
Input Validation Testing: A Requirements-Driven,

System Level, Early Lifecycle Technique �

Jane Hu�man Hayes A. Je�erson O�utt

Innovative Software Technologies Information and Software Engineering

Science Applications International Corp. George Mason University

jane.e.hayes@cpmx.saic.com ofut@gmu.edu

August 30, 2000

Abstract

This paper addresses the problem of statically analyzing input command syntax as de�ned in interface
and requirements speci�cations and then generating test cases for input validation testing. The IVT
(Input Validation Testing) technique has been developed, a proof-of-concept tool (MICASA) has been
implemented, and validation has been performed. Empirical validation on actual industrial software (for
the Tomahawk Cruise Missile) shows that as compared with senior, experienced testers, MICASA found
more requirement speci�cation defects, generated test cases with higher syntactic coverage, and found
additional defects. Additionally, the tool performed at signi�cantly less cost.

Jane Huffman Hayes and A. Jefferson Offutt. Input Validation Testing: A Requirements-Driven, System

Level, Early Lifecycle Technique. 11th International Conference on Software Engineering & its Applications,

Paris France, December 1998.

1 Introduction

Human users often interface with computers through commands. Commands may be in many forms, includ-
ing mouse clicks, screen touches, pen touches, voice, and �les. A method used extensively by older programs
and still used widely today is that of obtaining textual user input through the keyboard. In this paper, a
syntax driven application accepts inputs from the user, constructed and arranged properly, that control the

ow of the application. Programs that accept free-form input, interactive input from the user, free-form
numbers, etc. are all examples of syntax driven applications [4].

A user command is de�ned as an input from a user that directs the control 
ow of a computer program.
A user command language is a language that has a complete, �nite set of actions entered textually through
the keyboard, used to control the execution of the software system. Syntax driven software is software that
has a command language interface. Syntax driven applications must be able to (1) properly handle user
commands that may not be constructed and arranged as expected, and (2) properly handle user commands
that are constructed and arranged as expected.

�This work is supported in part by the U.S. National Science Foundation under grant CCR-98-04111 and by the Command
and Control Systems Program (PMA-281) of the ProgramExecutive O�cer Cruise Missiles Project and Joint Unmanned Aerial
Vehicles (PEO(CU)), U.S. Navy. Special thanks to Mrs. Theresa Erickson.

1



The �rst requirement refers to the need for software to be tolerant of operator errors. Input-tolerance

is de�ned as an application's ability to properly process both expected and unexpected input values. Test
cases should be developed to ensure that a syntax driven application ful�lls both of these requirements.
Input validation testing, then, is de�ned as choosing test data that attempt to show the presence or absence
of speci�c faults pertaining to input-tolerance.

1.1 System Testing

Though much research has been done in the area of unit testing, system testing has not garnered as much
attention from researchers. This is partly due to the expansive nature of system testing: many unit level
testing techniques cannot be practically applied to millions of lines of code. There are well de�ned testing
criterion for unit testing [1, 7, 9, 11] but not so for system testing. Lack of formal research results in a lack
of formal, standard criteria, general purpose techniques, and tools.

Much of the research undertaken to date has largely concentrated on testing for performance, security,
accountability, con�guration sensitivity, start-up, and recovery [1]. These techniques require that source
code exist before they can be applied. Such dynamic techniques are referred to as detective techniques since
they are only able to identify already existing defects. What is more desirable is to discover preventive
techniques that can be applied early in the life cycle. Preventive techniques help avert the introduction of
defects into the software and allow early identi�cation of defects when it is less costly and time consuming
to repair them.

1.2 Input Validation

Input validation refers to those functions in software that attempt to validate the syntax of user provided
commands/information. It is desirable to have a systematic way to prepare test cases for this software
early in the life cycle. By doing this, planned user input commands can be analyzed for completeness
and consistency. Currently, no well developed or formalized technique exists for automatically analyzing
the syntax and semantics of user commands (if such information is even provided by the developers in
requirements or design documents) or for generating test cases for input validation testing. The technique
proposed here is preventive in that it will statically analyze the syntax of the user commands early in the
life cycle. It is also detective since it generates test cases that can be run on the code.

System level testing techniques that currently address this area are not well developed or formalized.
There is a lack of system level testing formal research and accordingly a lack of formal, standard criteria,
general purpose techniques, and tools. This paper presents a technique to statically analyze input command
syntax and generate test cases for input validation testing early in the life cycle. Validation results show
that the IVT method found more speci�cation defects than senior testers, generated test cases with higher
syntactic coverage than senior testers, generated test cases that took less time to execute, generated test
cases that took less time to identify a defect than senior testers, and found defects that went undetected by
senior testers.

We present a new method of analyzing and testing syntax-directed software systems that introduces the
concept of generating test cases based on syntactic anomalies statically detected in interface requirements
speci�cations. The overall thesis of this research is that the current practice of analysis and testing of
software systems described by natural language, textual tabular interface requirements speci�cations can be
improved through the input validation testing technique. Speci�cally, the IVT technique statically detects
speci�cation defects better and faster than senior testers and generates test cases that identify software faults
better and more quickly than senior testers.

2



To evaluate the thesis, a working prototype system based on the new method was constructed and
validated using a three-part experiment. Using this prototype system, we empirically established large
improvements over current practice in the number of anomalies statically detected in interface requirements
speci�cations, the duration of time needed to develop and execute test cases, the duration of time needed to
identify a defect, and identifying speci�cation defects and software faults.

2 The Input Validation Test Method

Input validation testing (IVT) uses a graph of the syntax of user commands. IVT incorporates formal rules in
a test criterion that includes a measurement and stopping rule. This section discusses the four major aspects
of the IVT method: (1) how to specify the format of speci�cations, (2) how to analyze a user command
speci�cation, (3) how to generate valid test cases for a speci�cation, and (4) and how to generate error test
cases for a speci�cation.

IVT uses a test obligation database, a test case table, and a Microsoft Word �le. A test obligation is a
defect or potential software problem that is detected during static analysis. If a defect is found (such as an
overloaded token value), information on the speci�cation table, the data element, and the defect are stored
in the test obligation database. Each record represents an obligation to generate a test case to ensure that
the static defect detected has not become a fault in the �nished software. A test case is generated for each
test obligation. The test case table is used to record all the test cases that are generated. The Microsoft

Word �le is used to generate test plans and cases in a standard Test Plan format.

2.1 Specifying speci�cation format

The IVT method is speci�cation driven, thus is only useful for systems that have some type of documented
interfaces. The IVTmethod expects a minimumof one data element per user command language speci�cation
table (these are also referred to as \Type 1" tables) and expects a minimum of three �elds for the data
element: (1) data element name, (2) data element size, and (3) expected/allowable values.

2.2 Analyzing user command speci�cations

A user command language speci�cation de�nes the requirements that allow the user to interface with the
system to be developed. The integrity of a software system is directly tied to the integrity of the system
interfaces, both internally and externally [6]. There are three well accepted software quality criterion that
apply to interface requirements speci�cations: completeness, consistency, and correctness [2, 10]. This
research only addresses the �rst two.

Requirements are complete if and only if everything that eventual users need is speci�ed [2]. The IVT
method assesses the completeness of a user command language speci�cation in two ways. First, the IVT
method checks that there are data values present for every column and row of the speci�cation table. Second,
the IVT method performs static analysis of the speci�cation tables. The IVT method looks to see if there
are hierarchical, recursive, or grammar production relationships between the table elements. For hierarchical
and grammar production relationships, the IVT method checks to ensure there are no missing hierarchical
levels or intermediate productions. If such defects are detected with the speci�cation table, a test obligation
will be generated and stored in the test obligation database. Any recursive relationships detected will be

agged by IVT as confusing to the end user and having the potential to cause the end user to input erroneous
data. If recursive relationships are detected with the speci�cation table, a test obligation will be generated
and stored in the test obligation database.

3



Consistency is exhibited \if and only if no subset of individual requirements con
ict" [2]. Internal

consistency refers to con
icts between requirements in the same document. External inconsistency refers
to con
icts between requirements in related interface documents. In addition to analyzing user command
language speci�cation tables, the IVT method also analyzes input/output (or data 
ow) tables. These tables
(also referred to as \Type 3" tables) are found in interface requirements speci�cations (IRS) and interface
design documents (IDD) and are often associated with data 
ow diagrams. These tables are expected to
contain three �elds: (1) data element, (2) data element source, and (3) data element destination.

When problems are found, they are used to generate error reports when the requirements are obviously
wrong, and test obligations when the requirements have potential problems. Detailed algorithms for these
checks are provided in the technical report [5].

The IVT method performs three additional checks on Type 1 tables (user command language speci�ca-
tion tables containing syntactic information).

1. Examine data elements that are adjacent to each other. If no delimiters are speci�ed, the IVT method
will look to see if two data elements of the same type or with the same expected value are adjacent.
If so, a \test obligation" is generated to ensure that the two elements are not concatenated if the user
\overtypes" one element and runs into the next element.

2. Check to see if a data element appears as the data type of another data element. If IVT detects such
a case, it informs the user that the table elements are ambiguous and a test obligation is generated.

3. Check to see if the expected value is duplicated for di�erent data elements. This is a potential poor
interface design because the user might type the wrong value. This situation is similar to when a
grammar has overloaded token values. If IVT detects such a case, it informs the user that the table
elements are potentially ambiguous and a test obligation is generated.

2.3 Generating valid test cases

The user command language speci�cation is used to generate a covering set of test cases. The syntax graph
of the command language is tested by adapting the all-edges testing criterion [3]. Each data element is
represented as a node in the syntax graph. Many user command speci�cations yield loops in the syntax
graphs, and the following heuristic is used [1, 8]: execute 0 times through the loop, execute 1 time through
the loop, execute X times through the loop, and execute X+1 times through the loop, where X is a reasonably
large number. The test cases are generated automatically by traversing the syntax graph.

2.4 Generating error test cases

There are two sources of rules for generating erroneous test cases: the error condition rule base, and the test
obligation database. The error condition rule base is based on the Beizer [1] and Marick [8] lists of practical
error cases. The test obligation database is built during static analysis. Erroneous test cases are generated
from both the error condition rule base and the test obligation database. Four types of error test cases are
generated from the error condition rule base:

1. Violation of looping rules when generating covering test cases.

2. Top, intermediate, and �eld-level syntax errors. A wrong combination is used for 3 di�erent �elds,
the �elds are inverted (left half of string and right half of string are swapped with the �rst character
moved to the middle) and then the three inverted �elds are swapped with each other.

4



Import
Spec
Tables

Perform
Static
Analysis

Generate
Covering
Test Cases

Generate
Error
Cases

Interface
Spec
Tables

Database
of Tables

Test Obligation,
Test Heuristic
Databases

Database
of Tables

Warnings/Error
Msgs, Test
Obligation DB

All−Edges
Test Cases

Error Test
Cases

Figure 1: MICASA Architecture

3. Delimiter errors. Two delimiters are inserted into the test case in randomly selected locations.

4. Violation of expected values. Expected numeric values are replaced with alphabetic values, and ex-
pected alphabetic values are replaced with numbers.

Two types of error test cases are generated from the test obligation database:

1. Overloaded token static error/ambiguous grammar static error. An overloaded token is inserted into
the ambiguous elements of a test case, based on the ambiguous value and the ambiguous character
numbers identi�ed during static analysis.

2. Catenation static error. The values that were identi�ed as possibly catenating each other (user acci-
dentally types information into the next �eld since adjacent �elds have the same data type, no expected
values, and no delimiters) are duplicated into the adjacent �elds.

3 MICASA: A Proof-of-concept System

To demonstrate the e�ectiveness of IVT, a proof-of-concept system was developed. This tool accepts input
speci�cations, performs the analyses described in Section 2, and automatically generates system-level tests.
The tool is called Method for Input Cases and Static Analysis (MICASA), runs under Windows NT, and is
written in Visual C++.

A high level architecture is shown in Figure 1. MICASA has four major subsystems, shown in square
boxes in the middle. The Import Speci�cation Tables subsystem accepts the interface speci�cations, and
translates them to a standardized, intermediate form. This Database of Tables is then fed to the other three
subsystems, which generate messages about the input speci�cations, test obligations, and test cases. The
Test Heuristic Database is encoded directly into the MICASA algorithms.

MICASA accepts 
at �les and MS Word �les that describe the interface speci�cation tables. The �les
are imported into MS Access tables.

MICASA allows the user to perform a number of static checks on the interface tables, including con-
sistency, completeness, ambiguous grammar, overloaded token, and potential catenation. The input is the
interface table information that is created by Import Spec Tables and stored in the MS Access database.
The output from static analysis is a set of MS Access database tables containing error records, as well as

5



printouts of these error reports. An example Ambiguous Grammar Error report is shown in Table 1. An
example Overloaded Token Error report is shown in Figure 2. An example Catenation Error report is shown
in Figure 3.

Ambiguous Grammar
Tuesday, June 09, 1998

Table Name ID Field Error Type Error Ambiguous Char # Description Class of Value
Values Char # Values

Table-3-2-4-1-10- 214 General Error Ambiguous: 786 781 ELEMENT WIDTH No 0
ETF-Weaponeering- Duplicate Values
Dataset
able-3-2-4-1-10- 204 General Error Ambiguous: 774 770 PERCENT BURIAL No 0
ETF-Weaponeering- Duplicate Values
Dataset
Table-3-2-4-1-10- 205 General Error Ambiguous: 808 771 PERCENT BURIAL No
ETF-Weaponeering- Duplicate Values
Dataset
Table-3-2-4-1-10- 206 General Error Ambiguous: 807 772 PROB OF DAMAGE No 1
ETF-Weaponeering- Duplicate Values GIVEN A HIT
Dataset
Table-3-2-4-1-10- 207 General Error Ambiguous: 804 773 PROB OF DAMAGE No
ETF-Weaponeering- Duplicate Values GIVEN A HIT
Dataset

Table 1: Example Ambiguous Grammar Report

Overloaded Token
Tuesday, June 09, 1998

Table Name Character Description
Table-3-2-4-1-10-ETF-Weapon 738 NOMINAL CEP
eering-Dataset
Table-3-2-4-1-10-ETF-Weapon 816 PATTERN TYPE
eering-Dataset
Table-3-2-4-1-10-ETF-Weapon 856 TARGET ALTITUDE
eering-Dataset
Table-3-2-4-1-10-ETF-Weapon 863 WEAPON OR DISPENSER TERMINAL VEL
eering-Dataset CITY
Table-3-2-4-1-10-ETF-Weapon 868 EJECTION VELOCITY
eering-Dataset

Table 2: Example Overloaded Token Error Report

MICASA allows the user to generate all-edges test cases for the Type 1 interface tables stored in MS
Access. The input is the interface table information stored in the MS Access database. This function
automatically generates test cases to satisfy the all-edges criterion on the syntax graph, and stores them in
MS Access database tables. The test cases can be formatted as Test Plans using an MS Word template.

MICASA allows the user to generate error test cases for the Type 1 interface tables stored in MS Access.
The input is the interface table information stored in the MS Access database, the test obligation database
generated during static analysis, and the Beizer [1] and Marick [8] heuristics for error cases. An error test
case is generated for each test obligation in the test obligation database. Next, the Beizer and Marick
heuristics are used to generate error cases, as described in Section 2. The user is shown the number of test
cases that have already been generated (under Generate Covering Test Cases function), and the user is given
the option to generate error cases or to return to the previous function. After error test cases are generated,
all duplicate test cases are deleted.

4 Empirical Validation

This section presents empirical results that demonstrate the feasibility, practicality, and e�ectiveness of the
IVT method. Real-world, industry applications were used in a multi-subject experiment to compare the

6



Possible Catenation Error
Wednesday, June 17, 1998

Table Name ID Field Error Type Error Ambiguous Char # Char #
Table doc jecmics 0 Warning Catenation Warning: Possible 422 421

Catenation Error.
Table doc jecmics 0 Warning Catenation Warning: Possible 400 399

Catenation Error.
Table doc jecmics 0 Warning Catenation Warning: Possible 368 367

Catenation Error.
Table doc jecmics 0 Warning Catenation Warning: Possible 263 262

Catenation Error.
Table doc jecmics 0 Warning Catenation Warning: Possible 220 219

Catenation Error.

Table 3: Example Catenation Error Report

IVT method with human subjects. The experimental design is described and the experimental subjects are
presented, then speci�c results are presented.

The experienced testers were de�ned as having at least seven years of software development/information
technology experience and at least three years of testing experience. Neither of the authors participated in
the experiment.

Existing software subsystems (TPS-DIWS and PTW) of the Tomahawk Cruise missile mission planning
system were used. TPS is comprised of roughly 650,000 lines of code running on HP TAC-4s under Unix. TPS
is primarily Ada with some FORTRAN and C. A number of Commercial O�-the-Shelf (COTS) products
have been integrated into TPS, including Informix, Open Dialogue, and Figaro. TPS was developed by
Boeing. DIWS runs under DEC VMS and consists of over 1 million lines of Ada code, with a small amount
of Assembler and FORTRAN. Some code runs in multiple microprocessors. DIWS was developed by General
Dynamics Electronics Division. PTW is hosted on TAC-4 workstations, runs under Unix, and is written in
C. The system is roughly 43,000 lines of code, and was developed by General Dynamics Electronics Division.

4.1 Results and Discussion

Four testers analyzed �ve requirements speci�cations documents (one FBI speci�cation, one commercial
speci�cation, and three Navy speci�cations): all four analyzed documents 1 and 2, and two analyzed docu-
ments 3, 4, and 5. Two testers generated test cases for the PTW software. The results are shown in Table 4.
The speci�cation defects that were found were divided into syntax and semantic defects. Not surprisingly,
the automated tool found far more syntactic defects, and the human testers found more semantic defects.
The defect detection rate refers to the average number of test cases needed to �nd a defect, and the minutes
per fault found is the mean wall clock time (in minutes) needed to detect each fault.

MICASA Testers
Syntax Spec. Defects Found 524 21
Total Spec. Defects Found 524 106
Number of test cases 48 7
Software Faults Found 20 27
Defect Detection Rate 7.4 4.6
Minutes Per Fault Found 8.4 72.2

Table 4: Empirical Results

7



Note that the Testers column includes four testers for the speci�cation analysis, and two for the ex-
ecution. For the software faults, one tester found 21 faults, and the other found 6. Although one tester
found one more fault than MICASA, the cost of using the MICASA tool was much lower. Taking time to
develop and execute the tests as a rough approximation of cost, it cost 8.6 times as much for humans to
detect faults as for the automated tool. Also, MICASA found speci�cation defects and software faults not
found by humans.

An interesting observation has to do with the quality of the speci�cation tables. For part I of the
experiment, it was noted that the senior testers did not �nd a very high percentage of the defects present
in the poorest quality speci�cation tables. When speci�cation tables were of particularly poor quality, the
participants seemed to make very little e�ort to identify defects. Instead they seemed to put their e�ort on
the tables that were of higher quality. This phenomenon also showed up in part II of the experiment.

5 Conclusions

Validation results show that the IVT method, as implemented in the MICASA tool, found more speci�cation
defects than senior testers, generated test cases with higher syntactic coverage than senior testers, generated
test cases that took less time to execute, generated test cases that took less time to identify a defect than
senior testers, and found defects that went undetected by senior testers.

The results indicate that static analysis of requirements speci�cations can detect syntactic defects, and
do it early in the lifecycle. More importantly, these syntactic defects can be used as the basis for generating
test cases that will identify defects once the software application has been developed, much later in the
lifecycle. The requirements speci�cation defects identi�ed by this method were not found by senior testers.
Half of the software defects found by this method were not found by senior testers. And this method took
on average 8.4 minutes to identify a defect as compared to 72.2 minutes for a senior tester. So the method
is e�cient enough to be used in practice, and indeed, MICASA is presently being used on the Tomahawk
cruise missile project. On the other hand, these results do not indicate that we should \�re the testers".
The human testers found several faults that were not found by MICASA. These were mostly related to
semantic problems that the tool could not focus on. It could be said that in addition to saving large amounts
of money, MICASA allows the human testers to focus their energies on the interesting parts of designing
test cases for semantic problems.

These results suggest several conclusions for software developers. To testers, it means that they should
not overlook syntactic-oriented test cases, and that they should consider introducing syntactic static analysis
of speci�cations into their early life cycle activities. To developers, it means that emphasis must be put on
specifying and designing robust interfaces. Developers may also consider introducing syntactic deskchecks
of their interface speci�cations into their software development process. To project managers, it means that
interface speci�cations are a very important target of veri�cation and validation activities. Project managers
must allow testers to begin their tasks early in the life cycle. Managers should also require developers to
provide as much detail as possible in the interface speci�cations, facilitating automated analysis as much
as possible. Similarly, customers should require interface speci�cations to include as much information as
possible, such as expected data values and whether or not a �eld is required or optional.

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, Inc, New York NY, 2nd edition, 1990.
ISBN 0-442-20672-0.

8



[2] A. M. Davis. Software Requirements Analysis and Speci�cation. PTR Prentice Hall, Englewood Cli�s,
NJ, 1990.

[3] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus mutation testing: An experimental comparison
of e�ectiveness. The Journal of Systems and Software, 38(3):235{253, 1997.

[4] John Gough. Syntax Analysis and Software Tools. Addison-Wesley Publishing Company Inc., New
York, New York, 1988.

[5] J. H. Hayes. Input Validation Testing: A System Level, Early Lifecycle Technique. PhD thesis, George
Mason University, Fairfax VA, 1998. Technical report ISSE-TR-98-02, http://www.ise.gmu.edu/techrep.

[6] J. H. Hayes, J. Weatherbee, and L. Zelinski. A tool for performing software interface analysis. In
Proceedings of the First International Conference on Software Quality, Dayton, OH, October 1991.

[7] J. R. Horgan and S. London. ATAC: A data 
ow coverage testing tool for C. In Proceedings of the

Symposium of Quality Software Development Tools, pages 2{10, New Orleans LA, May 1992.

[8] Brian Marick. The Craft of Software Testing: Subsystem Testing, Including Object-Based and Object-

Oriented Testing. Prentice-Hall, Englewood Cli�s, New Jersey, 1995.

[9] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions on Software

Engineering Methodology, 1(1):3{18, January 1992.

[10] N. L. Sizemore. Test techniques for knowledge-based systems. ITEA Journal, 11(2), 1990.

[11] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances in Computers,
volume 26, pages 335{390. Academic Press, Inc, 1987.

9


