Partially Automated In-Line Documentation (PAID):
Design and Implementation of a Software Maintenance Tool

Jane E. Huffman

Science Applications
International Corporation

ABSTRACT

Large scale budget and schedule overruns of software
projects have sparked interest in software maintenance.
The importance of accurate technical documentation to
the maintenance process is presented. A possible solution
to the lack of adequate techmical documentation is
suggested -- a partially automated in-line documentation
system. This system uses software metrics to determine
where comments should be placed in source programs.
The system can be used as a tool in software development
and/or software maintenance.

KEY WORDS: Software Engineering
Software Maintenance Software Tools
Software Metrics Documentation In-Line
Documentation

1. INTROD N

Large budget and schedule overruns on many software
projects has generated a great deal of interest in software
maintenance. Maintenance accounts for approximately
80% of the overall life cycle cost of a software product
[10). Also, personnel dissatisfaction with maintenance
work has reached epidemic proportions. The national
average length of employment for a computer
programmer is approximately six months. Tumover in
personnel results in high training costs and added
maintenance costs (due to the large number of
programmers working on a system over its life cycle). If
these costs can be minimized, the overall cost of software
can be reduced substantially.

A major factor affecting software maintenance is
documentation. Software documentation is the collection
of documents that explain, describe, and define the
purposes and uses of a particular software program or a
system composed of multiple programs [8]. There are
three categories of software documentation: user
documentation, product documentation, and technical
documentation. Technical documentation will be the
focus of this paper.

CH2615-3/88/0000/0060$01.00 © 1988 IEEE

Clifford G. Burgess

University of Southern
Mississippi

Technical documentation refers to-information on the
various phases of the software life cycle. It includes
design specifications, performance specifications,
functional specifications, development information, etc.
This documentation is usually written by the system
designers or programmers. It is found in-line in the
source programi; on-line, or in hard copy form. It is often
used as reference material' for maintenance of a
program/system.

Unfortunately, quite often no technical documentation
is produced. In addition, when documentation is
produced, it is often poorly or incompletely written, and
may not be kept current. These factors contribute to the
difficulty of maintaining the software at a later time.

2. RESEARCH RATIONALE

This paper will show that undocumented (or poorly
documented) source code can be documented with the
help of a partially automated in-line documentation
system, PAID. This system seeks to improve software
maintenance by facilitating the in-line documentation of
programs. The system uses software metrics to help
determine where comments should be placed in the
program. Specifically, the Index of Difficulty used by the
Maintainability Analysis Tool (MAT) [1},[2] has been
modified for use by PAID. An extended discussion of
PAID follows.

3. A MATION OF IN-LINE D NTATION

Purpose

The importance of technical documentation to the
software maintenance process has been discussed, and the
need for commenting existing programs is apparent. The
ideal solution to this problem would be some system that
automatically places comments in a program explaining
its operation. This would allow maintenance
programmers to submit all of the old programs that need
modification (but lack documentation) to this system and
within a short period of time have fully documented
programs.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

Method

PAID concentrates on the major functionality of this
"super" documentation system - deciding where
comments should be placed. This becomes difficult since
no national or international standards for documentation
exist. If standards did exist, however, the system could
just follow their precepts and guidelines, and place
comments as appropriate.

Since no standards exist, PAID implements the
following in-line documentation guidelines. In general,
comments should be inserted:

1) at the beginning of the program to give the name
of the author, title of the program, object of the
program, and methods used by the program;

2) in the declaration section to explain variables,
data types, record structures, etc. used in the
program;

3) at the beginning and end of each block; and

4) within the program and/or block body as deemed
necessary (particularly in sections of code that
are notoriously difficult to maintain, such as
recursive routines).

There are more specific documentation "guidelines” that
vary depending on the language used to implement a
program.

The first three guidelines can be fairly easily
implemented by lexically scanning the subject program
and checking for the program heading, declaration
section, or beginning/fend of a block. Guideline four
presents more of a problem -- determining that a segment
of code needs documentation requires close examination
of the code. PAID uses the concept of textual complexity
to make this determination. By implementing a measure
of textual complexity, PAID chooses locations in the
program where comments should be inserted.

Software metrics are tools used to quantify software
complexity. When deciding where to place in-line
comments, textual complexity is of importance. Textual
complexity deals with the readability and
understandability of programs. There are two major
metric systems used to quantify textual complexity: 1) the
Berry-Meekings style metric; and 2) the Maintainability
Analysis Tools’ (MAT) [1], [2] Index of Difficulty. The
latter will be of interest in this paper.

MAT, developed by Science Applications
International Corporation, is a static analysis tool for
FORTRAN programs. It is used to locate programming
discrepancies such as poor usages, errors, possible errors,
etc. This FORTRAN static analyzer reads, parses, and
examines the source code of each program module one at
a tme - ie., the static analyzer examines each source
module individually and all of them as a whole [2).
Weights and factors assigned to program elements and

attributes (Index of Difficulty) are used to examine the
modules.

61

PAID utilizes a modified version of the Index of
Difficulty, referred to as the Modified Index of Difficulty,
to decide where comments should be placed. The Index
of Difficulty was selected as the foundation for PAID
because it is a measure of how difficult a program will be
to maintain and it uses element weights and factors to
determine this complexity measure. This makes the
metric relatively easy to implement, easy to understand,
and easy to modify.

Using the Index of Difficulty weights as a foundation,
weights for Pascal source code were determined. This
process involved using the authors’ experience, peer
input, and trial and error. A subset of the weighting
factors for the Modified Index of Difficulty are shown in
table 1.

PAID examines a line of the source code (subject
code) being evaluated. The line is scanned and token
types are determined. These token types each have a
weight in the Modified Index of Difficulty table. A
simple table “look up" procedure is used to retrieve the
token metric value. The weight for the token type is then
added to the complexity of the line.

If the line’s complexity is sufficient to warrant
documentation (it exceeds a limit for complexity per line
of code), PAID "looks ahead" and "looks behind" an
appropriate number of lines of code (based on
complexity) to see if such documentation already exists.
If it does not, the user is prompted to enter a comment. If
the line complexity does not warrant documentation, it is
added to the accumulated complexity (the complexity
since an already existing comment was found or a new
comment was inserted). If accumulated complexity
exceeds a certain limit, documentation is necessary, and
PAID prompts the user to enter a comment.

PAID checks for complex Pascal structures, also. An
example is the forward declaration. This structure makes
a program difficult to understand, and therefore difficult
to maintain (particularly if the structure is not
documented). If a forward declaration is encountered by
PAID, it "looks ahead" and "looks behind" for
documentation. If documentation does not exist, PAID
prompts the user to enter a comment. When prompting
for a comment, PAID informs the user of the reason that
documentation is necessary (e.g., line complexity,
accumulated complexity, forward declaration, etc.).

PAID checks for direct and indirect recursion. Direct
recursion is present when a block calls itself. An
example of direct recursion implemented in Pascal is:

Procedure T;
begin

T
end;

This is often represented as: T --> T. Indirect recursion
exists if a block calls another block(s), at least one of

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

T i x of Di ighi
Identifiers eight
Armay 1.50
File Variable 1.00
Function 2.00
Parameter 1.00
Procedure 2.00
Program 2.00
String 2.00
Type 7.00
Variable 0.85

Constants
Boolean 0.00
Character 0.10
Integer 0.00
Real 0.05
Operator Element
And 0.25
Not 1.00
Or 025
Relational 0.20
+ 0.20
- 0.20
/ 0.30
* 0.25
Data Types
Array 7.00
Boolean 7.00
Char 7.00
Integer 7.00
Pointer 7.00
Real 7.00
Record 7.00
Text 7.00
nt T
Assign 2.00
Assignment 0.00
Begin 0.00
Case 5.00
Comment 0.00
Const 0.00
Else 0.00
End 7.00
For 7.00
Forward 7.00
Function 7.00
Goto 10.00
If 5.00
Procedure 4.00
Program 5.00
Readln 3.00
Repeat 1.00
Type 0.00
Until 7.00
Var 0.00
While 7.00
Writeln 3.00

62

which calls the original block. For example:

Procedure Z; forward;
Procedure L;
begin
. Z;
end;
Procedure B;
begin
L;
end;
P
B
end;
This can be represented as: Z-->B -->L-->Z.

PAID evaluates the relationships between blocks in
the subject program, It compares each identifier it
encounters to the current block name. If these match,
direct recursion exists and the user is prompted to enter a
comment (if a comment does not already exist). The
identifier is also compared to all blocks currently active
in the program that may have an indirectly recursive
relationship to the current block. If indirect recursion is
found. and no previous. comment exists, the user is
prompted to enter a comment.

The Jackson design methodology was used to develop
PAID in a top down manner. This design methodology
was selected due to the authors’ experience and
familiarity with it. It was decided that PAID would
evaluate Pascal programs since the authors have more
ci(gerience with and knowledge of this language than any
other, and because it is the universal teaching language.
The resulting PAID design was implemented in VAX
Pascal on a VAX 11/780 at the Hattiesburg campus of the
University of Southern Mississippi.

Validation

PAID was used to document six existing Pascal
programs, two of which will be discussed here. Program
Ash is a Pascal program that has examples of high
statement complexity, -direct recursion, and indirect
recursion. Pro, Ash was evaluated by PAID, and as a
result had many comments added.

The original file, Ash.Pas, is shown in figure 1.
Notice the direct recursion in Procedure Edit and
Function Nextone. Also note the indirectly recursive
relationship of Procedures Z and L. The almost total lack
of in-line documentation in the program is also
noteworthy.

The file output from PAID, Ash.PAID, is shown in
figure 2. This program has had 24 comments inserted, 14
of which document BEGINs and ENDs. PAID correctly
pointed out the two instances of direct recursion and
indirect recursion. It also pointed out statements of
considerable complexity to a maintainer, such as the two
forward: declarations of procedures. PAID produced the
desired results by prompting the user to enter comments
at appropriate locations in the code.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

PROGRAM ASH(INPUT, OUTPUT), PROGRAM ASH(INPUT, OUTPUT);
VAR VAR
X,Y: REAL; X,Y: REAL;
PROCEDURE ASK; {x and y are occurrence counters}
BEGIN { procedure ask will ask user for data}
READLN(X); PROCEDURE ASK;
END; BEGIN ({ask)
READLN(X);
FUNCTION NEXTONE(PP: INTEGER): INTEGER; END; {ask}
BEGIN
NEXTONE:= NEXTONE(PP + 1); {function nextone will return the next value}
END; ¢) FUNCTION NEXTONE(PP: INTEGER): INTEGER;
BEGIN {nextone}
PROCEDURE Z; FORWARD; NEXTONE:= NEXTONE(PP + 1);
PROCEDURE L; FORWARD; {recursive call to nextone}
END; {nextone}
WANT;
PROCEDURE PROCEDURE Z; FORWARD;
PROCEDURE EDIT; PROCEDURE L; FORWARD;
BEGIN
EDIT; { these procedures z and 1 will be found later in the
END; program}
BEGIN
EDIT; {want will ask user for data}
Z: PROCEDURE WANT;
END; {edit will call itself)
’ PROCEDURE EDIT;
PROCEDURE Z; BEGIN ({edit}
BEGIN EDIT; .
WANT; { recursive call to edit}
L; END; {edit}
END; BEGIN {want)
EDIT;
PROCEDUREL; Z
BEGIN { indirect recursion}
Z; END; {want}
END;
PROCEDURE Z;
BEGIN BEGIN {z}
ASK; WANT;
READLN(Y); L)
Y := NEXTONE(Y); {indirect recursion}
WRITELN(Y); END;{z}
Z;
END. PROCEDUREL;
BEGIN {1}
Z
Figure 1. Ash.Pas END; {1}
BEgiII(N {main}
Comments inserted at PAID’s request can be ASK; i
differentiated from previously existing comments in two yﬁ&%&g :
ways: 1) all PAID comments have { } delimiters; and 2) WRITELN(Y): (Y);
all PAID comments are lower case only. PAID asks the Z:)
user for preferences of comment locations before EN’D .
evaluation starts. The user may request comment . {main}
insertion after every BEGIN and/or END or request that
BEGINs and ENDs not be commented at all. Figure 2. AshPAID
Figures 3 - 5 show PAID’s operation. Figure 3 shows

PAID eliciting user preferences on comment locations.
Figure 4 shows PAID prompting the user to document a
section of code containing indirect recursion. Figure 5
shows the ending statistics for the evaluation of Ash.Pas.

63

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

Would you like comments after every BEGIN and END?
comment after (B)EGIN

comment after (E)ND

comment after both of the (A)bove

do not place comment after either of (T)hese

Your choice:

Figure 3. Comment Location Preference

SOURCE CODELINES 23 THROUGH 26.
The following code should be commented due to
INDIRECT RECURSION
In particular, line 4 requires documentation.

1 END;
2 BEGIN
3 EDIT;
4 Z

Enter Y if you wish to enter a comment or $ to see these
lines of code again, otherwise enter any other letter.

y
Enter parenthesized letter for where you want comment
placed or any other to continue.

(H)elp - more information.

(B)efore these lines of code.

(A)fter these lines of code.
(C)omment before line of your choice.
(O)nline 4 after the statement.

Figure 4. PAID Comment Prompt due to Indirect
Recursion

Average line complexity was 2.42.
There were 1 previous comment(s) found.
There were 6 comment(s) inserted.

Source program has 46 lines of code.
Original program had 46.00 lines of code per comment.

Program now has 6.57 lines of code per comment.

Figure 5. PAID Ending Statistics

Utilmod.Pas, not shown to conserve space, is a module
from a Pascal compiler. It is comprised of several
different procedures whose functions range from
inserting a symbol into the symbol table to generating
agsembly code. This program, as compared to Ash.Pas,
already contained in-line documentation and was much
larger in size (in terms of lines of code) and much broader
in scope and nature. Ash.Pas illustrated PAID’s ability to
document programs that are documentation deficient.
Utilmod.Pas demonstrates PAID’s ability to document
programs that already contain documentation.

Utilmod.Pas, prior to being submitted to PAID,
contained two major types of comments: 1) comments
before each block; and 2) comments after the END of
each block. This documentation may be sufficient for
relatively simple blocks. However, for more complex
blocks, such as Save_Id and Process_For, additional
documentation is warranted. In these instances, PAID is
used to "fine tune" and supplement existing comments.

After submission to PAID, the output file
(Utilmod.PAID) contained 29 new comments. Of these
29 comments, 10 documented BEGINs and ENDs. PAID
had been instructed to document all BEGIN and END
statements prior to evaluating the program.

Validation is defined as substantiating, or confirming
that the desired result is produced. If standards for in-line
documentation existed, PAID could be validated by
comparing a program it documented to these standards.
Since no such standards exist, PAID must be validated
using the "standards” it was developed to implement. B
examining the test pro evaluated by PA
(including the programs Ash.Pas and Utilmod.Pas) before
and after being submitted to PAID, it can be seen that the
four in-line documentation guidelines (presented in
section 3) are satisfied.

4. F S
MAINTENANCE

Software metrics offer hope for simplified software
maintenance. A standard for software metrics would be a
giant step forward for software maintenance. Many
applications of metrics are currently being researched.
PAID suggests the application of metrics to the partial
automation of in-line documentation. Such a system
could be used alone or in conjunction with a program
generator. i

PAID offers the possibility of several other software
engineering applications. The concepts implemented in
PAID could be expanded and/or modified to:

1) statically analyze programs and tag or mark

" locations that need comments. ment
personnel could run PAID on pscudocode,
evolving code, or code that needs updating and
get an estimate of the amount of work required
for documentation. This tool could help
managers - estimate the cost (particularly in
manhours) of developing or maintaining
software;

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from IEEE Xplore. Restrictions apply.

2) analyze programs written in different
programming languages. By adding knowledge
bases (weight table like the Modified Index of
Difficulty) and modifying the lexical scanner,
other programming languages besides Pascal
could be evaluated;

3) include a knowledge acquisition component.
PAID could then develop a "model" of each
user and would know where the user commonly
places comments. Also, the user would be
allowed to modify the knowledge base and
make it more specific to the current application;
and

4) measure the quality of code being developed.
This measure could be used to monitor
programming teams and to pinpoint
weak(/strong) team members. Such a system
would help a manager prevent poor code from
being incorporated in a developing system, thus
improving the system’s maintainability.

Metrics could be applied to the complexity analysis of
unmodularized code. Unstructured programs could be
analyzed and module decisions suggested based on the
complexity of sections of code. Maintainability effort
can be measured using software metrics with systems
similar to MAT. Such information assists
managers/programmers/analysts in making programs
casier/less costly to maintain.

Metrics have been used largely during the coding
phase of the software life cycle. If metrics are applied to
earlier phases of the life cycle, several controlling factors
can be determined:

* complexity of the software at that
phase

* ways to reduce complexity

* successful completion of the phase

* manpower allocation necessary to
meet deadlines

Although much more research is needed in the area of
software maintenance, the work thus far indicates that
rapid advances can be expected. With increased
development and use of software engineering tools, such
as interactive viewing systems, reusable code, program
generators, metric driven systems, and structured design
techniques, the software maintenance problem can be
contained. Finding ways to decrease the cost of
maintenance and the dislike for maintenance work is a
vital issue in Software Engineering today and deserves
serious attention.

65

REFERENCES

[1] Berns, Gerald M. (1984). Assessing
software maintainability. Communications of
the ACM, 27(1), 14-23.

[2] Berns, Gerald M. (1985). Analysis tool
tracks down bugs in FORTRAN code. Computer
Design, June, 169-174.

{3] Berry, R .E. and Meekings, B.A E. (1985).
A style analysis of C programs.
Communications of the ACM, 28(1), 80-88.

[4] Boehm, B.W. (1973). Software and its
impact: A quantitative approach. Datamation,
April.

{5] Curtis, Bill, Sheppard, Sylvia, Milliman,
Phil, Borst, M.A., and Love, Tom (1979).
Measuring the psychological complexity of
software maintenance tasks with the Halstead
and McCabe metrics. IEEE Transactions on
Software Engineering, SE-5(2), 96- 104.

[6] Ejigou, Lem O. (1984). A simple measure
of software complexity. Computerworld, April
2, 1984, 10/10 - 10/16.

[7]1 Halstead, M.H. (1977). Elements of
software science. New York: Elsevier.

[8] Houghton-Alico, Doann. (1985). Creating

computer software user guides: From manuals to
menus. New York: McGraw-Hill Book.

[9] McCabe, T.J. (1976). A complexity
measure. IEEE Transactions on Software
Engineering, SE-2, 308-320.

[10] Wiener, Richard and Sincovec, Richard

(1984). Software engineering with Modula-2
and Ada. New York: John Wiley & Sons.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on February 1, 2010 at 12:43 from |IEEE Xplore. Restrictions apply.

