reliability engineered testing, but at the unit level. We use
an input distribution and sample over that distribution. We
use a form of stratified sampling, but we stratify or partition
the input space, not the execution profiles. We look at
disjoint subdomains, but they have not been selected based
on significant analysis such as in “intelligent” testing [7].
As compared to reliability testing, we are not concerned
with failure density, but with fault detection effectiveness.
Our approach uses an input distribution at the unit or
component level and allows the tester to guide the selection
of random inputs without requiring knowledge of a special
notation or formal specification technique. Having
discussed operational testing, we now turn to synthetic
testing. But first, we will establish unit testing as our
context.

3. Approaches to Unit Testing
 In this paper we consider a unit to be the smallest
compilable element of an application1. Unit testing is often
overlooked or replaced with integration testing. These are
not advisable practices since unit testing provides the
opportunity to perform thorough structural testing,
concentrating on the internal structure and implementation
details of the small element.

 Recalling our dichotomy of techniques as operational or
synthetic, Podgurski et al propose that synthetic testing
does not provide a good estimate of reliability, but may
help to make software reliable enough to proceed to
operational testing [12]. Also, we saw in the previous

1 Note that this may be a class in Java and that some view such

testing as integration level testing. In this paper, we consider it
to be unit testing.

 .

section that operational testing occurs at the system level.
Our concentration is on unit testing, so we will look to
synthetic testing for assistance. Though many types of
synthetic testing have been developed and examined in the
literature, it is important to find better ways to generate
synthetic test data. We now examine several synthetic
techniques that can be applied to unit testing.

3.1 Structural Testing

 Many structural testing techniques exist such as statement
testing, branch testing, def-use association testing [14].
These techniques generate test cases in order to maximize
compliance with a test adequacy criterion. For example,
branch testing generates test cases such that every branch in
a unit is exercised at least once. If the tests do execute
every branch they are said to achieve 100% branch
coverage.

3.2 Specification-based Testing

 Specification-based testing is a method that concentrates
on what software is supposed to do as opposed to how it is
accomplished. This is in contrast to structural testing that
focuses on specific structural components of a program,
generally in keeping with a selected structural testing
criterion, and ensures that they are adequately exercised.
Specification-based testing is often referred to as “black
box testing” and structural testing is referred to as “white
box” or “glass box” testing.

 Equivalence testing decreases the number of tests one
must execute through the use of equivalence classes or
equivalence partitions. An equivalence class is a subset of
a program’s input or output domain such that testing of a
single item of the class theoretically tests that entire class.
Testers examine both the program structure and
specification in order to develop equivalence classes.

 A related specification-based testing method that we have
seen used in industry is category-partition testing [1,11]. In
category-partition testing, the engineer defines categories
for the program under test and then partitions these
categories into equivalence classes. An input is then
selected from each equivalence class, called a choice
[1,11]. Ammann and Offutt [1] extended this by defining a
coverage criterion for category-partition test specifications
using formal schema-based functional specifications.

 Programs that have been represented at some point in the
lifecycle by formal specification are excellent candidates
for specification-based testing. For example, the formal
specification may be in an executable form, such as a finite
state machine or a state chart. Aspects of such formal
models can be represented in the form of a directed graph.

This allows us to select test values to “cover” the graph.
That is, the program-based adequacy criteria based on the
flow-graph model can be adapted for specification-based
testing [Fujiwara et al. 1991; Hall and Hierons 1991; Ural
and Yang 1988; 1993].

3.3 Positive/NegativeTesting

 We have noted that many industrial development
undertakings characterize testing as either positive
(sometimes called constructive) or negative (sometimes
called destructive). Positive testing has as its goal to
demonstrate that software performs its intended functions,
though we can never prove correctness [19]. Test values
that are most likely to be encountered operationally are
used. Developers often perform this testing on their own
software. Negative testing attempts to “break” the software
and to uncover weaknesses in the application. Here, test
values that are least likely to be encountered are often used.
Negative testing may be performed by an independent
organization (not the developers). Positive and negative
testing can be applied at any level of testing, unit through
system.

 Though a good testing process combines both of these
types of testing, a conceptual separation of the two may
result in better test data and therefore better testing. In
requirements engineering, separation of what/how has
helped us to focus on the problem to be solved while
delaying implementation details. Also, the
aggregation/decomposition perspective has helped us to
reduce the complexity of an overall system by breaking it
into smaller elements that we can understand all at once.
Similarly, for testing we can view the generation of
negative/positive test data as a viewpoint or perspective.
This viewpoint may cause us to think of other test cases that
we may not have otherwise considered.

3.4 Tester Effort

 It is clear that the aforementioned testing techniques fall
under the category of “intelligent” or guided testing, i.e.
testers make choices of tests that are more likely to reveal
faults than random sampling over an operational
distribution [7]. However, depending on the testing method
selected, a great deal of time and effort must be exerted by
a tester to develop the required test cases. There are testing
tools available to help automate aspects of test data
generation, but the task can still be daunting and time
consuming. It has been our experience that it is relatively
easy to obtain 80% coverage for numerous criteria (such as
branch), but that to generate the additional data required to
achieve 90-100% coverage is difficult. Also, it can be the

 .

case that large numbers of test cases are required to achieve
high levels of adequacy criteria.

 As discussed in section 2, our approach seeks to generate
a practical number of test cases, such that a tester would
execute them all even without tool support. We use aspects
of equivalence- and category-partition testing in that we
have the tester characterize the input space, the input space
is then segmented or layered, and a criterion is used to
select points from within the layers. We have evaluated the
structural adequacy of our generated test data and found it
to achieve similar levels of branch and statement coverage
as random sampling.

4. Spathic Test Data Generation

 The spathic test data generation approach is an
“intelligent” random testing method. It is suitable for unit
testing and may also be suitable for integration testing,
though not explored in this paper. The spathic method
provides testers a procedure for generating test data. The
tester has two main tasks: 1) to indicate the type of test
data desired, and 2) to characterize the input space. The
approach is detailed below.

4.1 Process

 The steps in the spathic test data generation method that
result in test data are as follows.

1. Determine the type of data desired as either most
probable (positive) or least probable (negative).

2. Briefly analyze the specification to understand at a
high level what the component does.

3. Characterize the input domain by:

a. selecting an input probability distribution
(Gaussian, Poisson, etc.)

b. specifying the number of test values
desired, and

c. specifying the mean and deviation from
the mean.

4. Solve several equations to generate the test data
(or use our tool to solve the equations and generate
the data).

 We now examine these steps at a high level and then
present the underlying mathematics. Let us examine steps 2
through 4 and then come back to step 1. In step 2, the tester
needs a high level understanding of what the component
does to be able to perform step 3. For example, if a
component guesses a person’s age based on their weight in
pounds, the tester would surmise that the most common, or
perhaps better phrased as “most probable”, inputs would be

positive integers (or real) less than 400. The tester may
also assume that weights of humans tend to be normally
distributed. The tester would specify the mean of the
expected input, say 140 pounds in this case, and the
deviation from the mean. We generally use 50% of the
mean as the deviation, based on experience. Finally, the
tester specifies how many test values are desired. If the
component accepts only one value as input, the tester may
choose to generate 15 values and execute the component 15
times, once with each test value. Or, if the component
accepts 25 inputs, the tester may generate 25 values and
execute the component only once with these values.

 Now we return to step 1. When the tester is undertaking
positive testing, the focus is on “most common” or “most
expected” data. That is, we tend to select data values that
have a high probability of being selected at random from
under a probability distribution. If we think of the often
cited “grading on a curve” example we see that student
grades are normally distributed and that it is most likely that
a grade selected at random from the class roster will fall
under the bell shaped portion of the distribution. It is not
likely that the selected grade will fall under either of the tail
areas of the distribution. The same is true for spathic test
data generation. If the tester selects positive testing, most
probable data are selected, i.e., weighted sampling from
under the most dense portions of the probability
distribution. When negative testing is selected, we sample
under the least dense probability regions, i.e., the tail areas
in our prior example.

 The name “spathic test data generation” comes from this
notion of positive/negative testing for a given probability
distribution, mean, deviation, and number of test cases. In
effect, we look at the desired number of test cases and we
segment or layer the probability distribution into that many
layers. If the tester asks for ten test values, we layer the
specified input distribution into ten layers. In the future we
plan to allow testers to specify the number of layers as well
as the number of test values. Note that these subdomains
are disjoint. We then see if positive or negative testing has
been specified. If positive testing has been specified, we
generate ten test values by sampling over our ten-layered
probability distribution. We do not necessarily select a
value from every layer. We decide how many test values to
select from each layer based on the probability density of
that layer. If a particular layer has a high probability
density, we may select three of the ten values from it. After
we decide how many values to select from each layer, we
select values from the selected layers and output the values.

 For negative testing, we follow the same process but we
select more test values from the layers having the least
probability density. That is, negative testing results in
selection of least likely to occur test values. This is similar
to Voas’ inverse profile for the system-level extended
propagation analysis method [25]. Our approach also

 .

2

2

2

)(

22

1
)(σ

µ

πσ

−
−

=
y

eyf

5d
4d

3d
2d

1d
u

allows a tester to generate additional test cases. Often we
may need to continue testing, but we want to follow our
original test data generation method and not duplicate the
former sampling. We address this by basically splitting the
layers or lamella in half and sampling at the center point,
depending on the number of additional test values
requested. This will be shown in more detail in section 4.2.

4.2 Probability Distributions

 The spathic test data generation method is not dependent
on a particular probability distribution. It could be used
with Weibull distribution, Poisson distribution, exponential
distribution, etc. To date, we have investigated the
Gaussian distribution. We first present some basic
information about the Gaussian distribution.

 The Gaussian distribution is also called normal
distribution. There are two parameters that define the
distribution, the mean and the standard deviation. If the
normal distribution has a mean µ and a variance σ2, it can
be expressed by N(µ,σ2). The probability density function
for N(µ,σ2) is given by

 (1)

If Y is N(µ,σ2), then X=(y-µ)/σ is N(0,1). Here N(0,1) is
called the standard normal distribution.

 A tenet of this approach is that the input distribution is
related to the software’s intended function. The tester must
select the appropriate distribution to achieve the best
results. Guidance for selecting distributions is provided in
[21]. If a suitable distribution cannot be used, it is
suggested that a small number of Gaussian distributed test
values be generated. If these do not appear to be effective,
than a different test data technique should be pursued.

4.3 Sampling

 This section presents the equations we use to determine
the layers and to select test values from the layers. Figure 1
presents a graphical depiction of the test data distribution.
We explain the “most probable” or positive case first. Let’s
assume that we have the standard normal distribution and
its deviation is σ. The sampling data should meet the
following requirements:

1) The data should be in the domain of [-3σ, 3σ]. Here we
take 3σ since outside of the domain, the probability is
less than 0.003.

2) The interval of the data should have a corresponding
distribution. That means that if a point has a large
density value, the interval or layer should be small
(narrower), otherwise it should be large (wider).

 Suppose that the number of samples is N+1 in half of the
domain, [0,3σ], and the data is expressed by x0, x1, x2,…,xN.
According to the domain definition, x1=0, and xN=3σ. We
can define intervals d1=x1-x0, d2=x2-x1,…,dN=xN-xN-1. The di
(i=1,2,…,N) should comply with the standard normal
distribution, which has a deviation σ'. The di are evenly
located on the domain [0,3σ']. That means ∆u=ui+1-ui,
uN=0, and u1=3σ'. So we have ∆u=3σ'/(N-1), and

 (2)

And then from the density function we can get di

 (3)

The summation of the dI (i=1,2,..,N) should be 3σ.

Next, we determine the distribution parameter for the new
data sampling, d1,d2,…,dN. From the preceding, we know
that

 (4)

Substitute the di with equation (3), we get

 (5)

Figure 1. The test data distribution.

1
'3)(

−
−

=−⋅∆=
N

iN
iNuu i σ

2

2

'2
2'2

1 σ

πσ

iu

i ed
−

=

σ3
1

=∑
=

N

i
id

σ
πσ

σ 3
'2

1

1

'2
2

2

2

=

∑

=

−N

i

u i

e

 .

∑
=

−

⋅
=

N

i

iNKe
1

)(2

23
1

'
π

σ

σ
σπ

3
'2

1

1

)(2

=∑
=

−
N

i

iNKe

Replace ui with equation (2) in the previous equation, we
have

 (6)

Here

 (7)

So we can get the new parameter from the equation (6), and

 (8)

Since we suppose the original distribution is a standard
normal distribution, σ=1, so the last equation can be written
as

 (9)

To generate the least likely values (for negative testing), we
perform the same procedure, but xi=xi-1+dN-i, here i=1,
2,…,N.

 Now assume that we have an operational profile, which
satisfies the normal distribution. The distribution parameter
is µ and σ. We want to generate N test values. By using the
preceding method, we can get the test sample as follows:

1) Determine the distribution parameter σ' for the
sampling data (from equation (8));

2) Calculate the sampling data di under the standard
normal distribution (from equation (3));

3) Calculate xi, xi=xi-1+di, here i=1, 2,…,N;

4) Inverse the sampling data to the original distribution
yi=µ+xi*σ.

4.4 Additional Sampling

 As mentioned in section 4.1, there are situations when we
test an application and then realize that additional testing is
required and more test data is needed. With random test
data generators, we sometimes encounter duplicate test
data. We’d prefer to generate additional test data following
our original approach, but not duplicate the former
sampling.

 Suppose the former sampling has N+1 data, and we want
to generate another M test values. The previous data are x0,
x1, …, xN, and the new data will be y1, y2, …, yM.

(1) If N==M, then we simply insert yi into the center
of xi-1, and xI, here (i=1, 2, …,M)

(2) If N>M, then we insert yi into the center of xi-1,
and xI, here (i=1, 2, …,M).

(3) If N<M, and K1=M/N, and K2=M%N (note that %
is a modulus operation, so 8%5 equals 3, and 2%5
equals 2), then if k2=0; we insert K1 points at every
space xi-1, and xI; If k2>0; we first insert K1 point at
every space xi-1, and xI, then for k2 data, we repeat
step (2), but we ensure that the N is changed to
(k1+1)N, and that M is replaced by k2.

4.5 The IntegerSort Example

 Our spathic test data generation method has been
implemented in Java, but thus far only for the Gaussian
distribution. It has been developed in a modular fashion so
that other probability distributions can easily be added. To
do so, we need only include a new function with the
distribution’s name in the approach class and insert a
command line into our Graphical User Interface (GUI)
class. Figure 2 shows the GUI of our spathic test data tool.
We found this tool very easy to use.

Figure 2. The Spathic Test Data Generation Tool.

 We now demonstrate our approach on an example
component. IntegerSort is a simple Java component (one
method) that accepts a list of integers and sorts them into
descending order and outputs the sorted list. As shown in
the Appendix, we randomly generated 20 test values for the
application. We also generated 20 values using the most
probable method (positive testing, also called Gauss
method on our tool interface). We specified 0 as the mean
and 30,000 as the deviation. We generated 20 values using
the least probable method (negative testing, inverse
Gaussian, also called revGauss method on our tool
interface). The same mean and deviation were used as
above.

2)1(
1

2
9

−
⋅−=

N
K

∑
=

−

⋅
=

N

i

iNKe
1

)(2

32
1

'
σπ

σ

 .

 We used the test coverage analysis tool JCover [8] to
analyze statement and branch coverage of this test data.
The random data achieved 78.57% branch coverage and
72.73% statement coverage. The spathic test data (positive
and negative) achieved 85.71% branch coverage and
77.27% statement coverage. Though these coverage levels
are very low and not useful per Frankl and Weiss [24], they
are still comparable to the levels achieved by the random
data. Next, we used the additional test data capability and
generated an additional ten test values for positive testing
(Gauss, most probable). We also generated ten additional
values for negative testing (revGauss, least probable).

5. Evaluation

 An initial case study was carried out to evaluate the
method’s performance in generating effective test data. To
compare fault detection ability of test data we used fault
detection effectiveness. Fault detection effectiveness
(FDE) is the percentage of seeded faults detected. It is
synonymous with average percentage of faults detected
(APFD) used by Elbaum, Gable, and Rothermel [4]. We
studied the subject programs, the faults introduced into the
subject programs, and the test data generation method. A
description of the case study follows.

 First, nine subject Java programs were selected from
publicly available source code repositories and from a
repository of graduate student programs. A random test
data generator was used to develop tests for each subject
program. The tester continued generating values until 80 -
90% branch coverage was achieved (measured per class
using JCover) or until it became obvious that additional
random values would not increase the coverage. The
number of test values was recorded, as were the output
results of each test execution (one execution of the
component with some number of test values). Second, the
spathic test data tool was used to generate the same number
of test values. Here, the tester made a decision (based on
experience) on the mean of the data and used 50% of the
mean as the deviation. Data was generated using Gauss and
revGauss. The test values were then also run on the subject
program, looking at outputs and branch and statement
coverage.

 Third, the subject programs were seeded with faults. We
based our faults on commonly made Java mistakes [3,13].
Most of the faults were singular syntactic changes (e.g., a
relational operator was switched for another one), small
syntactic faults [10]. We did not examine their semantic
size. The test values for most probable and for least
probable cases were then executed on the faulty versions.
The results were compared to the results from testing the
unmodified subject program. If the output of the faulty
version did not match the output of the original subject
program, the fault was said to be detected. Fault detection

effectiveness was measured as the percentage of faults that
were detected by a method. So for example, if the spathic
most probable method (Gauss) found four of eight faults, it
is said to have an FDE of 50%.

 The study is detailed in Table 1. The first column shows
the subject programs used in the case study. Weight
processes a list of human weights. Score processes test
scores. IntegerSort was described in Section 4.
LetterGrade processes grades and outputs a report.
Calculate2 takes three numeric inputs and calculates the
sum and product. LargeSmall takes five numeric inputs and
outputs the largest and smallest values. Perfect takes
numerical input and indicates if the number is deficient or
abundant. SortArray sorts a given list of values into
ascending or descending order. IntegerStats calculates the
mean and standard deviation of a list of values. The
programs varied from 73 to 284 lines of code. Recall that
we are interested in applying input probability distribution
testing at the unit level, so we tried to use programs that
were “unit” sized.

 The second column shows the number of faulty versions
of each subject program. One fault was seeded in each
version. The third column indicates how many random test
data sets were used for the subject program, with the
number of test values in each set given in square brackets.
For example, we executed 40 random method test sets on
“buggy” versions of Weight (ten test sets per fault-seeded
version) with seven test values in each test set. The fourth
and fifth columns provide the same information for the
spathic Gauss and spathic revGauss methods.

Table 1. Study design.

Subject
Program

Number
of Faulty
Versions

Number
of

Random
Test Sets
[Number

of test
values in
each set]

Number
of Spathic

Gauss
Test Sets
[Number

of test
values in
each set]

Number
of Spathic
revGauss
Test Sets
[Number

of test
values in
each set]

Weight 4 40 [7] 4 [7] 4 [7]

Score 4 40 [7] 4 [7] 4 [7]

IntegerSort 6 60 [20] 6 [20] 6 [20]

LetterGrade 4 40 [10] 4 [10] 4 [10]

Calculate2 8 8 [3] 8 [3] 8 [3]

LargeSmall 3 3 [5] 3 [5] 3 [5]

Perfect 3 3 [7] 3 [7] 3 [7]

SortArray 5 5 [20] 5 [20] 5 [20]

IntegerStats 3 3 [20] 3 [20] 3 [20]

 .

 The results are detailed in Tables 2 and 3. The first
column lists the subject program. The second column gives
the fault detection effectiveness of the random data sets.
The third and fourth columns provide the same information
for the spathic Gauss and spathic revGauss test sets.

 In Table 2, it should be noted (from Table 1) that for
faulty versions where spathic data outperformed random
data, we generated many more sets of random test values
than of spathic Gauss or revGauss to ensure conservative
results. That is, ten times more random test values may
have been needed to achieve the shown fault detection
levels. For example, for the LetterGrade program, we
generated ten sets of ten test values for each fault-seeded
version. Of those ten sets, only three of the ten sets found
bug1, two out of ten found bug2, and four out of ten found
bug3.

 Table 3 shows the average branch and statement
coverage achieved by the test sets. Column 1 lists the
subject program. Column 2 lists the average branch
coverage of the random data, with the statement coverage
average in square brackets. For example, SortArray
random data achieved, on average, 81% branch coverage
and 88% statement coverage. The third and fourth columns
provide the same information but for spathic Gauss and
spathic revGauss test sets. Upon examining the code, we
noted that the programs with low coverage had numerous
error checking branches that our test data would never
execute. For example, “report error if no input values are
specified.”

Table 2. Study results - FDE.

Percent of Faults Detected
(FDE)

Subject
Program

Random
Test
Data

Gauss
Test
Data

revGauss
Test
Data

Weight 0 75 0

Score 0 75 75

IntegerSort 60 60 60

LetterGrade 25 50 50

Calculate2 66.67 66.67 66.67

LargeSmall 33.33 33.33 33.33

Perfect 33.33 33.33 33.33

SortArray 20 20 20

IntegerStats 100 100 100

 Informally, we also looked at the performance of
generated “additional test data.” For example, for the
program Weight we generated five additional values using

all three methods. The revGauss values found 50% of the
bugs, while the other two methods found none. For
LetterGrade, all three methods found 25% of the faults
when five additional values were generated for each.

Table 3. Study results – coverage.

Average Branch Coverage [Average
Statement Coverage]

Subject
Program

Random Test
Data Sets

Gauss Test
Data Sets

revGauss
Test Data

Sets

Weight 50 [48] 60 [52] 50 [48]

Score 50 [38] 50 [38] 50 [38]

IntegerSort 79 [73] 86 [77] 86 [77]

LetterGrade 79 [71] 86 [76] 79 [71]

Calculate2 50[93] 50[93] 50[93]

LargeSmall 50[77] 50[87] 50[87]

Perfect 77[77] 83[80] 83[80]

SortArray 81[88] 81[88] 81[88]

IntegerStats 72[78] 72[78] 72[78]

 As can be seen, the spathic test data generation method
found more faults than the random test data, while
achieving higher branch and statement coverage (though
not impressive coverage levels). The test sets were the
same size with the exception of some random test sets that
were larger (to ensure that bias was in favor of the control
method). It must also be noted that many faults went
undetected by all three testing methods. We found the
method to be very easy to use. It did require us to
determine the number of test cases desired, but this is an
activity already routinely performed by practitioners.

 The initial study is viewed as a proof of principle test,
i.e., does the spathic method have sufficient potential to
warrant additional testing? The initial results are promising
and additional testing is warranted. The results, however,
are limited and the effectiveness of the method on a broader
scale remains to be seen.

 Though this was a small study, we did consider threats to
its validity. Internal validity threats deal with the causal
relationship between the independent and dependent
variables. We attempted to limit the threat by validating the
tools and processes we used for data collection. For
example, we used a commercially available coverage tool
and we validated the performance of the spathic test data
generation tool before undertaking the study. A major
threat to external validity (generalization of results) for our
study is the representativeness of our subject programs and
faults as well as our small sample size. We attempted to

 .

control this threat by selecting programs from Internet
repositories and selecting sample faults from lists of
common Java errors. There is also the threat of lack of
construct validity (are the measures appropriate?). The
dependent variable FDE does not account for fault severity,
fault “hardness” (how difficult to detect), etc.

 These are initial results based on a small sample. Further
study and research is required before any generalizations or
broad conclusions can be reached. However, the initial
results encourage us that this technique may have merit.

6. Conclusions And Future Work

 In this paper, we have proposed a method for generating
test data and presented preliminary data to support this
method. The proposed method is applicable to unit level
testing and requires less effort on the part of the tester than
many specification-based or structural criteria-based
techniques. The approach also supports the generation of
additional non-duplicative test data later in the testing
cycle.

 Our initial evaluation of the proposed method shows that
the generated spathic test data achieves similar or higher
levels of branch and statement coverage, and that it has
higher fault detection effectiveness (FDE) than randomly
generated test data. We believe the approach works well
with either small or large input ranges, when a small
amount of white box testing information is available. If a
tester has some knowledge of the most likely problem areas
or if this is self-evident from the type of application or
component, the approach works well. The white box
information may be as simple as “it is most likely that
negative integers will detect faults.” As noted above, the
initial results are promising but very limited in scope. A
much larger scale study with a variety of distribution
functions is required before any broad conclusions can be
reached.

7. Acknowledgments

 Our thanks to Naresh Mohamed for generating,
executing, and assisting with analysis of the tests. We
thank Tina Gao and Bill Kidwell for their timely assistance.
Thanks to Professors Jeff Offutt and Dave Huffman for
their helpful comments. Our appreciation to Man Machine
Systems and their kind donation of JCover for use in our
research program.

8. References

[1] Ammann, P., and Offutt, J. Using formal methods to derive
test frames in category-partition testing. In Proceedings of

the Ninth Annual Conference on Computer Assurance,
Safety, Security, Reliability, Fault Tolerance, Concurrency
and Real Time (COMPASS '94), 1994, 69 –79.

[2] Cochran, W. Sampling Techniques. Wiley, 1977.

[3] Common Java Syntax Errors.
http://www.open.ac.uk/StudentWeb/m874/!synterr.htm.

[4] Elbaum, S., Gable, D., and Rothermel, G. Understanding
and measuring the sources of variation in the prioritization of
regression test suites. IEEE, Proceedings of the Seventh
International Software Metrics Symposium, METRICS 2001,
169-179.

[5] Hamlet, D. and Voas, G. Faults on its sleeve, amplifying
software reliability testing. In Proceedings, 1993
International Symposium on Software Testing and Analysis
(Cambridge, MA, June). ACM, 89-98.

[6] Howden, W.E. Functional Program Testing and Analysis.
McGraw-Hill, New York, 1987.

[7] Howden, W.E.,and Huang, Y. Software trustability analysis.
ACM Transactions on Software Engineering and
Methodology, Volume 4, Number 1, January 1995, 36-64.

[8] Code Coverage Analyzer for Java - JCover,
http://www.mmsindia.com/JCover.html.

[9] Ntafos, S. On comparisons of random, partition, and
proportionalpPartitiontTesting. IEEE Transactions on
Software Engineering, Volume 27, Number 10, 949-960.

[10] Offutt, J. and Hayes, J. Huffman. A semantic model of
program faults. The Proceedings of the International
Symposium on Software Testing and Analysis. ACM, San
Diego, California, January 1996, 195-200.

[11] Ostrand, T.J. and Balcer, M.J. The category-partition
method for specifying and generating functional test.
Communications of the ACM, Volume 31, Number 6, June
1988, 676-686.

[12] Podurski, A., Masri, W., McCleese, Y., and Wolff, F.
Estimation of software reliability by stratified sampling.
ACM Transactions on Software Engineering and
Methodology, Volume 8, Number 3, July 1999, 262-283.

[13] Reilly, D. Top ten errors Java programmers make.
http://www.javacoffeebreak.com/articles/toptenerrors.html.

[14] Zhu, H., Hall, P.A.V., May, J.H.R. Software unit test
coverage and adequacy. ACM Computing Surveys, Volume
29, Number 4, December 1997, 366-427.

[15] Musa, J.D. The operational profile in software reliability
engineering: an overview. Proceedings of Third
International Symposium on Software Reliability
Engineering, 1992, 140 –154.

[16] Musa, J. D. Operational profiles in software reliability
engineering. IEEE Software Magazine, volume 10, number
2, March 1993, pp. 14-32.

[17] Thévenod--Fosse, P. and Waeselynck, H. An investigation
of statistical software testing. Journal of Software Testing,
Verification and Reliability, 1(2), 1991, 5-25.

 .

[18] Sahinoglu, M., von Mayrhauser, A., Hajjar, A., Chen, T.,
Anderson, C. On the efficiency of a compound poisson
stopping rule for mixed strategy testing, Procs. IEEE
Aerospace Applications Conference 1999, March 1999,
Snowmass, CO.

[19] Howden, W.E.: Reliability of the path analysis testing
strategy. IEEE Transactions on Software Engineering. SE-2,
208-215, 1976.

[20] Woit, D. A framework for reliability estimation. Proc. 5th
IEEE International Symposium on Software Reliability
Engineering (ISSRE'94), November 6-9, 1994. pp. 18-24.

[21] Hayes, J. Huffman, and Gao, H. Fault detection
effectiveness of spathic test data generated according to a
geometric function. University of Kentucky Computer
Science Department Technical Report TR 344-02, May
2002.

[22] R. W. Butler and G. B. Finelli. The infeasibility of
quantifying the reliability of life-critical real-time software.
IEEE Transactions on Software Engineering, pages 3-12,
1993.

[23] Littlewood, B., and Wright, D. Some conservative stopping
rules for the operational testing of safety-critical software.
IEEE Transactions on Software Engineering, 23(11): 673-
683, 1997.

[24] Frankl, P., and Weiss, S. An experimental comparison of the
effectiveness of branch testing and data flow testing. IEEE
Transactions on Software Engineering, 19, 8 (1993), 774-
787.

[25] Voas, J., Charron, F., McGraw, G., Miller, K., Friedman, M
Predicting how badly "good" software can behave. IEEE
Software. Volume 14, Issue 4 , July-Aug. 1997, 73–83.

[26] Fujiwara, S., Bochmann, G., Khendek, F., Amalou, M., and
Ghedamsi, A. 1991. Test selection based on finite state
models. IEEE Transactions on. Software Engineering, SE-
17, 6 (June), 591–603.

[27] Hall,P.A.V.And Hierons, R. 1991. Formal methods and
testing. Tech. Rep. 91/16, Dept. of Computing, The Open
University.

[28] Ural,H.And Yang, B. 1993. Modeling software for accurate
data flow representation. In Proceedings of 15th
International Conference on Software Engineering (May),
277–286

Appendix
 Initial Values Additional Values

Under Initial Values, Column 1 shows the 20 randomly generated test values. Column 2 shows the 20 test values generated using the most
probable method (called Gauss method on our tool interface) – the mean was 0 and the deviation was 30,000. Column 3 shows the 20
values generated using the least probable method (inverse Gaussian, also called revGauss method on our tool interface) – we used the same
mean and deviation as above. Under Additional Values, we generated 10 additional test values using the Gauss and RevGauss methods.

Random Gauss RevGauss Gauss RevGauss
0 -87747 0 -89894 0 -89894 10 addt'l 10 addt'l
1 -84074 1 -66485 1 -89622 0 -78189 0 -89758
2 -70291 2 -46032 2 -88982 1 -56258 1 -89302
3 -65583 3 -29700 3 -87608 2 -37866 2 -88295
4 -64117 4 -17781 4 -84908 3 -23740 3 -86258
5 -63983 5 9831 5 -80062 4 -13806 4 -82485
6 -63606 6 4985 6 -72112 5 -7408 5 -76087
7 -55221 7 2286 7 -60194 6 -3636 6 -66153
8 -30224 8 -911 8 -43862 7 -1598 7 -52028
9 -22852 9 -272 9 -23409 8 -591 8 -33635
10 4913 10 0 10 0 9 -136 9 -11704
11 7266 11 272 11 23409
12 35937 12 911 12 43862
13 36928 13 2286 13 60194
14 58397 14 4985 14 72112
15 62578 15 9831 15 80062
16 74871 16 17781 16 84908
17 76147 17 29700 17 87608
18 81743 18 46032 18 88982
19 84565 19 66485 19 89622

