
ICSE 97 Doctoral Consortium

Michal Young
Department of Computer Sciences

Purdue University
1398 Computer Science Building

West Lafayette, IN 47907-1398 USA
+13174946023

young@cs.purdue.edu

ORGANIZING COMMITTEE
Jo Atlee, University of Waterloo, Canada
Simon Kaplan, University of Queensland, Australia
Gail Murphy, University of British Columbia, Canada
Tetsuo Tamai, University of Tokyo, Japan
MichalYoung (chair), Purdue University, USA

INTRODUCTION
The ICSE 97 Doctoral Consortium is a one day workshop
prior to the regular ICSE technical conference. The goal of
the doctoral consortium is to publicly discuss research goals,
methods, and results at an early enough stage in Ph.D.
research to provide useful guidance in completion of the
dissertation research and initiation of a research career. The
consortium and ICSE also provide an opportunity for student
participants to interact with established researchers and
others in the wider software engineering community. Ten
student participants were selected from among thirty-nine
complete submissions. Selection criteria included the stage
of the research and its appropriateness to ICSE, in addition
to technical strength of the submitted research abstract.

PARTICIPANTS
Student participants in the Doctoral Consortium are listed
below with brief summaries of their research topics. Full
research abstracts and contact information are available
through the ICSE 97 web site.

Mark Astley, University of Illinois at Urbana-Cbam-
paign, USA
Customizable Sofrware Architectures for Distributed Systems

Architectural context refers to the relationship between
components of a software architecture and architecture-wide
properties such as connectivity and resource usage. Open
distributed systems, by their nature, impose complex
contexts on their corresponding architectures. The need to
ensure properties such as fault-tolerance and consistency, as
well as the potential for unpredictable interactions requires
modular, dynamically customizable abstractions with
composable semantics. To address this need, we model
software components as scalable collections of Actors. A

Perksion to make di$aVhard copies of all or part ofthis mate&l for
Personal or &woom use is Sranted without fee provided that the copies
are not made or distributed for profit or commercial adva@e, the copy-
right notice, the title ofthe publication and its date appear, and notice k
given that coPyn’&t is by permission of the ACM, Inc. To copy ohwise,
to republish to post on servers or to redistribute to lists, requires specific
permission and/or fee
ICSE 97 Boston MA USA
Copyrisht 1997 ACM 0-89791-914-g/97/05 ..$3.50

meta-architecture provides a modular representation of
individual actor contexts. Architectural configuration is
specified using first-class connectors which reflectively
customize the architectural context of component actors.
Moreover, connectors are dynamically composable allov;mg
for graceful evolution of distributed architectures.

Nancy Day, University of British Columbia, Canada
Formal Validation of System Specifications

The goal of this work is to create a framework that
systematically maps formal specifications into operational
models for analysis. My thesis hypothesis is that explicit
operational semantics provide a way to do state-space
exploration analysis of model-oriented specification& This
approach offers the advantage that the structure of the
specification is captured and can be exploited to reduce the
size of the state space in techniques like model checking.
It also allows us to analyze models consisting of
integrated components specified in different notations,
and to return results at the level of abstraction of the
speci62ation.

Li Li, George Mason University, USA
Applying Logic-based Databases to Impact Analysis of
Object-Oriented Software

We are beginning to see legacy object-oriented systems. An
emerging challenge is how to maintain these objects in large,
complex systems. Although objects are more easily
identified and packaged, features like inheritance make the
ripple effects of object-oriented systems more difficult to
control than in procedural systems. The research presented
here attempts to solve the problem of change-impact analysis
of object-oriented software by applying algorithmic software
analysis techniques to compute transitive closure of certain
relationships among software components. The information
about the sofhvare components and algorithms can be
described in a set of logic rules.

Fernando Brito e Abreu, Universidade Tecnica de Lisboa,
Portugal
Object-Oriented Design Metrics

The adoption of the Object-Oriented paradigm is expected to
help produce better and cheaper SOfhVaR. The main
structural mechanisms of this paradigm, namely, inheritance,
encapsulation, information hiding and polymorphism, are
the keys to foster reuse and achieve easier maintainability.
However, the use of language constructs that support those

mechanisms can be more or less intensive, depend@ mostly
on the designer’s ability. In fact, the analysis to design
transition is an activity which offers several degrees of
liberty. Decisions on best alternatives are usually fuzzy and
mostly based on expert judgment, We can then expect rather
different quality products to emerge, as well as different
productivity gains. Advances in quality and productivity
need to be correlated with the use of those constructs. We
then need to evaluate this use quantitatively (using design
metrics) to guide the 00 design process, for instance by
means of design heuristics.

Robert DeLine, Carnegie Mellon University, USA
Easing Systems Integration by Overcoming and Avoiding
Packaging Mismatch

The packaging mismatch problem remains a significant
barrier to the umstruction of large software systems from
off-the-shelf parts. The term packaging refers to the
assumptions a software component makes about how it
interacts with other components. Components to be
integrated suffer from packaging mismatch when each
makes assumptions about interaction that the others cannot
fulfll. As au example, integrating a Unix titer with a Corba
object is problematic: the titer expects to interact through
streams; the object, through method calls. In my dissertation
research, I will classify the known techniques for
overcoming packaging mismatch, both to organize our
knowledge and to advise practitioners. Further, I will explore
a new approach to avoiding packaging mismatch that
separates a component’s computational and interaction
concerns, so that decisions about interaction can be delayed
until integration time.

Jane Hayes, George Mason University, USA
Input Validation Testing: A System Level, Early Lifecycle
Technique

Jnput validation testing is detied as choosing test data that
attempt to show the presence or absence of specific faults
pertaining to input tolerance. Syntax-directed software
accepts inputs from the user, constructed and arranged
properly, that control the flow of the application. A large
amount of syntax-directed software currently exists and will
continue to be developed that should be subjected to input
validation testing. System level testing techniques that
currently address this area are not well developed or
formalized. Input validation testing techniques have not
been developed or automated to assist in static input syntax
evaluation and test case generation. This thesis will address
the problem of statically analyzing input command syntax
and then generating test cases for input validation testing,
early in the life cycle.

Frank Houdek, University of Ulm, Germany
Development of a Supporting System for Reuse of Sofhvae
Engineering Experience

Building up and reusing domain specific experience is an
essential task in the context of systematic quality
improvement programs. As the task of building experience
cannot be performed by the software projects, an
independent organization unit has to do this, the so-called

Experience Factory. To keep the Experience Factory
effective, even if people are joining or leaving or the amount
of experience grows, there is a demand, lirst to structure
experience and second to provide assistance in handling the
experience packages. In this research abstract I propose an
approach that helps to fulfill these demands. Main elements
of the this approach are formalization of experience
packages to enable automatic support, assistance in
generalization and aggregation to manage even large
numbers of experience packages, and dynamic distance
calculation to handle varying environments and to identify
key factors for special kinds of experience.

Lamia Labed Jilani, University of Tunis II, ‘hnisia
Retrieving Sojiware Components by Minimizing Functional
Distance

Given a software library used for the purpose of software
reuse and whose components are represented by formal
speciGcations, we consider a user query K that no
component of the library satisfies. Approximate retrieval
consists of identifying the library components that come
closest (in some sense) to satisfying query K. In this work,
we attempt to discuss what it means for a component to
come closest to a spec%cation ; we do so by defining
measures of functional distance between specifications, and
devising algorithms that minimize these measures over a
structured set of components.

Luis G. Nakano, University of Virginia, USA
Integrated Approach to Software Safety

The problem that we propose to study is the integration of
software components into system fault-tree analysis. Such
analysis is essential in the development of safe systems yet
current methods do not handle software well. There are two
synergistic techniques that we propose to exploit: (1) The use
of results from other engineering areas to design software so
that certain properties relevant to the application are met. (2)
The use application-domain properties to guarantee that the
system will be safe even if certain defects are present in the
software. The combination of several approaches will
provide engineers with a comprehensive analysis technique.

John Penix, University of Cincinnati, USA
Automated Component Retrieval and Adaptation Using For-
mal Specifications

This work describes a method for applying formal
specif%zations to automate a system design process based on
reusable components and architectures. The focus is on
identification and retrieval of components pertinent to a
problem, and selection and application of structures
(architectures) available for adapting these components.
Component retrieval is facilitated by a heuristic based on
specification semantics for approximating specification
matches that indicate component reusability. To support
adaptation, a formal model of architectures is developed that
uses algebraic theories to.specify relationships between the
system and component specifications. Adaptation is
performed by modifying or replacing components within an
architecture theory.

681

