
Partially Automated In-Line Documentation (PAID):
Design and Implementation of a Software Maintenance Tool

Jane E. Huffman Clifford G. Burgess

Science Applications
International Carporation

ABSTRACT

Large scale budget and schedule overruns of software
projects have sparked interest in software maintenance.
The importance of accurate technical documentation to
the maintenance pmcess is presented. A possible solution
to the lack of adequate technical documentation is
suggested -- a partially automated in-line documentation
system. This system uses software merrics to determine
where comments should be placed in source programs.
The system can be used as a tool in software development
and/or softwm maintenance.

KEY WORDS: Software Engineering
Software Maintenance Software Tools
Software Metrics Documentation In-Line
Documentation

1. INTRODUCTIO N

Large budget and schedule overruns on many software
projects has generated a great deal of interest in software
maintenance. Maintenance accounts for approximately
80% of the overall life cycle cost of a software product
[lo]. Also, personnel dissatisfaction with maintenance
work has reached epidemic Proportions. The national
average length of employment for a computer
programmer is approximately six months. Turnover in
personnel results in high training costs and added
maintenance costs (due to the large number of
programmers working o n a system over its life cycle). If
these costs can be r"zed, . the overall cost of software
can be reduced substantially.

A major factor affecting software maintenance is
documentation. Software documentation is the collection
of documents that explain, describe, and define the
purposes and uses of a particular software program or a
system composed of multiple programs [8]. There are
three categories of software documentation: user
documentation, product documentation, and technical
documentation. Technical documentation will be the
focus of this paper.

University of Southem
Mississippi

Technical documentation refers to information on the
various phases of the software life cycle. It includes
design specifications, performance specifications,
functional specifications, development information, etc.
This documentation is usually Written by the system
designers or programmers. It is found in-line in the
source program, on-line, or in had copy form. It is often
used as referem material for maintenance of a
progradsystem.

Unfortumely, quite often no technical documentation
is produced.. In addition, when documentation is
produced, it IS often poorly or incompletely Written, and
may not be kept current. These factors contribute to the
difficulty of maintaining the software at a later time.

2. RESEARCH RATIONALE

This paper will show that undocumented (or poorly
documented) source code can be documented with the
help of a partially automated in-line documentation
system, PAID. This system seeks to improve software
maintenance by facilitating the in-line documentation of
programs. The system uses software metrics to help
determine where comments should be placed in the
program. Specifically, the Index of Difficulty used by the
Maintainability Analysis Tool (MAT) [1],[2] has been
moditied for use by PAID. An extended discussion of
PAID follows.

3. AUTOMATION OF IN-LINE DOCUME NTATION

E!u.PQE

The importance of technical documentation to the
software maintenance process has been discussed, and the
need for commenting existing programs is apparent. The
ideal solution to this problem would be some system that
automatically places comments in a program explaining
its operation. This would allow maintenance
progammers to submit all of the old programs that need
modifcation (but lack documentation) to this system and
within a short period of time have fully documented
programs.

CH2615-3/88/0000/0060$01.00 Q 1988 EEE

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

Method

PAID concentrates on the major functionality of this
"super" documentation system - deciding where
comments should be placed. This becomes difficult since
no national or international standards for documentation
exist. If standards did exist, however, the system could
just follow their precepts and guidelines, and place
comments as appropriate.

Since no standards exist, PAID implements the
following in-line documentation guidelines. In general,
comments should be inserted:

1) at the beginning of the program to give the name
of the author, title of the program, object of the
program, and methods used by the program;

2) in the declaration section to explain variables,
data types, record structures, etc. used in the
program;

3) at the beginning and end of each block; and

4) within the program andlor block body as deemed
necessary (particularly in sections of code that
are notoriously difficult to maintain, such as
recursive routines).

There are more specific documentation "guidelines" that
vary depending on the language used to implement a
program.

The first three guidelines can be fairly easily
implemented by lexically scanning the subject program
and checking for the program heading, declaration
section, or beginnindend of a block. Guideline four
presents more of a problem -- determining that a segment
of code needs documentation requires close examination
of the code. PAID uses the concept of textual complexity
to make this determination. By implementing a measure
of textual complexity, PAID chooses locations in the
program where comments should be inserted.

Software metrics are tools used to quantify software
complexity. When deciding where to place in-line
comments, textual complexity is of importance. Textual
complexity deals with the readability and
understandability of programs. There are two major
metric systems used to quantify textual complexity: 1) the
Berry-Meekings style metric; and 2) the Maintainability
Analysis Tools' (MAT) 111, 121 Index of Difficulty. The
latter will be of interest in this paper.

MAT, developed by Science Applications
International Corporation, is a static analysis tool for
FORTRAN programs. It is used to locate programming
discrepancies such as p r usages, errors, possible errors,
etc. This FORTRAN static analyzer reads, parses, and
examines the source code of each program module one at
a time - i.e., the static analyzer examines each source
module individually and all of them as a whole [2].
Weights and factors assigned to program elements and
attributes (Index of Difficulty) are used to examine the
modules.

PAID utilizes a modified version of the Index of
Difficulty, referred to as the Modified Index of Difficulty,
to decide where comments should be placed. The Index
of Difficulty was selected as the foundation for PAID
because it is a measure of how difficult a program will be
to maintain and it uses element weights and factors to
determine this complexity measure. This makes the
metric relatively easy to implement, easy to understand,
and easy to modify.

Using the Index of Difficulty weights as a foundation,
weights for Pascal source code were determind. This
process involved using the authors' experience. peer
input, and trial and error. A subset of the weighting
factors for the Modified Index of Difficulty are shown in
table 1.

PAID examines a line of the source code (subject
code) being evaluated. The line is scanned and token
types are determined. These token types each have a
weight in the Modified Index of Difficulty table. A
simple table "look up" procedure is used to retrieve the
token metric value. The weight for the token type is then
added to the complexity of the line.

If the line's complexity is sufficient to warrant
documentation (it exceeds a limit for complexity per line
of code), PAID "looks ahead" and "looks behind" an
appropriate number of lines of code (based on
complexity) to see if such documentation already exists.
If it does not, the user is prompted to enter a comment. If
the line complexity does not warrant documentation, it is
added to the accumulated complexity (the complexity
since an already existing comment was found or a new
comment was inserted). If accumulated complexity
exceeds a certain limit, documentation is necessary, and
PAID prompts the user to enter a comment.

PAID checks for complex Pascal structures, also. An
example is the f o r w d declaration. This structure makes
a program difficult to understand, and therefore difficult
to maintain (particularly if the structure is not
documented). If a forward declaration is encountered by
PAID, it "looks ahead" and "looks behind for
documentation. If documentation does not exist, PAID
prompts the user to enter a comment. When prompting
for a comment, PAID informs the user of the reason that
documentation is necessary (e.g., line complexity,
accumulated complexity, forward declaration, etc.).

PAID checks for direct and indirect recursion. Direct
recursion is present when a block calls itself. An
example of direct recursion implemented in Pascal is:

Procedure T;
begin
T;

end;

This is often represented as: T --> T. Indirect recursion
exists if a block calls another block@), at least one of

61

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

~

T able 1. Modified Index of Difficulty We i h e ts

Identifiers

-Y
File Variable
Function
Parameter
procedure
~m
StIillg
Type
Variable

Boolean
Character
Integer
Real

And
Not or
Relational

I

+

-Y
Boolean
char
Integer
Pointer
Real
R e C d
Text

Assign
Assignment
Begin
case
Comment
Const
Else
End
FOr
ForWard
Function
Go to
If
Procedure

E E
Repeat
Type
Until
VU
While
Writeh

constants

Qperator Element

Data T m

Statement Tvpe

Yeight

1.50
1 .00
2.00
1.00
2.00
2.00
2.00
7.00
0.85

0.00
0.10
0.00
0.05

0.25
1 .00
0.25
0.20
0.20
0.20
0.30
0.25

7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00

2.00
0.00
0.00
5.00
0.00
0.00
0.00
7.00
7 .00
7.00
7.00
10.00
5.00
4.00
5.00
3.00
1.00
0.00
7.00
0.00
7 .00
3.00

which calls the original block. For example:

procedure z; forward;
ProcedureL;
besin
z;

end;

besin
L;

end;

begin
B;

end;

ProcedureB;

procedurez;

This can be repsented as: Z --> B --> L --> Z.

PAID evaluates the relationships between blocks in
the subject program, It compms each identifier it
encounters to the current block name. If these match,
direct recursion exists and the user is prompted to enter a
comment (if a CQmment does not already exist). The
identXer is also compared to all blocks currently active
in the program that may have an indirectly recursive
relationship to the current block. If indirect recursion is
found. and no previous C6”ent exists, the user is
prompted to enter a comment.

The Jackson design methodology was used to develop
PAID in a top down manner. This design methodology
was selected due to the authors’ experience and
familiarity with it. It was decided that PAID would
evaluate Pascal programs since the authors have more
experience with and knowledge of this language than any
other, and because it is the universal teaching language.
The multing PAID design was implemented in VAX
Pascal on a VAX 1 lnS0 at the Hattiesburg campus of the
University of Southem Mississippi.

Vdid&QQ

PAID was used to document six existing Pascal
programs, two of which will be discussed here. hp
Ash is a Pascal program that has examples of hgh
statement complexity. direct recursion, and indirect
recursion. Program Ash was evaluated by PAID, and as a
result had many "merits added.

The original file, Ashhs , is shown in figure 1.
Notice the direct recursion in Procedure Edit and
Function Nextone. Also note the indirectly recursive
relationship of Procedures Z and L. The almost total lack
of in-line documentation in the program is also
noteworthy.

The file output from PAID, Ash.PAID, is shown in
figure 2. This program has had 24 comments inserted, 14
of which document BEGINS and ENDS. PAID correctly
pointed out the two instances of direct recursion and
indirect recursion. It also pointed out statements of
cansiderable complexity to a maintainer, such as the two
forward declarations of ~edm. PAID produced the
desired results by promptmg the user to enter comments
at appmpriate locations in the code.

62

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

I PROGRAM ASH(INPUT, OUTPUT);

[procedure ask will ask user for data)
PROCEDURE ASK,

p-: REAL;

I PROCEDURE ASK

FUNCTION NEXTONE(PP: INTEGER): INTEGER
BEGIN

END;

PROCEDURE Z; FORWARD;
PROCEDURE L; FORWARD;

PROCEDURE WANT;

PROCEDURE EDIT;
BEGIN
EDIT,

END;
BEGIN
EDIT,
Z;

END;

PROCEDURE Z;
BEGIN
WANT,
L;

END;

PROCEDURE L;
BEGIN
z;

END;

BEGIN

NEXTONE:= NEXTONE(PP + 1);

ASK,
READLN(Y);
Y := NEXTONE(Y);
WRlTELN(Y);
Z;
END.

Figure 1. Ash.Pas

Comments inserted at PAID’S request can be
differentiated from previously existing comments in two
ways: 1) all PAID comments have () delimiters; and 2)
all PAID comments are lower case only. PAID asks the
user for preferences of comment locations before
evaluation starts. The user may request comment
insertion after every BEGIN and/or END or request that
BEGINS and ENDS not be commented at all.

Figures 3 - 5 show PAID’s operation. Figure 3 shows
PAID eliciting user preferences on comment locations.
Figure 4 shows PAID prompting the user to document a
section of code containing indirect recursion. Figure 5
shows the ending statistics for the evaluation of Ash.Pas.

(edit will call itself 1
PROCEDURE EDIT,
BEGIN I edit 1

. I

EDIT,
(recursive call to edit)
END; (edit)
BEGIN (want)
EDIT;
Z;

(indirect recursion)
END; (want)

PROCEDURE Z;
BEGIN lz}
WANT: ’
L;

[indirect recursion)

PROCEDURE L;
BEGIN (1)

ENQ(z1

Z;
END; (11

BEGIN (main]
ASK.
REA~LN(Y);
Y := NEXTONE(Y);
WRITELN(Y);
Z;

END. (main)

Figure 2. Ash.PAID

63

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

comment after (BWGIN
comment after @)ND
comment after both of the (A)bove
do not place comment after either of Ohese

-- --
SOURCE CODE LINES a ~ R O U G H 26.
The following code should be commented due to
INDIRECT RECURSION
[n particular, line 4 requires documntation.

1m

2 BEGIN

3 EDm,

4 2 ;

Enter Y if you wish to enter a comment or S to see these
lines of code again, otherwise enter any other ktter.
Y
Enter parenthesized letter for where you want comment
placed or any other to continue.

(H)elp - more information.
(B)efm these lines of code.
(A)fter these lines of code.
(C)omment before line of your choice.
(0)n line 4 after the statement.

Figwe 4. PAID Comment Prompt due to Indirect
Recursion

Average line complexity was 2.42.
l'here were 1 previous comment(s) found
There were 6 comment(s) inserted.

Some program has 46 lines of code.
Original program had 46.00 lines of code per comment.

Rogtam now has 6.57 lines of code per comment.

Figure 5. PAID Ending Statistics

Utilmod.Pas, not shown to conserve space, is a module
f" a Pascal compiler. It is comprised of several
different prooedurcs whose functions range iipm
inserting a symbol into the symbol table to gwwating
assembly code. This program. as coolpared to Ash.Pas,
already contained in-line c k " t a t i o n and was much
l a r p i n size (in terms of lines of code) and much b"
in scope and nam. Ash.Pas illustrated PAID'S ability b
* m n t programs that arc dacumntadon deficient.
U- demonstrams PAID'S ability to document
program that already contain documentation.

Utilmod.Pas, prior to baing submitted to P O ,
contained two major types of comments: 1) c o " ~ t s
before each block, and 2) comments after the END of
each block. This documentatian may be sutriCiant for
relatively simple blocks. However, for mcffe complex
blocls, such as SaveJd and Ness-FOt, additional
documentation is wBR?ulted In these instances, PAID is
used to "fine tune" and supplement existing comments.

After submission to PAID, the ou ut file
(Utilmod.PAID) contained 29 new comments. 8 f t h w
29 comments, 10 documented BEGINS and ENDS. PAlD
had been inseructGd to document all BEGIN and END
statements prior to evaluating the program.

Validation is &fined as substantiating, or confirming
that the desired result is produced. If standards for in-line
documentation existed, PAID could be validated by
comparing a program it documented to these standards.
Since IKI such standards exist, PAID must be validated
using the "stan- it was developed to implement. B
axamining the test pro evaluated by P A d
cicluding the programs ~ s K a n ! utilmad.~as) before
and after being submitted to PAID, it can be seen that the
four in-line documentation guidelines @resented in
section 3) are satisfied

4. FUTURE USES 0 FMETRIC s IN SOFl-wAlE -
Softwan meuics offer hope for simplifiid software
maintenance. A standard for software metrics would be a
giant step forward for software maintenance. Many
applications of metrics are currently being researched.
PAID suggests the application of meuics to the partial
automation of in-liqe docmaentation. Such a system
could be used alone or in conjunction with a program
genemtm.

PAID o f h the possibility of several other software
en@mering applications. The concepts implementqd in
PAID could be expandui and/ormodified to:

1) statically analyze programs and tag or mark
locations &at need c o r m " . Man ment
personnel could run PAID on pseuzode,
evolving code, or code that needs updating and
get an estimate of the amount of work nquired
for documentation. This a001 could help
managers estimate the cost (particularly in
manhours) of developing or maintaining
software;

64

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

analyze programs written in different
programming languages. By adding knowledge
bases (weight table like the Modified Index of
Difficulty) and modifying the lexical scanner,
other programming languages besides Pascal
could be evaluated,

include a knowledge acquisition component.
PAID could then develop a "model" of each
user and would know where the user commonly
places comments. Also, the user would be
allowed to modify the knowledge base and
make it more specific to the current application;
and

measure the quality of code being developed.
This measure could be used to monitor
programming teams and to pinpoint
weak(/strong) team members. Such a system
would help a manager prevent poor code from
being incorporated in a developing system, thus
improving the system's maintainability.

Metrics could be applied to the complexity analysis of
unmodularized code. Unstructured programs could be
analyzed and module decisions suggested based on the
complexity of sections of code. Maintainability effort
can be measured using software metrics with systems
similar to MAT. Such information assists
managers/progra"ers/analysts in making programs
easierfless costly to maintain.

Memcs have been used largely during the coding
phase of the software life cycle. If memcs are applied to
earlier phases of the life cycle, several controlling factors
can be determined:

* complexity of the software at that

* ways to reduce complexity
* successful completion of the phase
* manpower allocation necessary to

phase

meet deadlines

Although much more research is needed in the area of
software maintenance, the work thus far indicates that
rapid advances can be expected. With increased
development and use of software engineering tools, such
as interactive viewing systems, reusable code, program
generators, metric driven systems, and structured design
techniques, the software maintenance problem can be
contained. Finding ways to decrease the cost of
maintenance and the dislike for maintenance work is a
vital issue in Software Engineering today and deserves
serious attention.

REFERENCES

[13 Bems. Gerald M. (1984). Assessing
software maintainability. Communications of
the ACM, 2(1) , 14-23.

[2] Berns, Gerald M. (1985). Analysis tool
tracks down bugs in FORTRAN code. Computer
Desim, June, 169-174.

[3] Berry, R .E. andMeekings, B.A.E. (1985).
A style analysis of C programs.
Communications of the ACM, a(l), 80-88.

[4] Boehm, B.W. (1973). Software and its.
impact: A quantitative approach. Datamanon,
April.

[5] Curtis, Bill, Sheppard, Sylvia, M i b a n ,
Phil, Borst, M.A., and Love, Tom (1979).
Measuring the psychological complexity of
software maintenance tasks with the Halstead
and McCabe memcs. IEEE Transactions on
Software Enaneexing, SE-5(2), 96- 104.

[6] Ejigou, Lem 0. (1984). A simple measure
of software complexity. Computeworld. April

171 Halstead. M.H. (1977). Elements of
software science. New York Elsevier.

[8] Houghton-Alico, Doann. (1985). Creating
computer software user aides: From manuals to
menus. New York McGaw-Hill Book.

[9] McCabe, T.J. (1976). A complexity
measure. IEEE Transactions on Software
En&". SE-2,308-320.

[101 Wiener, Richard and Sincovec, Richard
(1984). Software eneineerine with Modula-2
and Ada. New York: John Wiley & Sons.

2, 1984, 10/10 - 10/16.

65

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

