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Abstract

The consistent programmer hypothesis postulates that a feature or set of features exist that can be used to recognize the author of a given program.  It further postulates that 
different test strategies work better for some programmers (or programming styles) than for others. For example, all-edges adequate tests may detect faults for programs written by 
Programmer A better than for those written by Programmer B.  This has numerous useful applications:  to help detect plagiarism/copyright violation of source code, to help 
improve the practical application of software testing, to identify the author of a subset of a large project’s code that requires maintenance, and to help pursue specific rogue 
programmers of malicious code and source code viruses.  Previously, a small study was performed and supported this hypothesis.  We present a predictive study that applies 
principal component analysis and factor analysis to further evaluate the hypothesis as well as to classify programs by author.  This analysis resulted in five components explaining 
96% of variance for one dataset, four components explaining 92% variance for a second dataset, and three components explaining 80% variance for a third dataset.  One of the 
components was very similar for all three datasets (understandability), two components were shared by the second and third datasets, and one component was shared by the first 
and second dataset.  We were able to achieve 100% accuracy of classification for one dataset, 93% accuracy for the second dataset, and 61% accuracy for the third dataset.  Closer 
examination of the third dataset indicated that many of the programmers were very inexperienced.  Consequently, two subsets of the programs were examined (the first written by 
programmers possessing a high level of experience and the second adding in less experienced programmers) and classification accuracy of 100% and 89%, respectively, was 
achieved.  This lends support for the consistent programmer hypothesis.

Keywords:  author identification, authorship categorization, authorship analysis, metrics, plagiarism detection, software author tracking, intrusion detection, static analysis, 
predictive study

1. Introduction

Authorship attribution has long been studied in the literary field.  
Researchers have applied numerous techniques to investigate 
high profile cases such as identifying the author of the 
Federalist Papers and determining if Bacon wrote Shakespeare 
works [Holmes and Forsyth, 1995; Holmes, 1985; Williams, 
1975].  In the field of software engineering, we are interested in 
authorship attribution for a number of reasons.  First, a means of 
recognizing the author of a program can help detect copyright 
violation of source code as well as plagiarism.  This is useful in 
the commercial arena as well as in academia.  Second, if some 
test strategies work better for some programmers or 
programming styles than for others, it is helpful in improving 
the practical application of software testing [Hayes and Offutt 
2004].  Third, for large projects, it may help us to identify the 
author of non-commented source code that we are trying to 
maintain.  Finally, it is useful for pursuing specific rogue 
programmers of malicious code and source code viruses and 
deterring would-be hackers.  
   Fred Brooks [Brooks, 1987] noted well that software has 
accidental and essential components.  The essence of software 
are difficulties that are inherent to the nature of software, while 
the accidents of software are difficulties that are part of software 
development but that are not intrinsic to the software or the 
problem at hand.   One of the essences is complexity, and this 
largely derives from the creativity and freedom afforded to 
computer programmers as they craft a solution to a set of needs.  

This essence of software is what causes it to be difficult to 
maintain, difficult to build repeatably, difficult to build reliably, 
etc.  But it is also a primary reason that we are able to build 
software at all, that the human intellect can grasp complexity 
and deal with it.  This creativity, this way in which humans 
approach programming, is bound to leave an authorial 
fingerprint of the programmer, much as a painting is indicative 
of the painter or a written piece is indicative of the author.  We 
refer to this fingerprint as “voice.”  The consistent programmer 
hypothesis postulates that a feature or set of features exist that 
can be used to recognize the author of a given program, i.e., to 
detect “voice.”    

1.1. Competent Programmer Hypothesis

DeMillo et al identified the competent programmer hypothesis
when they observed that programmers have an advantage that is 
rarely exploited:  “they create programs that are close to being 
correct!” [DeMillo et al, 1978].  The competent programmer 
hypothesis is an underlying assumption for many testing 
methods as well as for our work.  

1.2. Predictive study

A hypothesis similar to the competent programmer hypothesis is 
postulated in this paper, that programmers are consistent as well 
as competent.  We refer to this as the consistent programmer 
hypothesis (CPH).  It is believed that this consistency has 
practical applications.  For example, certain test methods (such 
as random testing, category-partition testing, etc.) may be better 
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suited to one programmer than to others.  The goal of this study 
is to evaluate the static features (if any) that can be used to 
recognize the author of a given program.  A correlational study 
seeks to discover relationships between variables, but cannot 
determine “cause.”  There are several types of correlational 
studies.  A predictive study was the appropriate choice for this 
work.  Predictive correlational studies attempt to predict the 
value of a criterion variable from a predictor variable using the 
degree of relationship between the variables.  We are using 
author identity (known) as the criterion variable and a 
discriminator comprised of static features as the predictor 
variable. 
   A study of the CPH was previously undertaken (Analysis of 
Variance (ANOVA) was applied to the data) and indicated 
support for the general hypothesis but not for the testing 
hypothesis [Hayes and Offutt, 2004].  The current predictive 
study further evaluates the consistent programmer hypothesis as 
well as uses the linear discriminant to classify computer 
programs according to author.  Three datasets were examined 
using two techniques in parallel, ANOVA and principal 
component analysis with linear discriminant analysis.    Analysis 
of variance was performed on all datasets.  The features were 
then subjected to PCA.  The reduced components were rotated 
as described in Section 4.5.  We then applied LDA on the 
component metrics obtained from the PCA.  To develop the 
classification criterion, we used a linear method that fits a 
multivariate normal density to each group, with a pooled 
estimate of covariance [The MathWorks, Inc., 2002].

1.3. Paper organization

In Section 2, related work and the consistent programmer 
hypothesis are discussed.  Section 3 describes the research 
hypothesis.  Section 4 defines the design of the predictive study.  
The techniques used, the subject programs evaluated, and the 
measurements taken for these subject programs are presented.  
Section 5 addresses the results of the study.  Finally, Section 6 
discusses future work.

2. Related work

Related work in the area of authorship identification is 
presented.  First, work in the literary field is discussed.  Next, 
software forensics is presented.  The use of software measures 
for prediction and/or classification follows.  Finally, the CPH 
and the unique contributions of the paper are presented.

2.1. Literary authorship attribution

As stated in the introduction, research has been performed, 
dating back to the early 1900s, to determine the authors of 
literary works.  In general, researchers determine features of 
interest in literary works that they hypothesize can be used to 
recognize authors.  Some researchers use style markers such as 
punctuation marks, average word length, average sentence 
length, or non-lexical style markers such as sentence and chunk 
boundaries [Stamatatos et al, 2001].  Other researchers use 
features such as n-grams (e.g., bi-grams (groupings of two 
words), tri-grams (grouping of three words), etc.).  Once the 
features of interest have been determined, researchers apply 

various techniques to determine authorship.  For example, latent 
semantic indexing, principal components analysis, discriminant 
analysis, and support vector machines have all been applied to 
various features of interest with varying degrees of success 
[Holmes, 1985; Williams, 1975].  These techniques have been 
used for such diverse applications as:  determining the gender of 
authors of e-mail [Corney et al, 2002], using e-mail for forensic 
investigation [de Vel et al, 2001], and predominantly for 
determining authorship of free-form text [Soboroff et al, 1997; 
Baayen et al, 2002; Stamatatos et al, 2001].

2.2. Software Forensics

Software forensics refers to the use of measurements from 
software source code or object code for some legal or official 
purpose [Gray et al, 1997].  Our paper discusses the use of 
software measures to profile or recognize authors for purposes 
of assisting with software maintenance, deterring authors of 
malicious code and source code viruses, improving software 
testing, and detecting source code plagiarism.  As stated above, 
plagiarism detection requires author identification (who really 
wrote the code), author discrimination (did the same person 
write both pieces of code), and similarity detection [Gray et al, 
1998].  Gray et al. [1998] and Kilgour et al. [1998] suggest the 
following measures for malicious code analysis: choice of 
programming language, formatting of code (e.g., most 
commonly used indentation style), commenting style (e.g., ratio 
of comment lines to non-comment lines of code), spelling and 
grammar, and data structure and algorithms (e.g., whether 
pointers are used or not).  Sallis et al. [1996] suggest the 
following measures for plagiarism detection:  volume (e.g., 
Halstead’s n, N, and V [Halstead, 1977]), control flow (e.g., 
McCabe’s V(G) [McCabe and Butler, 1989]), nesting depth, and 
data dependency.  
   A web service called JPlag has been used successfully to 
detect plagiarism in Java programs written by students.  JPlag 
finds pairs of similar programs in a given set of programs by 
parsing the programs, converting the program to token strings, 
and then applying the Greedy String Tiling algorithm [Prechelt, 
2001].  A similar approach was taken by Finkel et al [2002] to 
detect overlap in either text files or program files.  Files are 
partitioned into contiguous chunks of tokens, representative 
chunks are retained and digested into short byte strings called 
the signature, the signatures are hashed, and then the proportion 
of shared byte strings is used to determine the closeness of 
relation.
   Oman and Cook examined authorship analysis by focusing on 
style markers such as blocks of comments, character case, etc.  
They used clustering analysis and found that authors who 
consistently used such markers could be identified.  A problem 
with this study is that they examined textbook implementations 
of algorithms, and these could have been improved or modified 
by editors and might not illustrate the original author’s style 
[Oman and Cook, 1989].  Spafford and Weeber [1993] define 
software forensics as examining code remnants to gather 
evidence about the author.  They compare this to handwriting 
analysis.  They suggest a number of features that may provide 
evidence of the author such as data structures and algorithms, 
choice of system calls, errors, comment styles, etc.
   Researchers at the University of Otago have developed a 
system, Integrated Dictionary-based Extraction of Non-
language-dependent Token Information for Forensic 
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Identification, Examination, and Discrimination (IDENTIFIED), 
to extract counts of metrics and user defined meta-metrics to 
support authorship analysis [Gray et al, 1998].  In a later paper 
[MacDonell et al, 1999], these researchers examined the 
usefulness of feed-forward neural networks (FFNN), multiple 
discriminant analysis (MDA), and case-based reasoning (CBR) 
for authorship identification.  The data set included C++ 
programs from seven authors (source code for three authors 
came from programming books, source code for one author was 
from examples provided with a C++ compiler, and three authors 
were experienced commercial programmers).  Twenty-six 
measures were extracted (using IDENTIFIED) including 
proportion of blank lines, proportion of operators with 
whitespace on both sides, proportion of operators with 
whitespace on left side, proportion of operator with whitespace 
on right side, and the number of while statements per non-
comment lines of code.  All three techniques provided 
authorship identification accuracy between 81.1% and 88% on a 
holdout testing set, with CBR outperforming the other models in 
all cases (by 5 – 7%) [MacDonell et al, 1999].
   Kilgour et al. [1998] looked at the usefulness of fuzzy logic 
variables for authorship identification.  The data set was 
comprised of eight C++ programs written by two textbook 
authors.  Two experienced software developers then subjectively 
analyzed the programs, examined measures such as spelling 
errors, whether the comments matched the code, and meaningful 
identifiers.  They then assigned one of the fuzzy values Never, 
Occasionally, Sometimes, Most of the Time, and Always to 
each measure.  The authors concluded that fuzzy-logic linguistic 
variables have promise for improving the accuracy and ease of 
authorship analysis models [Kilgour et al, 1998].
   Collberg and Thomborson [2000] examined methods for 
defending against various security attacks.  They suggested 
using code obfuscation to transform a program into one that is 
more difficult to reverse engineer, while maintaining the 
semantics of the program.  It appears that control and data 
transformations might hold promise for erasing a programmer's 
"style," though not all factors being explored for the CPH would 
be "erased."  Also, the lexical transformation they presented 
[Collberg and Thomborson, 2000] would not serve to remove 
the programmer's signature.

2.3. Classification using software measures

The development of predictive code quality models is a very 
active research area.  This area is of interest to us because 
software measures are used to build predictive models.  The 
main difference is that our model predicts authorship whereas 
the models described here predict code quality.  Nikora and 
Munson applied principal component analysis to 12 correlated 
metrics to extract uncorrelated sources of variation for building 
fault predictors [Nikora and Munson, 2003].  The three new 
components accounted for 85% of the variation in the 12 
metrics, with the largest component, control flow, accounting 
for 40% of the variation.  Their resulting regression model was 
able to account for 60% of the variation in the cumulative fault 
count for a NASA Mission Data System.  Munson and 
Koshgoftaar [1992] used 14 code metrics to discriminate 
between programs with less than five faults and those having 
more than five faults.  They applied discriminant analysis with 
principal components to two applications.  For the second 
application, they found two components of interest, one related 
to size and one related to control flow.  Their model was able to 

classify 75% of the modules of the first application and 62% of 
those of the second application (with a high level of confidence) 
with respective Type II error rates of only 4% and 1%.  
   Briand, Melo, and Wust [2002] were interested in whether a 
design metric-based model built for one object-oriented system 
could be used for other systems.  They built a general, tailorable 
cost-benefit model using a regression-based technique called 
Multivariate Adaptive Regression Splines (MARS).  They also 
applied PCA to a set of metrics and found that six components 
captured 76% of the dataset variance, with class size component 
accounting for 33% of the variance.  They found that the MARS 
system was more complete than a linear logistic regression 
model.  That is, MARS was more accurate for classes containing 
larger numbers of faults.  Briand, Basili, and Hetmanski [1993] 
also predicted fault prone components by applying Optimized 
Set Reduction, classification tree, and two logistic regression 
models to design and code metrics of a 260,000 line of code 
system.  They found the OSR classifications to be the most 
complete and correct (classified components correctly) at 96% 
and 92% respectively.  Another classification work addresses 
software reuse and its potential for success [Rothenberger et al, 
2003].  The researchers surveyed 71 development groups on 
their reuse practices.  Using pca, they developed six dimensions 
(or components), with Planning and Improvement accounting 
for the largest portion of the variance at 24.9%.  They then 
showed that these components cluster into five distinct reuse 
strategies, with different potentials for reuse success.  
   Lanubile and Vissaggio [1995, 1997] took a slightly different 
approach to the predictive quality model problem.  Again they 
were interested in building models to predict high-risk, fault 
prone components.  But they decided to study the various 
modeling techniques available to build such models.  They 
studied pca, discriminant analysis, logistic regression, logical 
classification models, layered neural networks, and holographic 
networks.  They used data from 27 Pascal student projects and 
examined 11 complexity measures such as Halstead’s N2, 
Halstead’s V, McCabe’s v(G), etc. [Halstead 1977; McCabe and 
Butler, 1989].  They found that models built with pca followed 
by either discriminant analysis or logistic regression had the 
highest quality values (completeness of 68% and 74% 
respectively), but required the inspection of a great majority of 
the components (wasted inspection of 55 and 56% respectively).

2.4. The Consistent Programmer Hypothesis

  Hayes and Offutt posited the consistent programmer hypothesis 
[Hayes and Offutt, 2004].  They applied ANOVA to the static 
and dynamic features of two datasets.  The dynamic features 
examined the probability that a given code location might be 
able to “hide” a code defect.  A commercial tool was used to 
collect dynamic features.  The first, small dataset consisted of 
three programs written by five programmers (total of 15 
programs).  Each programmer was given the same specifications 
for the three programs.  ANOVA showed that five static features 
have potential for recognizing the author of a program:  number 
of lint warnings, number of unique constructs, number of unique 
operands, average occurrence of operators, and average 
occurrence of constructs [Hayes and Offutt, 2004].  Three of 
these features indicated statistical significance for both 
individual programmers and the application.  Also, the ANOVA 
showed no evidence of a difference among programmers for two 
simple programs - Mid and Trityp.  For example, the p-value for 
average occurrence of operands was 0.35.  However, there was a 
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statistically significant difference (p-value less than 0.05) 
between the programmers for the more complicated program 
Find.  This makes sense because Find seemed to be the most 
difficult of the three programs for all programmers.  The initial 
belief that only experienced programmers would exhibit style 
can perhaps be broadened to include the writing of complicated 
or non-trivial programs.  That is, experienced programmers 
preparing non-trivial applications are both prerequisites to 
detecting consistency and “voice” in a program.  The second 
dataset consisted of four networking programs written by 15 
graduate students (total of 60 programs).  The features were 
generated using a commercial tool, and hence were not all 
comparable to the features from the first dataset1.  ANOVA 
showed that the static feature number of comments per program 
line has potential for recognizing the author of a program.  
   A discriminator was built by combining the average 
occurrence of operands, the average occurrence of operators, 
and the average occurrence of constructs.  The discriminator 
produced a range of values for each of the programmers, i.e., a 
look-up table.  For a new program written by one of the five 
programmers, static analysis would be performed and the 
discriminator value calculated.  The value for the new program 
should fall in the range for that programmer and for no other 
programmer.  The generated discriminator ranges were not 
overlapping.  However, the results cannot be generalized 
without examining additional programs written by the same 
programmers.  Also, the discriminator needs to be applied to a 
larger dataset.  We refer to this work by Hayes and Offutt as the 
Hayes-Offutt study.  

2.5. Contributions

Our approach differs from those discussed in sections 2.1 – 2.3 
in several ways.  First, we emphasize structural measures instead 
of stylistic measures.  When attempting to mask identity, an 
author can easily modify stylistic items within a program.  
Stylistic measures such as blank lines, indentation, in-line 
comments, use of upper or lower case for variable names, etc. 
are then no longer reliable.  This approach to masking is often 
seen when multiple students have copied from one student’s 
program.  The plagiarizing students re-name all the variables.  
They remove or modify the comments and blank space.  They 
re-order the methods or procedures.  They modify indentation.  
Also, stylistic features may be omitted from source code 
whereas programmers must use structural constructs to write 
functioning code.  Second, our approach does not require large 
quantities of data (such as is needed to train a FFNN).  Third, we 
use measures derived from dynamic analysis of the programs as 
well as measures derived from static analysis [Hayes and Offutt, 
2004].  Fourth, we concentrate on classifying programs by 
author as opposed to classifying components as fault prone or 
not fault prone.  Note that we are addressing a multiple 
classification problem, not a binary one.  Finally, we performed 
a study to validate our research.  For all datasets, we used 
programs developed by multiple authors according to the same 
written program specification.  For one dataset, we used 
professional programmers.  This helped control for confounding 
factors [Hayes and Offutt, 2004].

                                               
1 At the time of the earlier work, no single tool was 
available to meet our needs.

3. Research hypothesis

There are two aspects to this work:  a general hypothesis related 
to the CPH, and an application of distinguishing features to 
assist in authorship attribution.  Each is addressed below.

3.1. Study of Features for Authorship Attribution

   The general hypothesis for this study is that one or more 
features exist for a program that can identify the author of the 
program.  More specifically, the following are hypothesized:

1. The static measure of number of comments per program 
line is correlated with the individual programmer.  The null 
hypothesis is that the mean value of number of comments 
per program line is not effected by programmer.

2. The static measure of average occurrence of operands is 
correlated with the individual programmer.  The null 
hypothesis is that the mean value of average occurrence of 
operands is not effected by programmer.

3. The static measure of average occurrence of operators is 
correlated with the individual programmer.  The null 
hypothesis is that the mean value of average occurrence of 
operators is not effected by programmer.

4. The static measure of number of unique operands is
correlated with the individual programmer.  The null 
hypothesis is that the mean value of number of unique 
operands is not effected by programmer.

5. A certain level of experience with a programming language 
and application domain is required in order for a 
programmer to exhibit voice.

   Number of comments per program line should help distinguish 
programmers as the decision of how much documentation to 
include in-line is a highly personal one.  In our courses at the 
University of Kentucky, we strongly encourage the graduate 
students to thoroughly comment their source code.  However, 
we observe that there is a wide deviation of end results, further 
illustrating the personal nature of this measure.  Average 
occurrence of operands and number of unique operands should 
also be distinguishing features.  Programmers approach a 
problem solution from their own creative perspective.  Some 
programmers will use significantly more operands to solve the 
same problem as another programmer.  This applies to unique 
operands as well as total number of operands (hence impacting 
average occurrence of operands).  Finally, programmers have 
personal preferences on the use of operators also.  One 
programmer’s solution may require very few operators, another 
programmer may use many more.  It is likely that none of these 
features will show much difference between programmers for 
small programs.  But for programs of some size and complexity, 
we expect to see significant differences among programmers.  
Also, it is likely that these features will not show much 
difference between inexperienced programmers (lack experience 
with a programming language or application domain). 
   In this study, we examine the conjecture that programmers are 
unique and that this uniqueness can be observed in the code that 
they develop.  Programmers often have an affinity for certain 
constructs (perhaps preferring the while to the for loop) much as 
writers have preferences for certain words and for certain 
mediums (e.g., iambic pentameter).  This uniqueness gives each 
program a “signature” of the person who wrote it.  Educators 
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teaching young children to write refer to this property as 
“voice.”  The goal of this study is to learn the specific 
characteristics of a program that amplify the programmer’s 
“voice.”  Previously, a small study of the CPH was performed 
[Hayes and Offutt, 2004].  Here, we applied analysis of variance 
on two larger datasets, described in section 4, to further examine 
the general hypothesis.

3.2. Classification of Programs by Author

   After we performed analysis of variance, we performed a 
predictive study to use the distinguishing features to classify 
programs by author.  The study used the dataset from the Hayes-
Offutt study [Hayes and Offutt, 2004] as well as two new, larger 
datasets.  The research question is whether it is possible to group 
or classify programs by their authors using static measures.  A 
positive answer would lend support in favor of the hypothesis 
that voice exists, even for programmers with similar 
background.  A negative answer would lend support against the 
hypothesis that each programmer has a unique style.

4. Study design

The overall study design is graphically depicted in Figure 12.  
The foundational work for this study was the Hayes-Offutt study 
by Hayes and Offutt [2004].  The current work consists of two 
studies, an analysis of variance study and a predictive study.  
For the first study, fifteen graduate students independently wrote 
the same four programs based on the same specifications 
[Calvert, 2003a; Calvert, 2003b] that were then evaluated 
statically.  The programs developed were fletchED, 
delimframing, client, and server; these are described in Section 
4.2.  We refer to this as the “networking dataset” as the 
programs were written as part of a graduate-level networking 
course.  The resulting applications range in size from 53 to 782 
lines of C source code.  A different group of twenty-three 
graduate students independently wrote the same programs based 
on the same specifications [Fei 2004] that were then evaluated 
statically (the programs were subsequently decomposed into 
three programs per author).  The programs developed were 
main, router, and IP; these are described in Section 4.2.  We 
refer to this as the “IP router dataset.”  The resulting applications 
range in size from nine to 312 lines of C source code.  Both the 
IP router dataset and the networking dataset contain programs 
written as part of the networking course CS 571, but offered 
different semesters by different professors.  
   The study consisted of several activities.  First, all programs 
were compiled and tested in an ad hoc fashion to ensure that the 
competent programmer assumption could be made (that the 
programs are close to correct).  Second, the programs were 
statically evaluated using a tool3, and measures such as number 
of unique operands and number of constants per semi-colon 
were collected. 
   For the predictive study, the networking dataset, the IP router 
dataset, as well as the original smaller dataset from [Hayes and 
Offutt, 2004] were used.  The original dataset was developed 
when five programmers wrote the same three C applications that 

                                               
2 The symbols in the figure have no semantic meaning.
3 CMT++ Complexity Measures Tool for C and C++ by Testwell Oy 
(Ltd) of Tampere, Finland [Testwell, 2003].

were then evaluated dynamically and statically.  The 
applications developed were Find, Mid, and Trityp [Hayes and 
Offutt, 2004].  We refer to this as the “original dataset.”   As 
with the networking dataset and IP router dataset, all programs 
were compiled and tested in an ad hoc fashion to ensure that the 
competent programmer assumption could be made (that the 
programs are close to correct).  Directed graphs were manually 
generated for each program.  Test case sets were generated for 
all 15 programs using three separate testing techniques.  
Measures such as number of unique operands, and number of 
constants per semi-colon were collected manually to perform 
static evaluation of the applications.  The programs were 
submitted to lint (a static analyzer that detects poor 
programming practices such as variables that are defined but not 
used).  The test cases were submitted to the Automatic Test 
Analysis for C (ATAC) tool [Horgan and London, 1992] to 
ensure that minimal coverage criteria were met.  Finally, the 
PISCESTM test analysis tool [Voas, 1992] was used to perform 
dynamic evaluation of the programs. 

4.1. Programmers

This work seeks to exploit the differences between individuals.  
For all datasets, all programmers were given the same 
specifications for the programs, and were asked to implement 
the programs in C by a specified date.  Programmers were not 
permitted to communicate with each other.  Programmers were 
not monitored.  No time limitation was set.  No order of 
development of the programs was mandated.  No requirements 
for in-line documentation (comments) were identified.  These 
types of requirements and constraints were not levied because 
we wanted to encourage the programmers to use their own 
characteristic style.
   An attempt was made to use programmers with similar 
experience levels in the study.  All programmers were at least 
first year graduate students, possessing a bachelor’s degree in 
Computer Science or equivalent.  The original dataset used 
professional programmers.  We also wanted to use programmers 
who possessed more experience than an entry-level programmer 
as we believe that novice programmers or programmers new to a 
particular programming language might not exhibit the unique 
style or voice that we hope to detect.  Researchers in the field of 
literary authorship attribution have also found this to be true 
[Baayen et al, 2002].  That is, novice writers do not exhibit a 
unique style or “authorial fingerprint.”  We were also curious if 
students in the same graduate level program taking the same 
course and with similar backgrounds might be hard to 
distinguish.  Literary researchers at the University of Edinburgh 
and the University of Nijmegen examined whether non-
specialist writers with very similar training and background 
could be distinguished using style markers.  They found that 
they could achieve 88.1% classification accuracy using eight 
punctuation marks [Baayen et al, 2002]. 
     Examining the networking dataset, the disparity in the size of 
the solutions was striking.  For example, one programmer 
implemented the program server in 53 lines (counting semi-
colons), while another programmer used 414 lines.  Similarly, 
the amount of in-line documentation varied greatly.  Several 
programmers supplied no comments at all, while one 
programmer provided 1.13 comments per program line.
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Fig. 1.  Overall Study Design.

   
4.2. Programs

For the networking dataset, a total of four programs were 
developed by each graduate student.  Two programs were 
developed as part of a networking assignment on protocol 
layers:  fletchED and delimframing.  The specifications were 
developed by Dr. Ken Calvert of the University of Kentucky for 
a graduate-level Computer Science course [Calvert, 2003a].  The 
fletchED program implements two functions/methods as part of 
an error detection protocol.  One method performs receiver 
processing and one performs sender processing.  For example, 
the sender processing function adds a framing header to a given 
frame.  Both functions perform error detection using the Fletcher 
Checksum protocol, hence the program name [Fletcher, 1982].  
The delimframing program implements a framing protocol for 
stream channels.  Two programs were developed as part of a 
networking assignment on challenge-response protocols and 
how they are used for authentication:  client and server.  The 
client program the client contacts the server and informs it of the 
identity (e.g., user name) to be authenticated.  The server 
responds by sending a random “challenge” string back to the 
client. The client computes the MD5 hash of the bit string 
formed by concatenating the secret (associated with the 
specified user) with the challenge; it sends the result back to the 
server. The server (which also knows the secret associated with 

the given user name) performs the same computation and 
compares its own result to the one received from the client. If 
they are equal, the server concludes that the client does indeed 
know the secret; otherwise the authentication fails [Calvert, 
2003b].
   For the IP router dataset, graduate students were given an 
assignment to build an IP router [Fei 2004], but were given no 
mandate on how to structure their implementation (as opposed 
to the networking dataset).  Hence, some students developed one 
module (main.c) while other students developed three modules 
(main.c, router.c, and ip.c).  To ensure proper comparison of the 
modules, we manually decomposed main.c into the three pieces 
(main.c, router.c, and ip.c) for students who had used only one 
module in their solution.  There is a possibility that our 
decomposition may not have accurately encapsulated all the 
router functionality into router.c and all the ip functionality into 
ip.c.  There is also a possibility that we did not decompose into 
modules the way that the student would have.  However, the 
code that ended up in the decomposed modules was the original 
code written by the student, we merely broke it into pieces.
   For the original dataset, the three programs were Find, Mid, 
and Trityp.  The specifications for these programs were derived 
from the in-line comments in implementations developed by 
Offutt [1992].  Figure 2 presents the specifications exactly as 
they were provided to the programmers.

Program 1 Program 2 Program 3

Author 1

Author 2

Author 3

Author 4

Author 5

Author 1

Author 2

Author 3

Author 4

Author 5

Author 1

Author 2

Author 3

Author 4

Author 5

Original dataset

Hayes-Offutt Study

• Identified 5 factors of 
interest
• Provided support for 
CPH
• Reported in [Hayes, 
Offutt, 2004]

CPH Evaluation
(ANOVA)

• Analysis of variance
• Identifies 3 features of 
interest
• Provides support for 
CPH

Current work

Program Classification 
(PCA & LDA)

• Principal component analysis

• Linear discriminant analysis

• Classification

Dynamic 
and
Static
measures

Static measures

Program 1

Author 1

.

.

.

Author 15

Networking dataset

Program 4

Author 1

.

.

.

Author 15

……..

Program 1

Author 1

.

.

.

Author 23

IP router dataset

Program 3

Author 1

.

.

.

Author 23

……..
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Program 1  ---> Write a subroutine (or function) FIND 
that has three parameters:  An array of elements (A); 
an index into the array (F); and the number of 
elements that should be considered (N).  F is an index 
into array A.  After FIND is executed, all elements to 
the left of A(F) are less than or equal to A(F) and all 
elements to the right of A(F) are greater than or equal 
to A(F).  Only the first N elements of the array are 
considered.
Program 2 ---> Write a subroutine or function MID that 
examines three integers and returns the middle value 
(for example, if 6, 9, and 3 are entered, 6 is returned).
Program 3 ---> Write a subroutine or function TRITYP 
that examines 3 integer values and determines what 
type of triangle (if any) is represented.  Output will be:
TRIANG=1 if triangle is scalene
TRIANG=2 if triangle is isosceles
TRIANG=3 if triangle is equilateral
TRIANG=4 if not a triangle

Fig. 2. Specifications for the Find, Mid, and Trityp.

Questions were received from three of the programmers on the 
Find program, so a subsequent specification clarification was 
sent to all five programmers.  It is shown in Figure 3.  It should 
be noted that the researcher’s response to the questions might 
have biased the programmers in favor of a sorting solution to 
Find.

It does not matter what type of array you use or how 
you get input (from a file, interactively, etc.).  You don’t 
have to sort the array, though that is a possible 
solution.  If N=6, elements a[7] through a[10] are 
ignored.  If you have the following values, a=2 5 1 1 3 
4 4 4 4 4, N=6, F=3, one correct result would be:  a=1 
1 2 5 3 4 because a[F]=1 and all values .LE. 1 are now 
to the left of 1 and all values greater than or equal to 1 
are now to the right of it (even though they are not 
sorted).  a=1 1 2 3 4 5 is also a correct result.

Fig. 3.  Clarification of Program Find.

4.3. Independent Variables

The set of static measures4 investigated in the studies include, 
but are not limited to, the following direct measures:

 number of comments 
 number of program lines
 Halstead’s N1 measure (total number of operators) 

[Halstead, 1977]
 Halstead’s N2 measure (total number of operands) 

[Halstead, 1977]
 Halstead’s n1 measure (number unique operators) 

[Halstead, 1977]

                                               
4 Note that we examine a larger set of direct and indirect 
measures in the second analysis (PCA& LDA), in keeping 
with the number and type of measures analyzed by other 
researchers in our area doing similar work (see related 
work section for examples).

 Halstead’s n2 measure (number unique operands) 
[Halstead, 1977]

From these direct measures, several indirect measures were 
obtained.  Some are listed below:
 average occurrence of operands (total number of program 

operands/number of  unique operands)
 average occurrence of operators (total number of program 

operators/number of  unique operators)
 average number of comments per program line (total 

number of comments/number of program lines)
 Halstead’s Volume [Halstead, 1977]

   Much research has been performed in the area of metrics and 
their usefulness in measuring the complexity of source code.  
Metrics gathered statically have been applied in numerous ways 
ranging from pointing out change-prone and/or complex 
modules for possible redesign [Bieman, Andrews, and Yang, 
2003] to pointing out poorly commented modules [Huffman and 
Burgess, 1988].  Static measures are expected to indicate high 
correlation to the individual programmers. 

4.4. Dependent Variable

We evaluate whether static measures are useful for identifying 
the author of a program.  

4.5. Data Analysis Techniques

We used two techniques in parallel, ANOVA and PCA with 
LDA.  These are described below.  The metrics tool was used to 
extract values for the measures directly from the source code of 
each program.  Descriptive statistics for each of the static 
measures for each program of the networking dataset are shown 
in Table 1 (see Appendix A).  The program name is given in the 
first column.  Each measure in the table represents a research 
hypothesis (such as average occurrence of operands) or is used 
to calculate a measure for a hypothesis (such as number of 
program lines), as indicated in the second column of the table.    
Mean, standard error, median, mode, standard deviation, sample 
variance, kurtosis, skewness, range, and minimum and 
maximum are also provided.
   Descriptive statistics for each of the static measures for each 
program of the original dataset are shown in Table 2 (see 
Appendix B).  The columns are the same as in Table 1.  
   Analysis of variance (ANOVA) was used for this study.  The 
assumption of normality of errors was met (as could be seen 
visually by the residuals plot).  The two-way ANOVA examined 
programmer and program for each measure.  The null hypothesis 
for each feature is that the mean value of the feature is not 
effected by programmer.  The null hypothesis is rejected when 
the probability that the differences in the features are attributable 
to chance is small (p-value was 0.05 or less).  That is to say, if 
the null hypothesis is rejected for feature N, feature N helps 
uniquely identify the author of a program.  The alternative 
hypothesis is that the mean value of the feature is effected by 
programmer.   
   Though a power of .8 or higher was desired (based on Simon’s 
suggestions for alpha or Type I error of 0.05 and beta or Type II 
error of 0.2 [Simon, 1999]), we were constrained by the number 
of programmers who were available and the number of 
programs that had been assigned (particularly for the two 
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graduate student datasets) [Power, 1999].  There is some support 
in the literature for studies of power of 0.4 or higher, though, 
particularly that involve “psychology” or social sciences 
[Granaas, 1999].  In fact, Granaas [1999] pointed out that the 
power level for published studies in psychology is around .4 
(meaning a Type II error of 0.6).  It could be argued that our 
current work is examining issues related to the psychology of 
programming.  Therefore, our power levels may be sufficient.  
With alpha = 0.05, the power of the original dataset work was 
0.5766 (Type II error of 0.42), the power of the networking 
dataset work was 0.6266 (Type II error of 0.37), and the power 
of the IP router dataset work was 0.4305 (Type II error of 0.57).
   As multi-collinearity is a known challenge when working 
with strongly correlated dataset variables, we chose to apply the 
principal component analysis technique for the second study.  
PCA helps to reduce the dimensions of the metric space and 
obtain a smaller number of orthogonal component metrics 
[Dillon and Goldstein, 1984].  The eigenvalue, or loading, 
indicates the amount of variability accounted for in the original 
metrics.  The decision of how many components to extract is 
based on the cumulative proportion of eigenvalues of the 
principal components [Hanebutte et al, 2003].  We used the 
scree plot to determine the planes to retain (i.e, we kept planes 
with associated eigenvalues before the bend or break in the scree 
plot).  We then applied factor analysis to these results using the 
varimax rotation.  Basically, we examined the variables with 
high loadings to “label” the dimension being captured by the 
PC.  Some dimensions were easier to explain than others.  We 
then applied linear discriminant analysis (LDA) on the 
component metrics obtained from the PCA.   Discriminant 
analysis develops a discriminant function to place each 
observation into one of a set of mutually exclusive classes, 
where prior knowledge of the classes exists [Dillon and 
Goldstein, 1984].  To develop the classification criterion, we 
used a linear method that fits a multivariate normal density to 
each group, with a pooled estimate of covariance [The 
MathWorks, Inc., 2002].  
   
4.6. Predictive model evaluation

To measure the accuracy of our predictive model, we carried out 
leave-one-out cross-validation.  We used linear discriminant 
prediction of the authorship of a held-out program on the basis 
of a training set of programs with known authorship.  For the 
networking dataset, we trained with three programs, and used 
the fourth program for prediction.  For the original dataset, we 
trained on two of the three programs, and used the third program 
for prediction.  We used jackknifing and repeated this process 
for all combinations of programs (e.g., trained with program 1 
and 2, then trained with program 2 and 3, then trained with 
program 1 and 3).  The discriminability of an author is the 
proportion of correctly attributed texts.  The overall 
discrimination score is the average of the individual author 
discriminability scores [Baayen et al, 2002].  We refer to this as 
classification accuracy.

5. Analysis of Data

The studies had some limitations and constraints that must be 
kept in mind when examining the results.  Threats to validity are 
discussed in Section 5.1.  For the analysis of variance study, data 
was analyzed to look for an effect based on programmer (or 

author), addressed in Section 5.2.  The predictive study is 
addressed in Section 5.3.  The overall hypothesis results are 
discussed in Section 5.4.

5.1. Threats to validity

The results from this study are subject to a number of 
limitations.  In particular, internal and external validity are of 
concern.  A study can be said to be internally valid if it shows a 
causal relationship between the independent and dependent 
variables.  A number of influences can impact internal validity.  
For example, in the original dataset, we may have influenced the 
programmers’ solution to the Find program when we answered 
their questions on the specification.  However, this could have 
only served to prompt the programmers to use a similar solution, 
resulting in similar programs.  So any bias would have been in 
favor of the null hypothesis.  In order to minimize selection 
threats to internal validity, we assigned each programmer the 
same programs (for all datasets).  Also, we did not mandate the 
order in which the programs were developed.  Another threat to 
internal validity is that of programmers biasing each other.  
Specifically, on the original dataset, two of the programmers 
work in the same location and may have discussed the programs, 
causing their solutions to be similar (though no correlation was 
found between the programs of these two authors).  Similarly, it 
is possible that the graduate students may have discussed the 
networking programs.  We asked each programmer to work in 
isolation to minimize this threat [Hayes and Offutt, 2004] and 
graduate students were warned not to work together.
   Experimental mortality threats to internal validity were not 
applicable, as all programmers completed the assigned programs 
[Hayes and Offutt, 2004].  Design contamination threats to 
internal validity were not applicable, as there was not a separate 
control and experimental group [Hayes and Offutt, 2004].  There 
is a possibility of an instrumentation threat to internal validity 
(see section 4.4) due to switching to a commercial tool for the 
networking dataset.
   External validity is possessed by a study if the causal 
relationship can be generalized to other groups, environments, 
etc.  There were several threats to external validity in our study.  
First, a small number of programmers were used in the original 
dataset (five).  Each programmer wrote a small number of 
programs (three in the original dataset, four in the networking 
dataset, three in the IP router dataset).  The networking and IP 
router datasets had more data points.  Declining results as 
datasets get larger may indicate that these techniques can only 
distinguish among small numbers of programmers.  Also, the 
original dataset programs were very small and were not very 
complicated to write.  It is not certain that the results seen here 
would be observed for larger, more complex applications, 
though the networking and IP router datasets did allow us to 
examine programs that were larger and more complex than the 
original dataset.  Also, two of the three datasets were from the 
networking application domain.  Additional datasets from 
different application domains (such as medical applications, 
avionic software applications, etc.) should be evaluated to 
ensure that the results observed can be generalized across 
multiple application domains.  Also, there is a potential bias 
since all the original dataset programmers are from the 
Washington metropolitan area and most of them (four of the 
five) work for   defense contractors.  Also,   all    the    graduate 
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     Table 3
     Distinguishing Features By Programmer – Original Dataset

Programmer:
Features

Distinguishing? SS DF MS F p

number of program lines No 3973.06 4 993.26 2.46 0.11
number of unique operators per program 
line

Yes 0.21 4 0.05 6.43 0.007

number of unique operands per program 
line

No 0.14 4 0.05 3.46 0.07

average occurrence of operators No 29.41 4 9.80 2.97 0.10
average occurrence of operands No 0.14 4 0.05 0.18 0.90
number of comments per program line Yes 0.23 4 0.08 10.44 0.00

students were living in Lexington, Kentucky and attending 
classes together.
       Conclusion validity is possessed by an experiment if there 
are no issues “affecting the ability to draw the correct conclusion 
about relations between the treatment and the outcome of an 
experiment. [Wohlin et al., 2000]”  Due to the small number of 
observations, the power of the statistical test may increase the 
risk that an erroneous conclusion is drawn (highest power of the 
three pieces of work was 0.6266).  If one considers that 
published psychology studies, also using small samples, have a 
power of 0.4 [Grannas, 1999], our power level does not seem 
out of line.  Also, if one views each dataset as a separate 
investigation, the significance level increases, meaning that we 
may discover significant results due to chance.  
   Construct validity is possessed by an experiment if the 
constructs used have a theoretical basis and are also measurable.  
A common concern here is that of having constructs measure the 
same thing.  This is often seen in multicollinearity.  To account 
for this possibility, we have used PCA and LDA in addition to 
ANOVA.

5.2. Analysis of variance study

Features (such as number of comments and average occurrence 
of operators) were deemed to be distinguishing features if the 
ANOVA for that feature showed statistical significance for 
programmer (that is, the p-value was 0.05 or less).  The features 
that were found to be distinguishing in the original dataset are 
listed in Table 3.  Note that the program size, number of 
program lines, was not found to possess distinguishing ability.    
The same was true for average occurrence of operands and 
operators.  The number of unique operators per program line 
was found to have distinguishing ability though, and number of 
unique operands per program line was very close with an a p-
value of 0.07 (we chose 0.05 as our cutoff).  The number of 
comments per program line was also found to possess 
distinguishing ability.  The results shown previously [Hayes and 
Offutt, 2004] were somewhat different.  Recall that the previous 
study was based on static measures that were collected manually 
for the original dataset and with a tool for the networking 
dataset.  In this study, we used the same tool to collect static 
measures for all three datasets.  This greatly decreased the effort 
required as well as opportunity for errors.  The abbreviations 
used in the table are Sum of Squares (SS), degrees of freedom 
(DF), mean squares (MS), F-value (F), and p-value (p).

Figure 4 shows a scatter plot of the number of comments per 
program line for the programmers for the original dataset1.  The 
left most column is the first program, the middle column is the 
second program, and the right most column represents the third 
program.  
   The features that were found to be distinguishing in the 
networking dataset are listed in Table 4. The program size, 
number of program lines, was not found to possess 
distinguishing ability.    The same was true for number of unique 
operators per program line, number of unique operands per 
program line, average occurrence of operators, and average 
occurrence of operands.  The only feature that was found to be 
distinguishing for both datasets was number of comments per 
program line.  It is worth noting that when just the client and 
server programs were analyzed, number of unique operands and 
average occurrence of operands possessed distinguishing ability.  
   Figure 5 shows a scatter plot of the number of comments per 
program line for the programmers of the networking dataset.  
The left most column is the first program (client), the second 
column is the second program (server), the third column is the 
third program (delimframing), and the right most column 
represents the fourth program (fletchED).  Figure 6 shows a 
scatter plot of the number of comments per program line for the 
programmers of the IP router dataset.  The left most column is 
the first program (ip), the second column is the second program 
(main), and the third column is the third program (router).
   Based on Tables 3 and 4, it appears that two measures vary 
with the author of a program, with a third measurement having 
borderline correlation (p value of 0.07):  

1) number of comments per program line
2) number of unique operators, and
3) number of unique operands (borderline).

The results of principal component analysis and linear 
discriminant analysis are discussed next.  

5.3. Predictive Study

   In this section, we present the principal component analysis 
work as well as classification by programmer.

                                               
1 This was selected as an example of a distinguishing 
feature.



Table 4
Distinguishing Features By Programmer – Networking Dataset

Programmer:
Features

Distinguishing?SS DF MS F p

number of program lines No 136106.4 14 9721.88 1.03 0.44
number of unique operators per 
program line

No 0.07 14 0.005 1.06 0.40

number of unique operands per 
program line

No 0.61 14 0.04 0.61 0.83

average occurrence of operators No 1131.51 14 80.82 0.85 0.6
average occurrence of operands No 278.85 14 19.91 0.67 0.78
number of comments per program 
line

Yes 0.75 14 0.05 2.63 0.006

5.3.1 Principal Component Analysis

We discuss the results of principal component analysis for the 
original dataset followed by the networking dataset and IP router 
dataset.  The eigenvalues of the correlation matrix of the original 
dataset are shown in Table 5.  
   The table shows that only three components are needed to 
explain at least 86% of the overall variance.  The principal factor 
method with prior communality estimates of one followed by a 
varimax-rotation is selected to establish the factor model for 
interpretation [Hanebutte et al, 2003].  This adjustment gives 

weight to the highly correlated variables within each factor and 
lesser weight to any remaining variables [Hanebutte et al, 2003; 
Johnson, 1998].  That is, each variable will be highly correlated 
to exactly one factor and not to others.
   We expected that the factors/components would be explained 
by metrics that were related to each other. For example, we 
expected to see metrics having to do with control flow, such as 
cyclomatic complexity, maximum cyclomatic complexity, etc. 
have high correlation in the same component or factor.  Indeed, 
that was the case.  Table 6 shows the correlation between each 
component and the original features. 
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Fig. 5.  Number of Comments per Program Line – Networking Dataset.

  The first component shown in Table 6 unites lines of program 
code, Halstead’s N (length), Halstead’s N1, Halstead’s N2 (N1 
and N2 are summed to give N), Halstead’s n (vocabulary), n2, V 
(Halstead’s volume), B (Halstead’s estimated number of bugs), 
E (Halstead’s effort), T (Halstead’s time), average occurrence of 
operators, and H (Halstead’s predicted length) as shown by the 
relatively high values of these items in the table (in the [-0.7; 
+0.7] range).  The longer the source code is, the higher the count 
of each of these metrics.  So this can be seen as a size or length 
component.  The second component includes number of 
comments, comments per physical lines of code, comments per 
program lines of code, number of unique operands per physical 
lines of code, and number of unique operators per physical lines 
of code.  The first three features are clearly related to comments.  
The latter two items can be seen to tie to understandability also.   
   The number of unique operators and operands drive the 
number of mental “lookups” a programmer must make when 
maintaining code.  This component appears to tie to 
understandability.  The third component includes only the 

difference between estimated and actual length (H – N).  We 
label this component “error of predicted length.”  The fourth 
component contains D (Halstead’s difficulty) and L (Halstead’s 
program level).  L is the relationship between Program Volume
and Potential Volume. Only the most clear algorithm can have a 
level of unity.  D is 1/L.  A program grows more difficult as its 
level decreases.  These both deal with difficulty.  The final 
component includes McCabe’s cyclomatic complexity, and 
maximum cyclomatic complexity.  These both deal with control 
flow.  The components for the Original dataset are hence 
identified as follows:

 Component 1 – size/length
 Component 2 – understandability
 Component 3 – error of predicted length
 Component 4 – difficulty
 Component 5 – control flow
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Table 5
Principal component analysis  – eigenvalues of the correlation matrix of the Original Dataset

Eigenvalue % of Variance Cumulative %
Component 1 15.615 55.768 55.768
Component 2 5.246 18.734 74.502
Component 3 3.240 11.570 86.072
Component 4 1.789 6.388 92.460
Component 5 1.040 3.714 96.174

   

The eigenvalues of the correlation matrix of the networking 
dataset are shown in Table 7.  
   The table shows that only three components are needed to 
explain at least 83% of the overall variance.  As done above, the 
principal factor method with prior communality estimates of one 
followed by a varimax-rotation is selected to establish the factor 
model for interpretation [Hanebutte et al, 2003].   Table 8 shows 
the correlation between each component and the original 
features.  
   The first component shown in Table 8 unites number of 
unique operators per lines of program code, lines of program 
code, V (Halstead’s volume), N1, N2, n1, n2, and cyclomatic 
complexity as shown by the relatively high values of these items 

in the table (in the [-0.7; +0.7] range).  At first glance, these do 
not seem to be related.  The first seven features all deal with 
number of operators or operands related to program lines of 
code.  The latter feature, V(g), does not seem to fit in.  But 
further examination shows that a large percentage of the 
operators are conditional operators.  Similarly, many of the 
operands are used in these conditional statements.  As V(g) 
measures control flow, it then follows that V(g) would unite 
with operators and operands in this instance.  Similarly, as size 
grows (more program lines), counts of each of these metrics 
increase.  So this component can be seen to consider size and 
complexity.  The second component unites total number of 
operators and total number of operands (N1, N2) as a ratio to the 
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number of unique operators and operands, as well as these same 
features divided by program lines.  This appears to capture a
degree of variance dealing with the number of mental 
recollections a programmer must make when maintaining a 
program.  We refer to this as maintenance effort.  The third 
component includes only unique operands per program line.  
This does not appear to capture an intuitive source of variance.  
The final component captures comments per program line.  As 
with the original dataset, we believe this component ties to 

understandability.  The components for the Networking dataset 
are hence identified as follows:

Component 1 – size/complexity
Component 2 – maintenance effort
Component 3 – unknown
Component 4 – understandability

Table 6
Rotated components of original dataset – five components selected

.318 .229 .179 .186 .864

.096 -.309 .231 -.045 .886

.687 .682 .152 .058 -.031

.806 .488 .236 .021 .111

.488 .638 .043 .109 -.319

.462 .856 -.040 .074 -.093

.966 .168 .117 .122 .096

.947 .180 .167 .114 .147

.973 .154 .065 .128 .042

.952 .170 -.169 .161 .072

.694 .010 -.163 .675 .075

.961 .206 -.159 -.003 .066

.974 .166 .068 .106 .078

.934 .106 .120 .304 .060

.647 -.061 .195 .719 .053

.950 .111 .104 .224 .023

-.548 -.009 -.227 -.757 -.123

.950 .111 .104 .224 .023

.318 -.138 .695 .577 .058

.822 .231 .387 -.213 .220

.959 .168 -.167 .127 .063

.032 .000 .957 .039 .227

.162 .923 -.143 -.034 -.024

.101 .954 -.189 -.008 -.059

.111 -.847 -.500 -.037 -.056

.078 -.630 -.684 .011 -.227

-.311 -.762 -.295 .431 -.107

-.396 -.628 -.351 .491 -.219

V(G)

Max v(G)

LOCphy

LOCpro

LOCbl

LOCcom
N

N1

N2

n

n1

n2

V

B

D

E

L
T

Avg occ. 
opds

Avg occ. 
ops

H
H-N
Comm/
locphy

n2/locphy

n2/locpro

n1/locphy

n1/locpro

1 2 3 4 5

Component

Comm/
locpro



The eigenvalues of the correlation matrix of the IP router dataset 
are shown in Table 9.  
      The table shows that only three components are needed to 
explain at least 79% of the overall variance.  As done above, the 
principal factor method with prior communality estimates of one 
followed by a varimax-rotation is selected to establish the factor 
model for interpretation [Hanebutte et al, 2003].   Table 10 
shows the correlation between each component and the original 
features.  
  The first component shown in Table 10 unites average 
occurrence of operands, average occurrence of operators, 
number of unique operators  (n1) per physical line, and number 
of unique operators (n1) per program line as shown by the 
relatively high values of these items in the table (in the [-0.7; 
+0.7] range).  Just as with Component 2 of the networking 
dataset, this appears to capture a degree of variance dealing with 
the number of mental recollections a programmer must make 

when maintaining a program.  We refer to this as maintenance 
effort.  The second component captures comments per program 
line and comments per physical line.  As with the original 
dataset and the networking dataset, we believe this component 
ties to understandability.  The third component includes only 
unique operands (n2) per program line.  This does not appear to 
capture an intuitive source of variance.  However, it is identical 
to the “unknown” Component 3 of the networking dataset.  It 
appears that number of unique operands per program line is 
capturing a recurring source of variance.  The components are 
hence identified as follows:

Component 1 – maintenance effort
Component 2 – understandability
Component 3 – unknown

Table 7
Principal component analysis  – eigenvalues of the correlation matrix of the Networking Dataset

Eigenvalue % of Variance Cumulative %
Component 1 7.417 46.357 46.357
Component 2 3.993 24.955 71.312
Component 3 1.948 12.175 83.487
Component 4 1.466 9.162 92.649

Table 8
Rotated components of networking dataset – four components selected

-.892 -.021 .208 .133

-.358 -.043 .887 .104

.962 -.058 -.026 .047

.585 .007 -.007 .775

.949 .047 .225 .087

.635 -.033 .695 -.009

.768 .632 .039 .053

.739 .661 .059 .069

.815 -.104 .056 .081

.719 -.051 .668 .029

.532 .827 -.043 -.002

-.003 .877 -.452 -.021

-.128 .017 .090 .968

.881 .122 -.097 .084

-.145 .980 .058 -.005

-.165 .975 .068 .024

n1/prog line

n2/prog line

LOCpro

LOCcom

V

B(x100)

N1

N2

n1

n2

N1/n1

N2/n2

com/prog line

V(g)

N1/prog line

N2/prog line

1 2 3 4

Component



Table 9
Principal component analysis  – eigenvalues of the correlation matrix of the IP router Dataset

Eigenvalue % of Variance Cumulative %
Component 1 2.826 35.322 35.322
Component 2 1.997 24.966 60.289
Component 3 1.559 19.491 79.78

   Comparing the components for the datasets, we see that two of 
the three have a size component.  In the case of the original 
dataset, the size component also captures length.  In the case of 
the networking dataset, that component also captures control 
flow.  But for the original dataset, control flow has its own 
component.  All three datasets also have a component for 
understandability, mainly based on comment features.  The 
networking dataset and the IP router dataset both have a 
maintenance effort component.  Also, the “unknown” 
component for the IP router dataset and the networking dataset 
are the same.  Two of the five components of the original dataset 
are found in the other datasets.  All four of the components of 
the networking dataset are found in the other datasets.  And all 
three of the components of the IP router dataset are found in the 
other datasets.  

5.3.2 Classification by Programmer

Next, we performed linear discriminant analysis using as input 
the component metrics obtained from the principal component 
analysis for each dataset.  A leave one out cross validation 

procedure [Stone 1974] was used to measure model 
performance.   The idea of cross validation is based on using a 
training subset of the data that is disjunct from the sample or 
testing subset of the dataset.  In the case of the original dataset, 
we trained with two programs and tested on the third program.  
For the networking dataset, we trained with three programs and 
tested with a fourth program.  Percentages of correct 
classification are shown in Table 11.
   The classification rate of 60.8% for the IP router dataset was 
lower than anticipated, so we investigated further.  As stated 
earlier, the original dataset is comprised of programs written by 
professional programmers.  A profile of these programmers is 
shown in Table 12.
   Recall that earlier we hypothesized that programmers may 
require a certain level of experience in order to exhibit voice.  
Our results above seem to lend support to this notion.  We next 
examined the experience level of the programmers of the 
networking dataset and the IP router dataset, as shown in Table 
13 and 14, respectively.

Table 10
Rotated components of IP router dataset – three components selected

Rotated Component Matrix

.737 -.069 .271

.914 .027 .163

.073 .950 -.086

.014 .982 .149

.226 -.099 .605

-.069 .173 .901

-.868 -.180 .067

-.777 .036 .573

Average occurrence of
operands

Average occurrence of
operators

Number of comments
per physical line

Number of comments
per program line

Number of unique
operands per physical
line

Number of unique
operands per
program line

Number of unique
operators per physical
line

Number of unique
operators per
program line

1 2 3

Component



Table 11
Percentages of correct classifications (cross validation)

Dataset % correct classification
Original dataset 100%

Networking dataset 93.33%
IP router dataset 60.8%

Table 12
Profile of original dataset programmers

Programmer Employer Highest Degree Work 
Experience

1 IT Company 1 M.S. in 
SWE in 2 months

Programmer, 
Analyst

2 IT Company 2 M.S. in CS Programmer, 
Analyst

3 IT Company 2 M.S. in CS Analyst, 
Programmer

4 IT Company 3 M.S. in CS Programmer, 
Analyst

5 University Ph.D. CS Asst. Professor, 
Programmer

  
To see whether or not we could correctly classify experienced C 
and networking programmers, we selected a subset of the 
programmers of the IP router dataset for analysis.  The criteria 
we used for selecting the first subset of programmers was that 
they must be very experienced in C and have strong work 
experience OR they must possess strong networking experience.  
Based on this, we selected Programmers 2, 3, 6, 13 and 20 (2, 3, 
and 20 for C and work experience, ands 6 and 13 for networking 
experience).  We refer to this as the (C^Work)vNetworks subset.  

Next, we eased our criteria and added any students who had 
taken an undergraduate course in networking, regardless of their 
C or work experience.  This second subset included the first 
subset plus Programmers 10, 11, 16, and 21.  We refer to this as
the (C^Work)v (Networks)v(undergradcourse) subset.  The 
results are shown below in Table 15.  This appears to lend 
support for the notion of a certain level of experience being 
required before a programmer exhibits voice.
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Table 13
Profile of networking dataset programmers

5.4. Hypothesis results

The general hypothesis for this experiment is that one or more 
characteristics exist for a program that can recognize the author 
of the program.  This is important to help pursue specific rogue 
programmers of malicious code and source code viruses, to 
identify the author of non-commented source code that we are 
trying to maintain, and to help detect plagiarism and copyright 
violation of source code.  Evidence has been presented in 
Section 5.2 to support the notion that characteristics exist to 
identify the author of a program.  Some of the specific 
hypotheses were supported and some were not.  The results are 
listed below:

1. Evidence was found to reject the null hypothesis that the 
static measure of number of comments per program line
does not vary by individual programmer.

2. The null hypothesis that the static measure of average 
occurrence of operands does not vary by individual 
programmer could not be rejected.

3. The hypothesis that the static measure of average 
occurrence of operators is correlated with the individual 
programmer was not supported, however there was 
evidence that number of unique operators does vary by 
individual programmer.

Programmer Commenced Graduate 
Work

Prior C experience Prior networking 
programming 
experience

Work 
Experience

1 Fall 2001 Used C occasionally None Programmer for one 
year, using C++

2 Spring 2001 Programmer for two 
years

3 Fall 2002 No prior experience in C 
or C-like language

Minimal prior experience Some DB work 
experience with minimal 
networking work 
experience

4 Fall 2002 3 – 4 years experience None System 
administrator/programm
er for 3 – 4 years

5 Fall 2002 ~10 months experience 
with C

~10 months networking 
programming 
experience in C

~10 months networking 
programming 
experience in C

6 Fall 2002 Used C in some 
undergrad courses

Minimal prior experience None

7 Fall 2002 ~4 years experience 
with C

Undergraduate project 
in networking 
programming

Taught programming 
languages

8 Fall 2002 Used C occasionally None None
9 Fall 2002 8 years of C experience Minimal networking 

programming 
experience

None

10 Fall 2002 Very little programming 
experience

Did one networking 
exercise in VC++ in 
undergrad work

None

11 N/A, was undergraduate Used C in UK courses Took networking 400 
level course

Coop at Lexmark using 
C, some networking 
assignments

12 Fall 2002 Had C in undergrad 
courses

Built a small networking 
program previously

None

13 Fall 2002 Some C and C++ 
experience

Some networking 
programming 
experience

4 years as a 
programmer/system 
analyst

14 Fall 2002 Little programming 
experience in C from 
undergrad

Undergrad network 
management project

None

15 Fall 2002 Minimal C experience 
(from high school)

Networking experience 
was from undergrad 
class

None
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4. There was borderline evidence (p-value was just above 
0.05) to support the notion that the static measure of 
number of unique operands is correlated with the individual 
programmer.

5. There was evidence that a certain level of experience with 
the programming language and/or application domain is 
required for voice to be exhibited.

Table 14
Profile of IP router dataset programmers

Table 15
Percentages of correct classifications using “experienced” programmers

Dataset % correct classification
Original dataset (5 programmers) 100%

IP router dataset -(C^Work)vNetworks
subset (5 programmers)

100%

IP router dataset -
(C^Work)v(Networks)v(undergradcourse)

subset (9 programmers)

88.88%

Programmer Commenced Graduate 
Work

Prior C experience Prior networking 
programming 
experience

Work 
Experience

1 NO INFORMATION AVAILABLE
2 Fall 2003 6 years experience Very little, only from self 

instruction
Programmer for two 
years, 8 months

3 Fall 2003 4 – 5 years None Programmer for 6 – 7 
years

4 NO INFORMATION AVAILABLE
5 Fall 2003 3 years None None
6 Fall 2003 2 years At least 6 months 

experience
None

7 Spring 2004 2 undergrad courses Some in undergrad 1 year
8 Spring 2004 Used C occasionally in 

undergrad
Very little None

9 Fall 2003 2 – 3 years A little in undergrad None
10 Fall 2003 2 years Took networking 400 

level course
None

11 Fall 2003 Used C in some 
undergrad courses

Took networking 400 
level course

None

12 Fall 2003 3 years Very little None
13 Spring 2004 6 years (includes high 

school)
2 years (includes final 
undergraduate project)

None

14 Fall 2003 Programming 
experience in C from 
undergrad

A little in undergrad 
courses

None

15 NO INFORMATION AVAILABLE
16 N/A, was undergraduate 2 undergrad classes Took networking 400 

level course
None

17 Fall 2003 4+ years Some Java client work 
in undergrad

1+ year as a 
programmer

18 NO INFORMATION AVAILABLE
19 NO INFORMATION AVAILABLE
20 Fall 2002 4 years Took networking 400 

level course
4 years as a 
programmer

21 Fall 2003 3 years Did undergrad project 
on networks

3 months as a 
programmer

22 NO INFORMATION AVAILABLE
23 NO INFORMATION AVAILABLE
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The principal component analysis for the datasets provided one 
component of variance that was consistent (understandability).  
Two components were consistent for the networking and IP 
router datasets (maintenance effort and the unknown component 
(unique operands per program line).  One component was shared 
by the original and networking datasets (size from the 
size/length and size/complexity components, respectively).   
These components were then used to classify the programmers 
of the datasets.  The dataset of professional programmers was 
classified with an accuracy of 100%.  The networking dataset 
had accuracy of 93%.  The IP router dataset had accuracy of 
61%.  Further examination showed that for many of the 
programmers, we were examining their first C programs and/or 
their first networking programs.  When we examined just the 
programs of the experienced programmers, we achieved 100% 
classification accuracy.  When we added in programmers who 
had taken an undergraduate course in networking, our 
classification accuracy dropped to 89%.  This lends support to 
our belief that a programmer must possess a certain level of 
experience with a particular language and/or application domain 
in order to exhibit voice.
   In conclusion, we found evidence that programmers exhibit 
voice.  This was shown in two ways in both datasets:  strong 
correlation between two features and programmer as well as 
weaker correlation with a third feature; and accurate 
classification of programs written by experienced programmers 
using cross-validation.  Further work is required though, 
particularly with a larger sample.  Our first planned use of these 
findings is to work with one of our industrial partners 
performing large-scale maintenance of outsourced products.  We 
plan to help them implement an approach for determining the 
authors of modules that do not so indicate.

6. Future work

The results are encouraging.  We cannot draw broad conclusions 
from the analysis of variance study and predictive study, though, 
due to the limitations noted in Section 5.1.  There are a number 
of new questions that arose from this work.  First, can we 
identify an author if he/she has modified someone else’s code?  
There have been recent cases where virus writers copy an 
existing virus and make changes to it.  There are certainly many 
cases where students copy wholesale sections of code from other 
students.  How much code must be written by an individual for 
their “voice” to be evident?  If an individual wrote 80% of the 
code, can we identify them?  Also, it is not clear how this 
technique might be used to evaluate group software projects 
where several students have developed an application.  It may be 
possible to approach this problem by focusing on modules as 
that is typically the level at which work is shared by 
programmers.  We also want to investigate how early a 
programmer develops voice.
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APPENDIX A

Table 1
Descriptive Statistics of Static Measures Collected for Networking Dataset

Program Research
Hypothesis

Measure Mean Std 
Error

Median Mode Std 
Dev.

Sample 
Variance

Kurtosis Skewness Range Min Max

delimframing For R1, 
R2, R3

Number of 
program 
lines

242.45 18.63 209.50 208 87.38 7635.21 1.27 1.29 332.00 136.00 468.00

delimframing For R3 Number of 
operators 

612.05 53.00 542.50 490 248.58 61791.57 2.25 1.40 1015.00 323.00 1338.00

delimframing For R2 Number of 
operands

532.14 46.07 479.00 N/A 216.11 46701.46 1.67 1.29 859.00 273.00 1132.00

delimframing R4 Number of 
unique 
operands

68.05 3.27 66.00 58 15.35 235.47 2.18 1.27 66.00 46.00 112.00

delimframing R2 Average 
occurrence 
of 
operands

7.84 0.64 7.06 N/A 2.98 8.89 5.63 2.31 12.71 4.71 17.42

delimframing R3 Average 
occurrence 
of 
operators

21.18 1.65 19.53 N/A 7.76 60.25 1.03 1.20 28.59 10.77 39.35

delimframing R1 Number of 
comments 
per 
program 
line

0.29 0.06 0.19 N/A 0.26 0.07 4.31 1.93 1.10 0.03 1.13

fletchED For R1, 
R2, R3

Number 
program 
lines

118.55 6.73 113.00 130 31.58 997.12 -0.76 0.43 109.00 70.00 179.00

fletchED For R3 Number 
operators 

295.36 15.42 289.00 339 72.34 5232.43 -1.06 0.35 245.00 191.00 436.00

fletchED For R2 Number 
operands

270.41 14.31 266.50 N/A 67.13 4505.87 -0.82 0.49 215.00 184.00 399.00

fletchED R4 Number 
unique 
operands

42.23 1.12 44.00 44 5.25 27.52 -0.09 -0.13 22.00 31.00 53.00

fletchED R2 Average 
occurrence 
operands

6.35 0.22 6.18 N/A 1.05 1.09 -1.12 0.37 3.28 4.95 8.23

fletchED R3 Average 
occurrence 
operators

11.66 0.57 11.70 N/A 2.68 7.19 -0.46 0.56 9.47 7.93 17.39

fletchED R1 Number of 
comments/ 
program 
line

0.25 0.05 0.17 0 0.25 0.06 3.52 1.77 1.04 0.00 1.04

client For R1, 
R2, R3

Number 
program 
lines

180.54 22.88 187.00 N/A 82.49 6804.77 -0.62 -0.01 269.00 59.00 328.00

client For R3 Number 
operators 

486.00 56.28 523.00 N/A 202.91 41171.83 -1.33 -0.32 570.00 182.00 752.00

client For R2 Number 
operands

446.38 50.31 473.00 N/A 181.38 32899.92 -1.30 -0.42 496.00 162.00 658.00

client R4 Number 
unique
operands

119.46 10.68 109.00 N/A 38.51 1482.94 -1.20 0.22 113.00 66.00 179.00

client R2 Average 
occurrence 
operands

3.66 0.25 3.77 N/A 0.89 0.80 -0.75 -0.01 3.02 2.13 5.15
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client R3 Average 
occurrence 
operators

17.54 1.36 20.12 N/A 4.92 24.17 -0.25 -0.78 16.26 8.27 24.54

client R1 Number 
comments/
program 
line

45.77 9.33 33.00 N/A 33.65 1132.53 -0.08 0.96 106.00 5.00 111.00

server For R1, 
R2, R3

Number 
program 
lines

249.46 31.27 247.00 234.00 112.74 12711.10 -0.38 -0.45 361.00 53.00 414.00

server For R3 Number 
operators 

648.92 75.79 656.00 N/A 273.25 74667.74 -0.10 -0.77 831.00 149.00 980.00

server For R2 Number 
operands

582.15 69.68 585.00 N/A 251.24 63119.14 -0.27 -0.66 774.00 132.00 906.00

server R4 Number 
unique 
operands

151.08 14.66 154.00 168.00 52.84 2792.24 0.59 -0.02 193.00 63.00 256.00

server R2 Average 
occurrence 
operands

3.71 0.28 3.94 N/A 1.01 1.02 1.41 0.40 3.90 2.10 6.00

server R3 Average 
occurrence 
operators

20.86 1.89 22.71 N/A 6.82 46.49 -0.35 -0.71 21.36 8.33 29.70

server R1 Number of 
comments/
program 
line

52.92 9.39 42.00 42.00 33.85 1145.58 2.13 1.43 124.00 13.00 137.00
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APPENDIX B

Table 2
Descriptive Statistics of Static Measures Collected for Original Dataset

Program Research
Hypothesis

Measure Mean Std 
Error

Median Mode Std 
Dev.

Sample 
Variance

Kurtosis Skewness Range Min Max

find For R1, R2, 
R3

Number of 
program lines

71.80 13.10 81.00 N/A 29.30 858.70 -0.93 -0.02 75.00 35.00 110.00

find For R3 Number of unique 
operators per 
program line

0.32 0.05 0.28 N/A 0.12 0.01 -0.89 0.58 0.29 0.19 0.49

find For R2, R4 Number of unique 
operands per 
program line

0.65 0.07 0.74 N/A 0.17 0.03 -2.87 -0.60 0.36 0.44 0.80

find R2 Average 
occurrence of 
operands

4.04 0.17 4.19 N/A 0.38 0.15 0.18 -0.89 0.98 3.46 4.44

find R3 Average 
occurrence of 
operators

8.98 0.96 7.62 N/A 2.14 4.56 -1.71 0.87 4.71 7.29 12.00

find R1 Number of 
comments per 
program line

0.18 0.06 0.22 N/A 0.13 0.02 -1.89 -0.58 0.31 0.00 0.31

mid For R1, R2, 
R3

Number of 
program lines

39.00 6.98 35.00 N/A 15.60 243.50 1.36 1.27 39.00 25.00 64.00

mid For R3 Number of unique 
operators per 
program line

0.40 0.08 0.34 N/A 0.18 0.03 4.33 2.02 0.45 0.27 0.72

mid For R2, R4 Number of unique 
operands per 
program line

0.61 0.08 0.57 N/A 0.18 0.03 -2.37 0.40 0.40 0.44 0.84

mid R2 Average 
occurrence of 
operands

3.45 0.21 3.52 N/A 0.47 0.22 -0.48 0.08 1.21 2.86 4.07

mid R3 Average 
occurrence of 
operators

6.19 0.70 5.80 N/A 1.57 2.47 1.89 0.88 4.31 4.33 8.65

mid R1 Number of 
comments per 
program line

0.17 0.06 0.23 N/A 0.13 0.02 -2.20 -0.69 0.29 0.00 0.29

trityp For R1, R2, 
R3

Number of 
program lines

50.80 6.45 49.00 N/A 14.41 207.70 -2.65 0.22 32.00 36.00 68.00

trityp For R3 Number of unique 
operators per 
program line

0.39 0.07 0.37 N/A 0.15 0.02 2.32 1.45 0.38 0.25 0.64

trityp For R2, R4 Number of unique 
operands per 
program line

0.59 0.04 0.57 N/A 0.10 0.01 -1.13 -0.29 0.23 0.46 0.69

trityp R2 Average 
occurrence of 
operands

3.74 0.28 3.69 N/A 0.63 0.39 -1.89 0.36 1.45 3.12 4.57

trityp R3 Average 
occurrence of 
operators

7.03 0.72 7.00 N/A 1.61 2.59 0.26 0.53 4.25 5.13 9.38

trityp R1 Number of 
comments per 
program line

0.17 0.10 0.03 0.00 0.22 0.05 -3.03 0.65 0.45 0.00 0.45
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