
 Tel. +01-859-2573171. E-mail address: hayes@cs.uky.edu

Authorship Attribution: A Principal Component and Linear Discriminant Analysis of the
Consistent Programmer Hypothesis

Jane Huffman Hayes*

Computer Science Department, Laboratory for Advanced Networking, University of Kentucky

Abstract

The consistent programmer hypothesis postulates that a feature or set of features exist that can be used to recognize the author of a given program. It further postulates that
different test strategies work better for some programmers (or programming styles) than for others. For example, all-edges adequate tests may detect faults for programs written by
Programmer A better than for those written by Programmer B. This has numerous useful applications: to help detect plagiarism/copyright violation of source code, to help
improve the practical application of software testing, to identify the author of a subset of a large project’s code that requires maintenance, and to help pursue specific rogue
programmers of malicious code and source code viruses. Previously, a small study was performed and supported this hypothesis. We present a predictive study that applies
principal component analysis and factor analysis to further evaluate the hypothesis as well as to classify programs by author. This analysis resulted in five components explaining
96% of variance for one dataset, four components explaining 92% variance for a second dataset, and three components explaining 80% variance for a third dataset. One of the
components was very similar for all three datasets (understandability), two components were shared by the second and third datasets, and one component was shared by the first
and second dataset. We were able to achieve 100% accuracy of classification for one dataset, 93% accuracy for the second dataset, and 61% accuracy for the third dataset. Closer
examination of the third dataset indicated that many of the programmers were very inexperienced. Consequently, two subsets of the programs were examined (the first written by
programmers possessing a high level of experience and the second adding in less experienced programmers) and classification accuracy of 100% and 89%, respectively, was
achieved. This lends support for the consistent programmer hypothesis.

Keywords: author identification, authorship categorization, authorship analysis, metrics, plagiarism detection, software author tracking, intrusion detection, static analysis,
predictive study

1. Introduction

Authorship attribution has long been studied in the literary field.
Researchers have applied numerous techniques to investigate
high profile cases such as identifying the author of the
Federalist Papers and determining if Bacon wrote Shakespeare
works [Holmes and Forsyth, 1995; Holmes, 1985; Williams,
1975]. In the field of software engineering, we are interested in
authorship attribution for a number of reasons. First, a means of
recognizing the author of a program can help detect copyright
violation of source code as well as plagiarism. This is useful in
the commercial arena as well as in academia. Second, if some
test strategies work better for some programmers or
programming styles than for others, it is helpful in improving
the practical application of software testing [Hayes and Offutt
2004]. Third, for large projects, it may help us to identify the
author of non-commented source code that we are trying to
maintain. Finally, it is useful for pursuing specific rogue
programmers of malicious code and source code viruses and
deterring would-be hackers.
 Fred Brooks [Brooks, 1987] noted well that software has
accidental and essential components. The essence of software
are difficulties that are inherent to the nature of software, while
the accidents of software are difficulties that are part of software
development but that are not intrinsic to the software or the
problem at hand. One of the essences is complexity, and this
largely derives from the creativity and freedom afforded to
computer programmers as they craft a solution to a set of needs.

This essence of software is what causes it to be difficult to
maintain, difficult to build repeatably, difficult to build reliably,
etc. But it is also a primary reason that we are able to build
software at all, that the human intellect can grasp complexity
and deal with it. This creativity, this way in which humans
approach programming, is bound to leave an authorial
fingerprint of the programmer, much as a painting is indicative
of the painter or a written piece is indicative of the author. We
refer to this fingerprint as “voice.” The consistent programmer
hypothesis postulates that a feature or set of features exist that
can be used to recognize the author of a given program, i.e., to
detect “voice.”

1.1. Competent Programmer Hypothesis

DeMillo et al identified the competent programmer hypothesis
when they observed that programmers have an advantage that is
rarely exploited: “they create programs that are close to being
correct!” [DeMillo et al, 1978]. The competent programmer
hypothesis is an underlying assumption for many testing
methods as well as for our work.

1.2. Predictive study

A hypothesis similar to the competent programmer hypothesis is
postulated in this paper, that programmers are consistent as well
as competent. We refer to this as the consistent programmer
hypothesis (CPH). It is believed that this consistency has
practical applications. For example, certain test methods (such
as random testing, category-partition testing, etc.) may be better

2

suited to one programmer than to others. The goal of this study
is to evaluate the static features (if any) that can be used to
recognize the author of a given program. A correlational study
seeks to discover relationships between variables, but cannot
determine “cause.” There are several types of correlational
studies. A predictive study was the appropriate choice for this
work. Predictive correlational studies attempt to predict the
value of a criterion variable from a predictor variable using the
degree of relationship between the variables. We are using
author identity (known) as the criterion variable and a
discriminator comprised of static features as the predictor
variable.
 A study of the CPH was previously undertaken (Analysis of
Variance (ANOVA) was applied to the data) and indicated
support for the general hypothesis but not for the testing
hypothesis [Hayes and Offutt, 2004]. The current predictive
study further evaluates the consistent programmer hypothesis as
well as uses the linear discriminant to classify computer
programs according to author. Three datasets were examined
using two techniques in parallel, ANOVA and principal
component analysis with linear discriminant analysis. Analysis
of variance was performed on all datasets. The features were
then subjected to PCA. The reduced components were rotated
as described in Section 4.5. We then applied LDA on the
component metrics obtained from the PCA. To develop the
classification criterion, we used a linear method that fits a
multivariate normal density to each group, with a pooled
estimate of covariance [The MathWorks, Inc., 2002].

1.3. Paper organization

In Section 2, related work and the consistent programmer
hypothesis are discussed. Section 3 describes the research
hypothesis. Section 4 defines the design of the predictive study.
The techniques used, the subject programs evaluated, and the
measurements taken for these subject programs are presented.
Section 5 addresses the results of the study. Finally, Section 6
discusses future work.

2. Related work

Related work in the area of authorship identification is
presented. First, work in the literary field is discussed. Next,
software forensics is presented. The use of software measures
for prediction and/or classification follows. Finally, the CPH
and the unique contributions of the paper are presented.

2.1. Literary authorship attribution

As stated in the introduction, research has been performed,
dating back to the early 1900s, to determine the authors of
literary works. In general, researchers determine features of
interest in literary works that they hypothesize can be used to
recognize authors. Some researchers use style markers such as
punctuation marks, average word length, average sentence
length, or non-lexical style markers such as sentence and chunk
boundaries [Stamatatos et al, 2001]. Other researchers use
features such as n-grams (e.g., bi-grams (groupings of two
words), tri-grams (grouping of three words), etc.). Once the
features of interest have been determined, researchers apply

various techniques to determine authorship. For example, latent
semantic indexing, principal components analysis, discriminant
analysis, and support vector machines have all been applied to
various features of interest with varying degrees of success
[Holmes, 1985; Williams, 1975]. These techniques have been
used for such diverse applications as: determining the gender of
authors of e-mail [Corney et al, 2002], using e-mail for forensic
investigation [de Vel et al, 2001], and predominantly for
determining authorship of free-form text [Soboroff et al, 1997;
Baayen et al, 2002; Stamatatos et al, 2001].

2.2. Software Forensics

Software forensics refers to the use of measurements from
software source code or object code for some legal or official
purpose [Gray et al, 1997]. Our paper discusses the use of
software measures to profile or recognize authors for purposes
of assisting with software maintenance, deterring authors of
malicious code and source code viruses, improving software
testing, and detecting source code plagiarism. As stated above,
plagiarism detection requires author identification (who really
wrote the code), author discrimination (did the same person
write both pieces of code), and similarity detection [Gray et al,
1998]. Gray et al. [1998] and Kilgour et al. [1998] suggest the
following measures for malicious code analysis: choice of
programming language, formatting of code (e.g., most
commonly used indentation style), commenting style (e.g., ratio
of comment lines to non-comment lines of code), spelling and
grammar, and data structure and algorithms (e.g., whether
pointers are used or not). Sallis et al. [1996] suggest the
following measures for plagiarism detection: volume (e.g.,
Halstead’s n, N, and V [Halstead, 1977]), control flow (e.g.,
McCabe’s V(G) [McCabe and Butler, 1989]), nesting depth, and
data dependency.
 A web service called JPlag has been used successfully to
detect plagiarism in Java programs written by students. JPlag
finds pairs of similar programs in a given set of programs by
parsing the programs, converting the program to token strings,
and then applying the Greedy String Tiling algorithm [Prechelt,
2001]. A similar approach was taken by Finkel et al [2002] to
detect overlap in either text files or program files. Files are
partitioned into contiguous chunks of tokens, representative
chunks are retained and digested into short byte strings called
the signature, the signatures are hashed, and then the proportion
of shared byte strings is used to determine the closeness of
relation.
 Oman and Cook examined authorship analysis by focusing on
style markers such as blocks of comments, character case, etc.
They used clustering analysis and found that authors who
consistently used such markers could be identified. A problem
with this study is that they examined textbook implementations
of algorithms, and these could have been improved or modified
by editors and might not illustrate the original author’s style
[Oman and Cook, 1989]. Spafford and Weeber [1993] define
software forensics as examining code remnants to gather
evidence about the author. They compare this to handwriting
analysis. They suggest a number of features that may provide
evidence of the author such as data structures and algorithms,
choice of system calls, errors, comment styles, etc.
 Researchers at the University of Otago have developed a
system, Integrated Dictionary-based Extraction of Non-
language-dependent Token Information for Forensic

3

Identification, Examination, and Discrimination (IDENTIFIED),
to extract counts of metrics and user defined meta-metrics to
support authorship analysis [Gray et al, 1998]. In a later paper
[MacDonell et al, 1999], these researchers examined the
usefulness of feed-forward neural networks (FFNN), multiple
discriminant analysis (MDA), and case-based reasoning (CBR)
for authorship identification. The data set included C++
programs from seven authors (source code for three authors
came from programming books, source code for one author was
from examples provided with a C++ compiler, and three authors
were experienced commercial programmers). Twenty-six
measures were extracted (using IDENTIFIED) including
proportion of blank lines, proportion of operators with
whitespace on both sides, proportion of operators with
whitespace on left side, proportion of operator with whitespace
on right side, and the number of while statements per non-
comment lines of code. All three techniques provided
authorship identification accuracy between 81.1% and 88% on a
holdout testing set, with CBR outperforming the other models in
all cases (by 5 – 7%) [MacDonell et al, 1999].
 Kilgour et al. [1998] looked at the usefulness of fuzzy logic
variables for authorship identification. The data set was
comprised of eight C++ programs written by two textbook
authors. Two experienced software developers then subjectively
analyzed the programs, examined measures such as spelling
errors, whether the comments matched the code, and meaningful
identifiers. They then assigned one of the fuzzy values Never,
Occasionally, Sometimes, Most of the Time, and Always to
each measure. The authors concluded that fuzzy-logic linguistic
variables have promise for improving the accuracy and ease of
authorship analysis models [Kilgour et al, 1998].
 Collberg and Thomborson [2000] examined methods for
defending against various security attacks. They suggested
using code obfuscation to transform a program into one that is
more difficult to reverse engineer, while maintaining the
semantics of the program. It appears that control and data
transformations might hold promise for erasing a programmer's
"style," though not all factors being explored for the CPH would
be "erased." Also, the lexical transformation they presented
[Collberg and Thomborson, 2000] would not serve to remove
the programmer's signature.

2.3. Classification using software measures

The development of predictive code quality models is a very
active research area. This area is of interest to us because
software measures are used to build predictive models. The
main difference is that our model predicts authorship whereas
the models described here predict code quality. Nikora and
Munson applied principal component analysis to 12 correlated
metrics to extract uncorrelated sources of variation for building
fault predictors [Nikora and Munson, 2003]. The three new
components accounted for 85% of the variation in the 12
metrics, with the largest component, control flow, accounting
for 40% of the variation. Their resulting regression model was
able to account for 60% of the variation in the cumulative fault
count for a NASA Mission Data System. Munson and
Koshgoftaar [1992] used 14 code metrics to discriminate
between programs with less than five faults and those having
more than five faults. They applied discriminant analysis with
principal components to two applications. For the second
application, they found two components of interest, one related
to size and one related to control flow. Their model was able to

classify 75% of the modules of the first application and 62% of
those of the second application (with a high level of confidence)
with respective Type II error rates of only 4% and 1%.
 Briand, Melo, and Wust [2002] were interested in whether a
design metric-based model built for one object-oriented system
could be used for other systems. They built a general, tailorable
cost-benefit model using a regression-based technique called
Multivariate Adaptive Regression Splines (MARS). They also
applied PCA to a set of metrics and found that six components
captured 76% of the dataset variance, with class size component
accounting for 33% of the variance. They found that the MARS
system was more complete than a linear logistic regression
model. That is, MARS was more accurate for classes containing
larger numbers of faults. Briand, Basili, and Hetmanski [1993]
also predicted fault prone components by applying Optimized
Set Reduction, classification tree, and two logistic regression
models to design and code metrics of a 260,000 line of code
system. They found the OSR classifications to be the most
complete and correct (classified components correctly) at 96%
and 92% respectively. Another classification work addresses
software reuse and its potential for success [Rothenberger et al,
2003]. The researchers surveyed 71 development groups on
their reuse practices. Using pca, they developed six dimensions
(or components), with Planning and Improvement accounting
for the largest portion of the variance at 24.9%. They then
showed that these components cluster into five distinct reuse
strategies, with different potentials for reuse success.
 Lanubile and Vissaggio [1995, 1997] took a slightly different
approach to the predictive quality model problem. Again they
were interested in building models to predict high-risk, fault
prone components. But they decided to study the various
modeling techniques available to build such models. They
studied pca, discriminant analysis, logistic regression, logical
classification models, layered neural networks, and holographic
networks. They used data from 27 Pascal student projects and
examined 11 complexity measures such as Halstead’s N2,
Halstead’s V, McCabe’s v(G), etc. [Halstead 1977; McCabe and
Butler, 1989]. They found that models built with pca followed
by either discriminant analysis or logistic regression had the
highest quality values (completeness of 68% and 74%
respectively), but required the inspection of a great majority of
the components (wasted inspection of 55 and 56% respectively).

2.4. The Consistent Programmer Hypothesis

 Hayes and Offutt posited the consistent programmer hypothesis
[Hayes and Offutt, 2004]. They applied ANOVA to the static
and dynamic features of two datasets. The dynamic features
examined the probability that a given code location might be
able to “hide” a code defect. A commercial tool was used to
collect dynamic features. The first, small dataset consisted of
three programs written by five programmers (total of 15
programs). Each programmer was given the same specifications
for the three programs. ANOVA showed that five static features
have potential for recognizing the author of a program: number
of lint warnings, number of unique constructs, number of unique
operands, average occurrence of operators, and average
occurrence of constructs [Hayes and Offutt, 2004]. Three of
these features indicated statistical significance for both
individual programmers and the application. Also, the ANOVA
showed no evidence of a difference among programmers for two
simple programs - Mid and Trityp. For example, the p-value for
average occurrence of operands was 0.35. However, there was a

4

statistically significant difference (p-value less than 0.05)
between the programmers for the more complicated program
Find. This makes sense because Find seemed to be the most
difficult of the three programs for all programmers. The initial
belief that only experienced programmers would exhibit style
can perhaps be broadened to include the writing of complicated
or non-trivial programs. That is, experienced programmers
preparing non-trivial applications are both prerequisites to
detecting consistency and “voice” in a program. The second
dataset consisted of four networking programs written by 15
graduate students (total of 60 programs). The features were
generated using a commercial tool, and hence were not all
comparable to the features from the first dataset1. ANOVA
showed that the static feature number of comments per program
line has potential for recognizing the author of a program.
 A discriminator was built by combining the average
occurrence of operands, the average occurrence of operators,
and the average occurrence of constructs. The discriminator
produced a range of values for each of the programmers, i.e., a
look-up table. For a new program written by one of the five
programmers, static analysis would be performed and the
discriminator value calculated. The value for the new program
should fall in the range for that programmer and for no other
programmer. The generated discriminator ranges were not
overlapping. However, the results cannot be generalized
without examining additional programs written by the same
programmers. Also, the discriminator needs to be applied to a
larger dataset. We refer to this work by Hayes and Offutt as the
Hayes-Offutt study.

2.5. Contributions

Our approach differs from those discussed in sections 2.1 – 2.3
in several ways. First, we emphasize structural measures instead
of stylistic measures. When attempting to mask identity, an
author can easily modify stylistic items within a program.
Stylistic measures such as blank lines, indentation, in-line
comments, use of upper or lower case for variable names, etc.
are then no longer reliable. This approach to masking is often
seen when multiple students have copied from one student’s
program. The plagiarizing students re-name all the variables.
They remove or modify the comments and blank space. They
re-order the methods or procedures. They modify indentation.
Also, stylistic features may be omitted from source code
whereas programmers must use structural constructs to write
functioning code. Second, our approach does not require large
quantities of data (such as is needed to train a FFNN). Third, we
use measures derived from dynamic analysis of the programs as
well as measures derived from static analysis [Hayes and Offutt,
2004]. Fourth, we concentrate on classifying programs by
author as opposed to classifying components as fault prone or
not fault prone. Note that we are addressing a multiple
classification problem, not a binary one. Finally, we performed
a study to validate our research. For all datasets, we used
programs developed by multiple authors according to the same
written program specification. For one dataset, we used
professional programmers. This helped control for confounding
factors [Hayes and Offutt, 2004].

1 At the time of the earlier work, no single tool was
available to meet our needs.

3. Research hypothesis

There are two aspects to this work: a general hypothesis related
to the CPH, and an application of distinguishing features to
assist in authorship attribution. Each is addressed below.

3.1. Study of Features for Authorship Attribution

 The general hypothesis for this study is that one or more
features exist for a program that can identify the author of the
program. More specifically, the following are hypothesized:

1. The static measure of number of comments per program
line is correlated with the individual programmer. The null
hypothesis is that the mean value of number of comments
per program line is not effected by programmer.

2. The static measure of average occurrence of operands is
correlated with the individual programmer. The null
hypothesis is that the mean value of average occurrence of
operands is not effected by programmer.

3. The static measure of average occurrence of operators is
correlated with the individual programmer. The null
hypothesis is that the mean value of average occurrence of
operators is not effected by programmer.

4. The static measure of number of unique operands is
correlated with the individual programmer. The null
hypothesis is that the mean value of number of unique
operands is not effected by programmer.

5. A certain level of experience with a programming language
and application domain is required in order for a
programmer to exhibit voice.

 Number of comments per program line should help distinguish
programmers as the decision of how much documentation to
include in-line is a highly personal one. In our courses at the
University of Kentucky, we strongly encourage the graduate
students to thoroughly comment their source code. However,
we observe that there is a wide deviation of end results, further
illustrating the personal nature of this measure. Average
occurrence of operands and number of unique operands should
also be distinguishing features. Programmers approach a
problem solution from their own creative perspective. Some
programmers will use significantly more operands to solve the
same problem as another programmer. This applies to unique
operands as well as total number of operands (hence impacting
average occurrence of operands). Finally, programmers have
personal preferences on the use of operators also. One
programmer’s solution may require very few operators, another
programmer may use many more. It is likely that none of these
features will show much difference between programmers for
small programs. But for programs of some size and complexity,
we expect to see significant differences among programmers.
Also, it is likely that these features will not show much
difference between inexperienced programmers (lack experience
with a programming language or application domain).
 In this study, we examine the conjecture that programmers are
unique and that this uniqueness can be observed in the code that
they develop. Programmers often have an affinity for certain
constructs (perhaps preferring the while to the for loop) much as
writers have preferences for certain words and for certain
mediums (e.g., iambic pentameter). This uniqueness gives each
program a “signature” of the person who wrote it. Educators

5

teaching young children to write refer to this property as
“voice.” The goal of this study is to learn the specific
characteristics of a program that amplify the programmer’s
“voice.” Previously, a small study of the CPH was performed
[Hayes and Offutt, 2004]. Here, we applied analysis of variance
on two larger datasets, described in section 4, to further examine
the general hypothesis.

3.2. Classification of Programs by Author

 After we performed analysis of variance, we performed a
predictive study to use the distinguishing features to classify
programs by author. The study used the dataset from the Hayes-
Offutt study [Hayes and Offutt, 2004] as well as two new, larger
datasets. The research question is whether it is possible to group
or classify programs by their authors using static measures. A
positive answer would lend support in favor of the hypothesis
that voice exists, even for programmers with similar
background. A negative answer would lend support against the
hypothesis that each programmer has a unique style.

4. Study design

The overall study design is graphically depicted in Figure 12.
The foundational work for this study was the Hayes-Offutt study
by Hayes and Offutt [2004]. The current work consists of two
studies, an analysis of variance study and a predictive study.
For the first study, fifteen graduate students independently wrote
the same four programs based on the same specifications
[Calvert, 2003a; Calvert, 2003b] that were then evaluated
statically. The programs developed were fletchED,
delimframing, client, and server; these are described in Section
4.2. We refer to this as the “networking dataset” as the
programs were written as part of a graduate-level networking
course. The resulting applications range in size from 53 to 782
lines of C source code. A different group of twenty-three
graduate students independently wrote the same programs based
on the same specifications [Fei 2004] that were then evaluated
statically (the programs were subsequently decomposed into
three programs per author). The programs developed were
main, router, and IP; these are described in Section 4.2. We
refer to this as the “IP router dataset.” The resulting applications
range in size from nine to 312 lines of C source code. Both the
IP router dataset and the networking dataset contain programs
written as part of the networking course CS 571, but offered
different semesters by different professors.
 The study consisted of several activities. First, all programs
were compiled and tested in an ad hoc fashion to ensure that the
competent programmer assumption could be made (that the
programs are close to correct). Second, the programs were
statically evaluated using a tool3, and measures such as number
of unique operands and number of constants per semi-colon
were collected.
 For the predictive study, the networking dataset, the IP router
dataset, as well as the original smaller dataset from [Hayes and
Offutt, 2004] were used. The original dataset was developed
when five programmers wrote the same three C applications that

2 The symbols in the figure have no semantic meaning.
3 CMT++ Complexity Measures Tool for C and C++ by Testwell Oy
(Ltd) of Tampere, Finland [Testwell, 2003].

were then evaluated dynamically and statically. The
applications developed were Find, Mid, and Trityp [Hayes and
Offutt, 2004]. We refer to this as the “original dataset.” As
with the networking dataset and IP router dataset, all programs
were compiled and tested in an ad hoc fashion to ensure that the
competent programmer assumption could be made (that the
programs are close to correct). Directed graphs were manually
generated for each program. Test case sets were generated for
all 15 programs using three separate testing techniques.
Measures such as number of unique operands, and number of
constants per semi-colon were collected manually to perform
static evaluation of the applications. The programs were
submitted to lint (a static analyzer that detects poor
programming practices such as variables that are defined but not
used). The test cases were submitted to the Automatic Test
Analysis for C (ATAC) tool [Horgan and London, 1992] to
ensure that minimal coverage criteria were met. Finally, the
PISCESTM test analysis tool [Voas, 1992] was used to perform
dynamic evaluation of the programs.

4.1. Programmers

This work seeks to exploit the differences between individuals.
For all datasets, all programmers were given the same
specifications for the programs, and were asked to implement
the programs in C by a specified date. Programmers were not
permitted to communicate with each other. Programmers were
not monitored. No time limitation was set. No order of
development of the programs was mandated. No requirements
for in-line documentation (comments) were identified. These
types of requirements and constraints were not levied because
we wanted to encourage the programmers to use their own
characteristic style.
 An attempt was made to use programmers with similar
experience levels in the study. All programmers were at least
first year graduate students, possessing a bachelor’s degree in
Computer Science or equivalent. The original dataset used
professional programmers. We also wanted to use programmers
who possessed more experience than an entry-level programmer
as we believe that novice programmers or programmers new to a
particular programming language might not exhibit the unique
style or voice that we hope to detect. Researchers in the field of
literary authorship attribution have also found this to be true
[Baayen et al, 2002]. That is, novice writers do not exhibit a
unique style or “authorial fingerprint.” We were also curious if
students in the same graduate level program taking the same
course and with similar backgrounds might be hard to
distinguish. Literary researchers at the University of Edinburgh
and the University of Nijmegen examined whether non-
specialist writers with very similar training and background
could be distinguished using style markers. They found that
they could achieve 88.1% classification accuracy using eight
punctuation marks [Baayen et al, 2002].
 Examining the networking dataset, the disparity in the size of
the solutions was striking. For example, one programmer
implemented the program server in 53 lines (counting semi-
colons), while another programmer used 414 lines. Similarly,
the amount of in-line documentation varied greatly. Several
programmers supplied no comments at all, while one
programmer provided 1.13 comments per program line.

6

Fig. 1. Overall Study Design.

4.2. Programs

For the networking dataset, a total of four programs were
developed by each graduate student. Two programs were
developed as part of a networking assignment on protocol
layers: fletchED and delimframing. The specifications were
developed by Dr. Ken Calvert of the University of Kentucky for
a graduate-level Computer Science course [Calvert, 2003a]. The
fletchED program implements two functions/methods as part of
an error detection protocol. One method performs receiver
processing and one performs sender processing. For example,
the sender processing function adds a framing header to a given
frame. Both functions perform error detection using the Fletcher
Checksum protocol, hence the program name [Fletcher, 1982].
The delimframing program implements a framing protocol for
stream channels. Two programs were developed as part of a
networking assignment on challenge-response protocols and
how they are used for authentication: client and server. The
client program the client contacts the server and informs it of the
identity (e.g., user name) to be authenticated. The server
responds by sending a random “challenge” string back to the
client. The client computes the MD5 hash of the bit string
formed by concatenating the secret (associated with the
specified user) with the challenge; it sends the result back to the
server. The server (which also knows the secret associated with

the given user name) performs the same computation and
compares its own result to the one received from the client. If
they are equal, the server concludes that the client does indeed
know the secret; otherwise the authentication fails [Calvert,
2003b].
 For the IP router dataset, graduate students were given an
assignment to build an IP router [Fei 2004], but were given no
mandate on how to structure their implementation (as opposed
to the networking dataset). Hence, some students developed one
module (main.c) while other students developed three modules
(main.c, router.c, and ip.c). To ensure proper comparison of the
modules, we manually decomposed main.c into the three pieces
(main.c, router.c, and ip.c) for students who had used only one
module in their solution. There is a possibility that our
decomposition may not have accurately encapsulated all the
router functionality into router.c and all the ip functionality into
ip.c. There is also a possibility that we did not decompose into
modules the way that the student would have. However, the
code that ended up in the decomposed modules was the original
code written by the student, we merely broke it into pieces.
 For the original dataset, the three programs were Find, Mid,
and Trityp. The specifications for these programs were derived
from the in-line comments in implementations developed by
Offutt [1992]. Figure 2 presents the specifications exactly as
they were provided to the programmers.

Program 1 Program 2 Program 3

Author 1

Author 2

Author 3

Author 4

Author 5

Author 1

Author 2

Author 3

Author 4

Author 5

Author 1

Author 2

Author 3

Author 4

Author 5

Original dataset

Hayes-Offutt Study

• Identified 5 factors of
interest
• Provided support for
CPH
• Reported in [Hayes,
Offutt, 2004]

CPH Evaluation
(ANOVA)

• Analysis of variance
• Identifies 3 features of
interest
• Provides support for
CPH

Current work

Program Classification
(PCA & LDA)

• Principal component analysis

• Linear discriminant analysis

• Classification

Dynamic
and
Static
measures

Static measures

Program 1

Author 1

.

.

.

Author 15

Networking dataset

Program 4

Author 1

.

.

.

Author 15

……..

Program 1

Author 1

.

.

.

Author 23

IP router dataset

Program 3

Author 1

.

.

.

Author 23

……..

7

Program 1 ---> Write a subroutine (or function) FIND
that has three parameters: An array of elements (A);
an index into the array (F); and the number of
elements that should be considered (N). F is an index
into array A. After FIND is executed, all elements to
the left of A(F) are less than or equal to A(F) and all
elements to the right of A(F) are greater than or equal
to A(F). Only the first N elements of the array are
considered.
Program 2 ---> Write a subroutine or function MID that
examines three integers and returns the middle value
(for example, if 6, 9, and 3 are entered, 6 is returned).
Program 3 ---> Write a subroutine or function TRITYP
that examines 3 integer values and determines what
type of triangle (if any) is represented. Output will be:
TRIANG=1 if triangle is scalene
TRIANG=2 if triangle is isosceles
TRIANG=3 if triangle is equilateral
TRIANG=4 if not a triangle

Fig. 2. Specifications for the Find, Mid, and Trityp.

Questions were received from three of the programmers on the
Find program, so a subsequent specification clarification was
sent to all five programmers. It is shown in Figure 3. It should
be noted that the researcher’s response to the questions might
have biased the programmers in favor of a sorting solution to
Find.

It does not matter what type of array you use or how
you get input (from a file, interactively, etc.). You don’t
have to sort the array, though that is a possible
solution. If N=6, elements a[7] through a[10] are
ignored. If you have the following values, a=2 5 1 1 3
4 4 4 4 4, N=6, F=3, one correct result would be: a=1
1 2 5 3 4 because a[F]=1 and all values .LE. 1 are now
to the left of 1 and all values greater than or equal to 1
are now to the right of it (even though they are not
sorted). a=1 1 2 3 4 5 is also a correct result.

Fig. 3. Clarification of Program Find.

4.3. Independent Variables

The set of static measures4 investigated in the studies include,
but are not limited to, the following direct measures:

 number of comments
 number of program lines
 Halstead’s N1 measure (total number of operators)

[Halstead, 1977]
 Halstead’s N2 measure (total number of operands)

[Halstead, 1977]
 Halstead’s n1 measure (number unique operators)

[Halstead, 1977]

4 Note that we examine a larger set of direct and indirect
measures in the second analysis (PCA& LDA), in keeping
with the number and type of measures analyzed by other
researchers in our area doing similar work (see related
work section for examples).

 Halstead’s n2 measure (number unique operands)
[Halstead, 1977]

From these direct measures, several indirect measures were
obtained. Some are listed below:
 average occurrence of operands (total number of program

operands/number of unique operands)
 average occurrence of operators (total number of program

operators/number of unique operators)
 average number of comments per program line (total

number of comments/number of program lines)
 Halstead’s Volume [Halstead, 1977]

 Much research has been performed in the area of metrics and
their usefulness in measuring the complexity of source code.
Metrics gathered statically have been applied in numerous ways
ranging from pointing out change-prone and/or complex
modules for possible redesign [Bieman, Andrews, and Yang,
2003] to pointing out poorly commented modules [Huffman and
Burgess, 1988]. Static measures are expected to indicate high
correlation to the individual programmers.

4.4. Dependent Variable

We evaluate whether static measures are useful for identifying
the author of a program.

4.5. Data Analysis Techniques

We used two techniques in parallel, ANOVA and PCA with
LDA. These are described below. The metrics tool was used to
extract values for the measures directly from the source code of
each program. Descriptive statistics for each of the static
measures for each program of the networking dataset are shown
in Table 1 (see Appendix A). The program name is given in the
first column. Each measure in the table represents a research
hypothesis (such as average occurrence of operands) or is used
to calculate a measure for a hypothesis (such as number of
program lines), as indicated in the second column of the table.
Mean, standard error, median, mode, standard deviation, sample
variance, kurtosis, skewness, range, and minimum and
maximum are also provided.
 Descriptive statistics for each of the static measures for each
program of the original dataset are shown in Table 2 (see
Appendix B). The columns are the same as in Table 1.
 Analysis of variance (ANOVA) was used for this study. The
assumption of normality of errors was met (as could be seen
visually by the residuals plot). The two-way ANOVA examined
programmer and program for each measure. The null hypothesis
for each feature is that the mean value of the feature is not
effected by programmer. The null hypothesis is rejected when
the probability that the differences in the features are attributable
to chance is small (p-value was 0.05 or less). That is to say, if
the null hypothesis is rejected for feature N, feature N helps
uniquely identify the author of a program. The alternative
hypothesis is that the mean value of the feature is effected by
programmer.
 Though a power of .8 or higher was desired (based on Simon’s
suggestions for alpha or Type I error of 0.05 and beta or Type II
error of 0.2 [Simon, 1999]), we were constrained by the number
of programmers who were available and the number of
programs that had been assigned (particularly for the two

8

graduate student datasets) [Power, 1999]. There is some support
in the literature for studies of power of 0.4 or higher, though,
particularly that involve “psychology” or social sciences
[Granaas, 1999]. In fact, Granaas [1999] pointed out that the
power level for published studies in psychology is around .4
(meaning a Type II error of 0.6). It could be argued that our
current work is examining issues related to the psychology of
programming. Therefore, our power levels may be sufficient.
With alpha = 0.05, the power of the original dataset work was
0.5766 (Type II error of 0.42), the power of the networking
dataset work was 0.6266 (Type II error of 0.37), and the power
of the IP router dataset work was 0.4305 (Type II error of 0.57).
 As multi-collinearity is a known challenge when working
with strongly correlated dataset variables, we chose to apply the
principal component analysis technique for the second study.
PCA helps to reduce the dimensions of the metric space and
obtain a smaller number of orthogonal component metrics
[Dillon and Goldstein, 1984]. The eigenvalue, or loading,
indicates the amount of variability accounted for in the original
metrics. The decision of how many components to extract is
based on the cumulative proportion of eigenvalues of the
principal components [Hanebutte et al, 2003]. We used the
scree plot to determine the planes to retain (i.e, we kept planes
with associated eigenvalues before the bend or break in the scree
plot). We then applied factor analysis to these results using the
varimax rotation. Basically, we examined the variables with
high loadings to “label” the dimension being captured by the
PC. Some dimensions were easier to explain than others. We
then applied linear discriminant analysis (LDA) on the
component metrics obtained from the PCA. Discriminant
analysis develops a discriminant function to place each
observation into one of a set of mutually exclusive classes,
where prior knowledge of the classes exists [Dillon and
Goldstein, 1984]. To develop the classification criterion, we
used a linear method that fits a multivariate normal density to
each group, with a pooled estimate of covariance [The
MathWorks, Inc., 2002].

4.6. Predictive model evaluation

To measure the accuracy of our predictive model, we carried out
leave-one-out cross-validation. We used linear discriminant
prediction of the authorship of a held-out program on the basis
of a training set of programs with known authorship. For the
networking dataset, we trained with three programs, and used
the fourth program for prediction. For the original dataset, we
trained on two of the three programs, and used the third program
for prediction. We used jackknifing and repeated this process
for all combinations of programs (e.g., trained with program 1
and 2, then trained with program 2 and 3, then trained with
program 1 and 3). The discriminability of an author is the
proportion of correctly attributed texts. The overall
discrimination score is the average of the individual author
discriminability scores [Baayen et al, 2002]. We refer to this as
classification accuracy.

5. Analysis of Data

The studies had some limitations and constraints that must be
kept in mind when examining the results. Threats to validity are
discussed in Section 5.1. For the analysis of variance study, data
was analyzed to look for an effect based on programmer (or

author), addressed in Section 5.2. The predictive study is
addressed in Section 5.3. The overall hypothesis results are
discussed in Section 5.4.

5.1. Threats to validity

The results from this study are subject to a number of
limitations. In particular, internal and external validity are of
concern. A study can be said to be internally valid if it shows a
causal relationship between the independent and dependent
variables. A number of influences can impact internal validity.
For example, in the original dataset, we may have influenced the
programmers’ solution to the Find program when we answered
their questions on the specification. However, this could have
only served to prompt the programmers to use a similar solution,
resulting in similar programs. So any bias would have been in
favor of the null hypothesis. In order to minimize selection
threats to internal validity, we assigned each programmer the
same programs (for all datasets). Also, we did not mandate the
order in which the programs were developed. Another threat to
internal validity is that of programmers biasing each other.
Specifically, on the original dataset, two of the programmers
work in the same location and may have discussed the programs,
causing their solutions to be similar (though no correlation was
found between the programs of these two authors). Similarly, it
is possible that the graduate students may have discussed the
networking programs. We asked each programmer to work in
isolation to minimize this threat [Hayes and Offutt, 2004] and
graduate students were warned not to work together.
 Experimental mortality threats to internal validity were not
applicable, as all programmers completed the assigned programs
[Hayes and Offutt, 2004]. Design contamination threats to
internal validity were not applicable, as there was not a separate
control and experimental group [Hayes and Offutt, 2004]. There
is a possibility of an instrumentation threat to internal validity
(see section 4.4) due to switching to a commercial tool for the
networking dataset.
 External validity is possessed by a study if the causal
relationship can be generalized to other groups, environments,
etc. There were several threats to external validity in our study.
First, a small number of programmers were used in the original
dataset (five). Each programmer wrote a small number of
programs (three in the original dataset, four in the networking
dataset, three in the IP router dataset). The networking and IP
router datasets had more data points. Declining results as
datasets get larger may indicate that these techniques can only
distinguish among small numbers of programmers. Also, the
original dataset programs were very small and were not very
complicated to write. It is not certain that the results seen here
would be observed for larger, more complex applications,
though the networking and IP router datasets did allow us to
examine programs that were larger and more complex than the
original dataset. Also, two of the three datasets were from the
networking application domain. Additional datasets from
different application domains (such as medical applications,
avionic software applications, etc.) should be evaluated to
ensure that the results observed can be generalized across
multiple application domains. Also, there is a potential bias
since all the original dataset programmers are from the
Washington metropolitan area and most of them (four of the
five) work for defense contractors. Also, all the graduate

9

 Table 3
 Distinguishing Features By Programmer – Original Dataset

Programmer:
Features

Distinguishing? SS DF MS F p

number of program lines No 3973.06 4 993.26 2.46 0.11
number of unique operators per program
line

Yes 0.21 4 0.05 6.43 0.007

number of unique operands per program
line

No 0.14 4 0.05 3.46 0.07

average occurrence of operators No 29.41 4 9.80 2.97 0.10
average occurrence of operands No 0.14 4 0.05 0.18 0.90
number of comments per program line Yes 0.23 4 0.08 10.44 0.00

students were living in Lexington, Kentucky and attending
classes together.
 Conclusion validity is possessed by an experiment if there
are no issues “affecting the ability to draw the correct conclusion
about relations between the treatment and the outcome of an
experiment. [Wohlin et al., 2000]” Due to the small number of
observations, the power of the statistical test may increase the
risk that an erroneous conclusion is drawn (highest power of the
three pieces of work was 0.6266). If one considers that
published psychology studies, also using small samples, have a
power of 0.4 [Grannas, 1999], our power level does not seem
out of line. Also, if one views each dataset as a separate
investigation, the significance level increases, meaning that we
may discover significant results due to chance.
 Construct validity is possessed by an experiment if the
constructs used have a theoretical basis and are also measurable.
A common concern here is that of having constructs measure the
same thing. This is often seen in multicollinearity. To account
for this possibility, we have used PCA and LDA in addition to
ANOVA.

5.2. Analysis of variance study

Features (such as number of comments and average occurrence
of operators) were deemed to be distinguishing features if the
ANOVA for that feature showed statistical significance for
programmer (that is, the p-value was 0.05 or less). The features
that were found to be distinguishing in the original dataset are
listed in Table 3. Note that the program size, number of
program lines, was not found to possess distinguishing ability.
The same was true for average occurrence of operands and
operators. The number of unique operators per program line
was found to have distinguishing ability though, and number of
unique operands per program line was very close with an a p-
value of 0.07 (we chose 0.05 as our cutoff). The number of
comments per program line was also found to possess
distinguishing ability. The results shown previously [Hayes and
Offutt, 2004] were somewhat different. Recall that the previous
study was based on static measures that were collected manually
for the original dataset and with a tool for the networking
dataset. In this study, we used the same tool to collect static
measures for all three datasets. This greatly decreased the effort
required as well as opportunity for errors. The abbreviations
used in the table are Sum of Squares (SS), degrees of freedom
(DF), mean squares (MS), F-value (F), and p-value (p).

Figure 4 shows a scatter plot of the number of comments per
program line for the programmers for the original dataset1. The
left most column is the first program, the middle column is the
second program, and the right most column represents the third
program.
 The features that were found to be distinguishing in the
networking dataset are listed in Table 4. The program size,
number of program lines, was not found to possess
distinguishing ability. The same was true for number of unique
operators per program line, number of unique operands per
program line, average occurrence of operators, and average
occurrence of operands. The only feature that was found to be
distinguishing for both datasets was number of comments per
program line. It is worth noting that when just the client and
server programs were analyzed, number of unique operands and
average occurrence of operands possessed distinguishing ability.
 Figure 5 shows a scatter plot of the number of comments per
program line for the programmers of the networking dataset.
The left most column is the first program (client), the second
column is the second program (server), the third column is the
third program (delimframing), and the right most column
represents the fourth program (fletchED). Figure 6 shows a
scatter plot of the number of comments per program line for the
programmers of the IP router dataset. The left most column is
the first program (ip), the second column is the second program
(main), and the third column is the third program (router).
 Based on Tables 3 and 4, it appears that two measures vary
with the author of a program, with a third measurement having
borderline correlation (p value of 0.07):

1) number of comments per program line
2) number of unique operators, and
3) number of unique operands (borderline).

The results of principal component analysis and linear
discriminant analysis are discussed next.

5.3. Predictive Study

 In this section, we present the principal component analysis
work as well as classification by programmer.

1 This was selected as an example of a distinguishing
feature.

Table 4
Distinguishing Features By Programmer – Networking Dataset

Programmer:
Features

Distinguishing?SS DF MS F p

number of program lines No 136106.4 14 9721.88 1.03 0.44
number of unique operators per
program line

No 0.07 14 0.005 1.06 0.40

number of unique operands per
program line

No 0.61 14 0.04 0.61 0.83

average occurrence of operators No 1131.51 14 80.82 0.85 0.6
average occurrence of operands No 278.85 14 19.91 0.67 0.78
number of comments per program
line

Yes 0.75 14 0.05 2.63 0.006

5.3.1 Principal Component Analysis

We discuss the results of principal component analysis for the
original dataset followed by the networking dataset and IP router
dataset. The eigenvalues of the correlation matrix of the original
dataset are shown in Table 5.
 The table shows that only three components are needed to
explain at least 86% of the overall variance. The principal factor
method with prior communality estimates of one followed by a
varimax-rotation is selected to establish the factor model for
interpretation [Hanebutte et al, 2003]. This adjustment gives

weight to the highly correlated variables within each factor and
lesser weight to any remaining variables [Hanebutte et al, 2003;
Johnson, 1998]. That is, each variable will be highly correlated
to exactly one factor and not to others.
 We expected that the factors/components would be explained
by metrics that were related to each other. For example, we
expected to see metrics having to do with control flow, such as
cyclomatic complexity, maximum cyclomatic complexity, etc.
have high correlation in the same component or factor. Indeed,
that was the case. Table 6 shows the correlation between each
component and the original features.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

programs

#
 of
comms
 per
pgm
 line pgmr 1

pgmr 2

pgmr 3

pgmr 4

pgmr 5

Fig. 4. Number of Comments per Program Line – Original Dataset.

Fig. 5. Number of Comments per Program Line – Networking Dataset.

 The first component shown in Table 6 unites lines of program
code, Halstead’s N (length), Halstead’s N1, Halstead’s N2 (N1
and N2 are summed to give N), Halstead’s n (vocabulary), n2, V
(Halstead’s volume), B (Halstead’s estimated number of bugs),
E (Halstead’s effort), T (Halstead’s time), average occurrence of
operators, and H (Halstead’s predicted length) as shown by the
relatively high values of these items in the table (in the [-0.7;
+0.7] range). The longer the source code is, the higher the count
of each of these metrics. So this can be seen as a size or length
component. The second component includes number of
comments, comments per physical lines of code, comments per
program lines of code, number of unique operands per physical
lines of code, and number of unique operators per physical lines
of code. The first three features are clearly related to comments.
The latter two items can be seen to tie to understandability also.
 The number of unique operators and operands drive the
number of mental “lookups” a programmer must make when
maintaining code. This component appears to tie to
understandability. The third component includes only the

difference between estimated and actual length (H – N). We
label this component “error of predicted length.” The fourth
component contains D (Halstead’s difficulty) and L (Halstead’s
program level). L is the relationship between Program Volume
and Potential Volume. Only the most clear algorithm can have a
level of unity. D is 1/L. A program grows more difficult as its
level decreases. These both deal with difficulty. The final
component includes McCabe’s cyclomatic complexity, and
maximum cyclomatic complexity. These both deal with control
flow. The components for the Original dataset are hence
identified as follows:

 Component 1 – size/length
 Component 2 – understandability
 Component 3 – error of predicted length
 Component 4 – difficulty
 Component 5 – control flow

0

1

2

3

4

5

6

programs

#
 c

o
m

m
e

n
ts

 p
e

r
p

g
m

 li
n

e

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

programs

co

m
m

en
ts

 p
er

 p
g

m
 l

in
e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Fig. 6. Number of Comments per Program Line – IP router Dataset.

Table 5
Principal component analysis – eigenvalues of the correlation matrix of the Original Dataset

Eigenvalue % of Variance Cumulative %
Component 1 15.615 55.768 55.768
Component 2 5.246 18.734 74.502
Component 3 3.240 11.570 86.072
Component 4 1.789 6.388 92.460
Component 5 1.040 3.714 96.174

The eigenvalues of the correlation matrix of the networking
dataset are shown in Table 7.
 The table shows that only three components are needed to
explain at least 83% of the overall variance. As done above, the
principal factor method with prior communality estimates of one
followed by a varimax-rotation is selected to establish the factor
model for interpretation [Hanebutte et al, 2003]. Table 8 shows
the correlation between each component and the original
features.
 The first component shown in Table 8 unites number of
unique operators per lines of program code, lines of program
code, V (Halstead’s volume), N1, N2, n1, n2, and cyclomatic
complexity as shown by the relatively high values of these items

in the table (in the [-0.7; +0.7] range). At first glance, these do
not seem to be related. The first seven features all deal with
number of operators or operands related to program lines of
code. The latter feature, V(g), does not seem to fit in. But
further examination shows that a large percentage of the
operators are conditional operators. Similarly, many of the
operands are used in these conditional statements. As V(g)
measures control flow, it then follows that V(g) would unite
with operators and operands in this instance. Similarly, as size
grows (more program lines), counts of each of these metrics
increase. So this component can be seen to consider size and
complexity. The second component unites total number of
operators and total number of operands (N1, N2) as a ratio to the

13

number of unique operators and operands, as well as these same
features divided by program lines. This appears to capture a
degree of variance dealing with the number of mental
recollections a programmer must make when maintaining a
program. We refer to this as maintenance effort. The third
component includes only unique operands per program line.
This does not appear to capture an intuitive source of variance.
The final component captures comments per program line. As
with the original dataset, we believe this component ties to

understandability. The components for the Networking dataset
are hence identified as follows:

Component 1 – size/complexity
Component 2 – maintenance effort
Component 3 – unknown
Component 4 – understandability

Table 6
Rotated components of original dataset – five components selected

.318 .229 .179 .186 .864

.096 -.309 .231 -.045 .886

.687 .682 .152 .058 -.031

.806 .488 .236 .021 .111

.488 .638 .043 .109 -.319

.462 .856 -.040 .074 -.093

.966 .168 .117 .122 .096

.947 .180 .167 .114 .147

.973 .154 .065 .128 .042

.952 .170 -.169 .161 .072

.694 .010 -.163 .675 .075

.961 .206 -.159 -.003 .066

.974 .166 .068 .106 .078

.934 .106 .120 .304 .060

.647 -.061 .195 .719 .053

.950 .111 .104 .224 .023

-.548 -.009 -.227 -.757 -.123

.950 .111 .104 .224 .023

.318 -.138 .695 .577 .058

.822 .231 .387 -.213 .220

.959 .168 -.167 .127 .063

.032 .000 .957 .039 .227

.162 .923 -.143 -.034 -.024

.101 .954 -.189 -.008 -.059

.111 -.847 -.500 -.037 -.056

.078 -.630 -.684 .011 -.227

-.311 -.762 -.295 .431 -.107

-.396 -.628 -.351 .491 -.219

V(G)

Max v(G)

LOCphy

LOCpro

LOCbl

LOCcom
N

N1

N2

n

n1

n2

V

B

D

E

L
T

Avg occ.
opds

Avg occ.
ops

H
H-N
Comm/
locphy

n2/locphy

n2/locpro

n1/locphy

n1/locpro

1 2 3 4 5

Component

Comm/
locpro

The eigenvalues of the correlation matrix of the IP router dataset
are shown in Table 9.
 The table shows that only three components are needed to
explain at least 79% of the overall variance. As done above, the
principal factor method with prior communality estimates of one
followed by a varimax-rotation is selected to establish the factor
model for interpretation [Hanebutte et al, 2003]. Table 10
shows the correlation between each component and the original
features.
 The first component shown in Table 10 unites average
occurrence of operands, average occurrence of operators,
number of unique operators (n1) per physical line, and number
of unique operators (n1) per program line as shown by the
relatively high values of these items in the table (in the [-0.7;
+0.7] range). Just as with Component 2 of the networking
dataset, this appears to capture a degree of variance dealing with
the number of mental recollections a programmer must make

when maintaining a program. We refer to this as maintenance
effort. The second component captures comments per program
line and comments per physical line. As with the original
dataset and the networking dataset, we believe this component
ties to understandability. The third component includes only
unique operands (n2) per program line. This does not appear to
capture an intuitive source of variance. However, it is identical
to the “unknown” Component 3 of the networking dataset. It
appears that number of unique operands per program line is
capturing a recurring source of variance. The components are
hence identified as follows:

Component 1 – maintenance effort
Component 2 – understandability
Component 3 – unknown

Table 7
Principal component analysis – eigenvalues of the correlation matrix of the Networking Dataset

Eigenvalue % of Variance Cumulative %
Component 1 7.417 46.357 46.357
Component 2 3.993 24.955 71.312
Component 3 1.948 12.175 83.487
Component 4 1.466 9.162 92.649

Table 8
Rotated components of networking dataset – four components selected

-.892 -.021 .208 .133

-.358 -.043 .887 .104

.962 -.058 -.026 .047

.585 .007 -.007 .775

.949 .047 .225 .087

.635 -.033 .695 -.009

.768 .632 .039 .053

.739 .661 .059 .069

.815 -.104 .056 .081

.719 -.051 .668 .029

.532 .827 -.043 -.002

-.003 .877 -.452 -.021

-.128 .017 .090 .968

.881 .122 -.097 .084

-.145 .980 .058 -.005

-.165 .975 .068 .024

n1/prog line

n2/prog line

LOCpro

LOCcom

V

B(x100)

N1

N2

n1

n2

N1/n1

N2/n2

com/prog line

V(g)

N1/prog line

N2/prog line

1 2 3 4

Component

Table 9
Principal component analysis – eigenvalues of the correlation matrix of the IP router Dataset

Eigenvalue % of Variance Cumulative %
Component 1 2.826 35.322 35.322
Component 2 1.997 24.966 60.289
Component 3 1.559 19.491 79.78

 Comparing the components for the datasets, we see that two of
the three have a size component. In the case of the original
dataset, the size component also captures length. In the case of
the networking dataset, that component also captures control
flow. But for the original dataset, control flow has its own
component. All three datasets also have a component for
understandability, mainly based on comment features. The
networking dataset and the IP router dataset both have a
maintenance effort component. Also, the “unknown”
component for the IP router dataset and the networking dataset
are the same. Two of the five components of the original dataset
are found in the other datasets. All four of the components of
the networking dataset are found in the other datasets. And all
three of the components of the IP router dataset are found in the
other datasets.

5.3.2 Classification by Programmer

Next, we performed linear discriminant analysis using as input
the component metrics obtained from the principal component
analysis for each dataset. A leave one out cross validation

procedure [Stone 1974] was used to measure model
performance. The idea of cross validation is based on using a
training subset of the data that is disjunct from the sample or
testing subset of the dataset. In the case of the original dataset,
we trained with two programs and tested on the third program.
For the networking dataset, we trained with three programs and
tested with a fourth program. Percentages of correct
classification are shown in Table 11.
 The classification rate of 60.8% for the IP router dataset was
lower than anticipated, so we investigated further. As stated
earlier, the original dataset is comprised of programs written by
professional programmers. A profile of these programmers is
shown in Table 12.
 Recall that earlier we hypothesized that programmers may
require a certain level of experience in order to exhibit voice.
Our results above seem to lend support to this notion. We next
examined the experience level of the programmers of the
networking dataset and the IP router dataset, as shown in Table
13 and 14, respectively.

Table 10
Rotated components of IP router dataset – three components selected

Rotated Component Matrix

.737 -.069 .271

.914 .027 .163

.073 .950 -.086

.014 .982 .149

.226 -.099 .605

-.069 .173 .901

-.868 -.180 .067

-.777 .036 .573

Average occurrence of
operands

Average occurrence of
operators

Number of comments
per physical line

Number of comments
per program line

Number of unique
operands per physical
line

Number of unique
operands per
program line

Number of unique
operators per physical
line

Number of unique
operators per
program line

1 2 3

Component

Table 11
Percentages of correct classifications (cross validation)

Dataset % correct classification
Original dataset 100%

Networking dataset 93.33%
IP router dataset 60.8%

Table 12
Profile of original dataset programmers

Programmer Employer Highest Degree Work
Experience

1 IT Company 1 M.S. in
SWE in 2 months

Programmer,
Analyst

2 IT Company 2 M.S. in CS Programmer,
Analyst

3 IT Company 2 M.S. in CS Analyst,
Programmer

4 IT Company 3 M.S. in CS Programmer,
Analyst

5 University Ph.D. CS Asst. Professor,
Programmer

To see whether or not we could correctly classify experienced C
and networking programmers, we selected a subset of the
programmers of the IP router dataset for analysis. The criteria
we used for selecting the first subset of programmers was that
they must be very experienced in C and have strong work
experience OR they must possess strong networking experience.
Based on this, we selected Programmers 2, 3, 6, 13 and 20 (2, 3,
and 20 for C and work experience, ands 6 and 13 for networking
experience). We refer to this as the (C^Work)vNetworks subset.

Next, we eased our criteria and added any students who had
taken an undergraduate course in networking, regardless of their
C or work experience. This second subset included the first
subset plus Programmers 10, 11, 16, and 21. We refer to this as
the (C^Work)v (Networks)v(undergradcourse) subset. The
results are shown below in Table 15. This appears to lend
support for the notion of a certain level of experience being
required before a programmer exhibits voice.

17

Table 13
Profile of networking dataset programmers

5.4. Hypothesis results

The general hypothesis for this experiment is that one or more
characteristics exist for a program that can recognize the author
of the program. This is important to help pursue specific rogue
programmers of malicious code and source code viruses, to
identify the author of non-commented source code that we are
trying to maintain, and to help detect plagiarism and copyright
violation of source code. Evidence has been presented in
Section 5.2 to support the notion that characteristics exist to
identify the author of a program. Some of the specific
hypotheses were supported and some were not. The results are
listed below:

1. Evidence was found to reject the null hypothesis that the
static measure of number of comments per program line
does not vary by individual programmer.

2. The null hypothesis that the static measure of average
occurrence of operands does not vary by individual
programmer could not be rejected.

3. The hypothesis that the static measure of average
occurrence of operators is correlated with the individual
programmer was not supported, however there was
evidence that number of unique operators does vary by
individual programmer.

Programmer Commenced Graduate
Work

Prior C experience Prior networking
programming
experience

Work
Experience

1 Fall 2001 Used C occasionally None Programmer for one
year, using C++

2 Spring 2001 Programmer for two
years

3 Fall 2002 No prior experience in C
or C-like language

Minimal prior experience Some DB work
experience with minimal
networking work
experience

4 Fall 2002 3 – 4 years experience None System
administrator/programm
er for 3 – 4 years

5 Fall 2002 ~10 months experience
with C

~10 months networking
programming
experience in C

~10 months networking
programming
experience in C

6 Fall 2002 Used C in some
undergrad courses

Minimal prior experience None

7 Fall 2002 ~4 years experience
with C

Undergraduate project
in networking
programming

Taught programming
languages

8 Fall 2002 Used C occasionally None None
9 Fall 2002 8 years of C experience Minimal networking

programming
experience

None

10 Fall 2002 Very little programming
experience

Did one networking
exercise in VC++ in
undergrad work

None

11 N/A, was undergraduate Used C in UK courses Took networking 400
level course

Coop at Lexmark using
C, some networking
assignments

12 Fall 2002 Had C in undergrad
courses

Built a small networking
program previously

None

13 Fall 2002 Some C and C++
experience

Some networking
programming
experience

4 years as a
programmer/system
analyst

14 Fall 2002 Little programming
experience in C from
undergrad

Undergrad network
management project

None

15 Fall 2002 Minimal C experience
(from high school)

Networking experience
was from undergrad
class

None

18

4. There was borderline evidence (p-value was just above
0.05) to support the notion that the static measure of
number of unique operands is correlated with the individual
programmer.

5. There was evidence that a certain level of experience with
the programming language and/or application domain is
required for voice to be exhibited.

Table 14
Profile of IP router dataset programmers

Table 15
Percentages of correct classifications using “experienced” programmers

Dataset % correct classification
Original dataset (5 programmers) 100%

IP router dataset -(C^Work)vNetworks
subset (5 programmers)

100%

IP router dataset -
(C^Work)v(Networks)v(undergradcourse)

subset (9 programmers)

88.88%

Programmer Commenced Graduate
Work

Prior C experience Prior networking
programming
experience

Work
Experience

1 NO INFORMATION AVAILABLE
2 Fall 2003 6 years experience Very little, only from self

instruction
Programmer for two
years, 8 months

3 Fall 2003 4 – 5 years None Programmer for 6 – 7
years

4 NO INFORMATION AVAILABLE
5 Fall 2003 3 years None None
6 Fall 2003 2 years At least 6 months

experience
None

7 Spring 2004 2 undergrad courses Some in undergrad 1 year
8 Spring 2004 Used C occasionally in

undergrad
Very little None

9 Fall 2003 2 – 3 years A little in undergrad None
10 Fall 2003 2 years Took networking 400

level course
None

11 Fall 2003 Used C in some
undergrad courses

Took networking 400
level course

None

12 Fall 2003 3 years Very little None
13 Spring 2004 6 years (includes high

school)
2 years (includes final
undergraduate project)

None

14 Fall 2003 Programming
experience in C from
undergrad

A little in undergrad
courses

None

15 NO INFORMATION AVAILABLE
16 N/A, was undergraduate 2 undergrad classes Took networking 400

level course
None

17 Fall 2003 4+ years Some Java client work
in undergrad

1+ year as a
programmer

18 NO INFORMATION AVAILABLE
19 NO INFORMATION AVAILABLE
20 Fall 2002 4 years Took networking 400

level course
4 years as a
programmer

21 Fall 2003 3 years Did undergrad project
on networks

3 months as a
programmer

22 NO INFORMATION AVAILABLE
23 NO INFORMATION AVAILABLE

19

The principal component analysis for the datasets provided one
component of variance that was consistent (understandability).
Two components were consistent for the networking and IP
router datasets (maintenance effort and the unknown component
(unique operands per program line). One component was shared
by the original and networking datasets (size from the
size/length and size/complexity components, respectively).
These components were then used to classify the programmers
of the datasets. The dataset of professional programmers was
classified with an accuracy of 100%. The networking dataset
had accuracy of 93%. The IP router dataset had accuracy of
61%. Further examination showed that for many of the
programmers, we were examining their first C programs and/or
their first networking programs. When we examined just the
programs of the experienced programmers, we achieved 100%
classification accuracy. When we added in programmers who
had taken an undergraduate course in networking, our
classification accuracy dropped to 89%. This lends support to
our belief that a programmer must possess a certain level of
experience with a particular language and/or application domain
in order to exhibit voice.
 In conclusion, we found evidence that programmers exhibit
voice. This was shown in two ways in both datasets: strong
correlation between two features and programmer as well as
weaker correlation with a third feature; and accurate
classification of programs written by experienced programmers
using cross-validation. Further work is required though,
particularly with a larger sample. Our first planned use of these
findings is to work with one of our industrial partners
performing large-scale maintenance of outsourced products. We
plan to help them implement an approach for determining the
authors of modules that do not so indicate.

6. Future work

The results are encouraging. We cannot draw broad conclusions
from the analysis of variance study and predictive study, though,
due to the limitations noted in Section 5.1. There are a number
of new questions that arose from this work. First, can we
identify an author if he/she has modified someone else’s code?
There have been recent cases where virus writers copy an
existing virus and make changes to it. There are certainly many
cases where students copy wholesale sections of code from other
students. How much code must be written by an individual for
their “voice” to be evident? If an individual wrote 80% of the
code, can we identify them? Also, it is not clear how this
technique might be used to evaluate group software projects
where several students have developed an application. It may be
possible to approach this problem by focusing on modules as
that is typically the level at which work is shared by
programmers. We also want to investigate how early a
programmer develops voice.

Acknowledgements

We would like to thank the five programmers for volunteering
their time to write three programs each. We thank Dr. Calvert
and the fifteen students who wrote four programs each. We
thanks Dr. Fei and the twenty-three students who wrote IP router
programs. We thank Liming Zhao for static analysis and
MATLAB work performed. We give special thanks to Dr.
Kevin Donohue, Dr. Arnold Stromberg, and Olga Dekhtyar, all
of whom assisted greatly with the principal component analysis
and linear discriminant analysis. Thanks also to Kelly Noss
Marcum for her insights on writing style and “voice.”

20

APPENDIX A

Table 1
Descriptive Statistics of Static Measures Collected for Networking Dataset

Program Research
Hypothesis

Measure Mean Std
Error

Median Mode Std
Dev.

Sample
Variance

Kurtosis Skewness Range Min Max

delimframing For R1,
R2, R3

Number of
program
lines

242.45 18.63 209.50 208 87.38 7635.21 1.27 1.29 332.00 136.00 468.00

delimframing For R3 Number of
operators

612.05 53.00 542.50 490 248.58 61791.57 2.25 1.40 1015.00 323.00 1338.00

delimframing For R2 Number of
operands

532.14 46.07 479.00 N/A 216.11 46701.46 1.67 1.29 859.00 273.00 1132.00

delimframing R4 Number of
unique
operands

68.05 3.27 66.00 58 15.35 235.47 2.18 1.27 66.00 46.00 112.00

delimframing R2 Average
occurrence
of
operands

7.84 0.64 7.06 N/A 2.98 8.89 5.63 2.31 12.71 4.71 17.42

delimframing R3 Average
occurrence
of
operators

21.18 1.65 19.53 N/A 7.76 60.25 1.03 1.20 28.59 10.77 39.35

delimframing R1 Number of
comments
per
program
line

0.29 0.06 0.19 N/A 0.26 0.07 4.31 1.93 1.10 0.03 1.13

fletchED For R1,
R2, R3

Number
program
lines

118.55 6.73 113.00 130 31.58 997.12 -0.76 0.43 109.00 70.00 179.00

fletchED For R3 Number
operators

295.36 15.42 289.00 339 72.34 5232.43 -1.06 0.35 245.00 191.00 436.00

fletchED For R2 Number
operands

270.41 14.31 266.50 N/A 67.13 4505.87 -0.82 0.49 215.00 184.00 399.00

fletchED R4 Number
unique
operands

42.23 1.12 44.00 44 5.25 27.52 -0.09 -0.13 22.00 31.00 53.00

fletchED R2 Average
occurrence
operands

6.35 0.22 6.18 N/A 1.05 1.09 -1.12 0.37 3.28 4.95 8.23

fletchED R3 Average
occurrence
operators

11.66 0.57 11.70 N/A 2.68 7.19 -0.46 0.56 9.47 7.93 17.39

fletchED R1 Number of
comments/
program
line

0.25 0.05 0.17 0 0.25 0.06 3.52 1.77 1.04 0.00 1.04

client For R1,
R2, R3

Number
program
lines

180.54 22.88 187.00 N/A 82.49 6804.77 -0.62 -0.01 269.00 59.00 328.00

client For R3 Number
operators

486.00 56.28 523.00 N/A 202.91 41171.83 -1.33 -0.32 570.00 182.00 752.00

client For R2 Number
operands

446.38 50.31 473.00 N/A 181.38 32899.92 -1.30 -0.42 496.00 162.00 658.00

client R4 Number
unique
operands

119.46 10.68 109.00 N/A 38.51 1482.94 -1.20 0.22 113.00 66.00 179.00

client R2 Average
occurrence
operands

3.66 0.25 3.77 N/A 0.89 0.80 -0.75 -0.01 3.02 2.13 5.15

21

client R3 Average
occurrence
operators

17.54 1.36 20.12 N/A 4.92 24.17 -0.25 -0.78 16.26 8.27 24.54

client R1 Number
comments/
program
line

45.77 9.33 33.00 N/A 33.65 1132.53 -0.08 0.96 106.00 5.00 111.00

server For R1,
R2, R3

Number
program
lines

249.46 31.27 247.00 234.00 112.74 12711.10 -0.38 -0.45 361.00 53.00 414.00

server For R3 Number
operators

648.92 75.79 656.00 N/A 273.25 74667.74 -0.10 -0.77 831.00 149.00 980.00

server For R2 Number
operands

582.15 69.68 585.00 N/A 251.24 63119.14 -0.27 -0.66 774.00 132.00 906.00

server R4 Number
unique
operands

151.08 14.66 154.00 168.00 52.84 2792.24 0.59 -0.02 193.00 63.00 256.00

server R2 Average
occurrence
operands

3.71 0.28 3.94 N/A 1.01 1.02 1.41 0.40 3.90 2.10 6.00

server R3 Average
occurrence
operators

20.86 1.89 22.71 N/A 6.82 46.49 -0.35 -0.71 21.36 8.33 29.70

server R1 Number of
comments/
program
line

52.92 9.39 42.00 42.00 33.85 1145.58 2.13 1.43 124.00 13.00 137.00

22

APPENDIX B

Table 2
Descriptive Statistics of Static Measures Collected for Original Dataset

Program Research
Hypothesis

Measure Mean Std
Error

Median Mode Std
Dev.

Sample
Variance

Kurtosis Skewness Range Min Max

find For R1, R2,
R3

Number of
program lines

71.80 13.10 81.00 N/A 29.30 858.70 -0.93 -0.02 75.00 35.00 110.00

find For R3 Number of unique
operators per
program line

0.32 0.05 0.28 N/A 0.12 0.01 -0.89 0.58 0.29 0.19 0.49

find For R2, R4 Number of unique
operands per
program line

0.65 0.07 0.74 N/A 0.17 0.03 -2.87 -0.60 0.36 0.44 0.80

find R2 Average
occurrence of
operands

4.04 0.17 4.19 N/A 0.38 0.15 0.18 -0.89 0.98 3.46 4.44

find R3 Average
occurrence of
operators

8.98 0.96 7.62 N/A 2.14 4.56 -1.71 0.87 4.71 7.29 12.00

find R1 Number of
comments per
program line

0.18 0.06 0.22 N/A 0.13 0.02 -1.89 -0.58 0.31 0.00 0.31

mid For R1, R2,
R3

Number of
program lines

39.00 6.98 35.00 N/A 15.60 243.50 1.36 1.27 39.00 25.00 64.00

mid For R3 Number of unique
operators per
program line

0.40 0.08 0.34 N/A 0.18 0.03 4.33 2.02 0.45 0.27 0.72

mid For R2, R4 Number of unique
operands per
program line

0.61 0.08 0.57 N/A 0.18 0.03 -2.37 0.40 0.40 0.44 0.84

mid R2 Average
occurrence of
operands

3.45 0.21 3.52 N/A 0.47 0.22 -0.48 0.08 1.21 2.86 4.07

mid R3 Average
occurrence of
operators

6.19 0.70 5.80 N/A 1.57 2.47 1.89 0.88 4.31 4.33 8.65

mid R1 Number of
comments per
program line

0.17 0.06 0.23 N/A 0.13 0.02 -2.20 -0.69 0.29 0.00 0.29

trityp For R1, R2,
R3

Number of
program lines

50.80 6.45 49.00 N/A 14.41 207.70 -2.65 0.22 32.00 36.00 68.00

trityp For R3 Number of unique
operators per
program line

0.39 0.07 0.37 N/A 0.15 0.02 2.32 1.45 0.38 0.25 0.64

trityp For R2, R4 Number of unique
operands per
program line

0.59 0.04 0.57 N/A 0.10 0.01 -1.13 -0.29 0.23 0.46 0.69

trityp R2 Average
occurrence of
operands

3.74 0.28 3.69 N/A 0.63 0.39 -1.89 0.36 1.45 3.12 4.57

trityp R3 Average
occurrence of
operators

7.03 0.72 7.00 N/A 1.61 2.59 0.26 0.53 4.25 5.13 9.38

trityp R1 Number of
comments per
program line

0.17 0.10 0.03 0.00 0.22 0.05 -3.03 0.65 0.45 0.00 0.45

23

References

Baayen, H., van Halteren, Neijt, A., and Tweedie, F. 2002. An
experiment in authorship attribution. In Proceedings of the 6s Journies
Internationales dAnalyse de Donnies Textuelles (JADT), Malo, France,
13-15 March.

Bieman, J., Andrews, A., and Yang, H. 2003. Understanding change-
proneness in OO software through visualization. The 11th IEEE
International Workshop on Program Comprehension (IWPC'03),
Portland, Oregon, 10 – 11 May.

Briand, L., Basili, V. and Hetmanski, C. 1993. Developing Interpretable
Models with Optimized Set Reduction for Identifying High-Risk
Software Components. IEEE Trans. Software Eng. 19(11): 1028-1044.

Briand, L., Melo, W., and Wust, J. 2002. Assessing the applicability of
fault-proneness models across object-oriented software projects. IEEE
Transactions on Software Engineering 28(7):706 – 720.

Brooks, F. 1987. No silver bullet: Essence and accidents of software
engineering. IEEE Computer 20(4):10-19.

Calvert, Ken. 2003a. Programming Assignment 0: Protocol Layers,
Version 1.2. CS 571 Computer Networks, University of Kentucky,
Spring 2003.

Calvert, Ken. 2003b. Programming Assignment 1: Challenge-Response
Authentication. CS 571 Computer Networks, University of Kentucky,
Spring 2003.

Collberg, Christian, and Thomborson, Clark. 2000. Watermarking,
tamper-proofing, and obfuscation - Tools for software protection.
University of Arizona Computer Science Technical Report number
2000-03, February 10, 2000, pp. 5-7.

Corney, M., de Vel, O., Anderson, A., and Mohay, G. 2002. Gender-
preferential text mining of e-mail discourse. In Proceedings of the
Annual Computer Security Applications Conference.

DeMillo, Richard A., Lipton, Richard J., and Sayward, Frederick G.
1978. Hints on test data selection: Help for the practicing programmer,
IEEE Computer 11(4): 34-41.

de Vel, O., Anderson, A., Corney, M., and Mohay G. 2001. Mining e-
mail content for author identification forensics. SIGMOD Record
30(4):55 – 64.

Dillon, W., and Goldstein, M. 1984. Multivariate Analysis: Methods
and Applications, John Wiley and Sons, New York, New York.

Fei, Z. 2004. Project 1: IP Router Implementation. CS 571 Computer
Networks, University of Kentucky, Spring 2004.

Finkel, R., Zaslavsky, A., Monostori, K., and Schmidt, H. 2002. In
Proceedings of the Twenty-Fifth Australasian Computer Science
Conference (ACSC2002).

Fletcher, J.G. 1982. An arithmetic checksum for serial transmission.
IEEE Transactions on Communications (COM-30):1.

Granaas, M. 1999. Re: Type I and Type II error. Educational Statistics
Discussion List (EDSTAT-L). [Online]. Available E-mail: edstat-
l@jse.stat.ncsu.edu January 7, 1999.

Gray, A. R., Sallis, P. J., and MacDonell, S. G. 1998. IDENTIFIED
(Integrated Dictionary-based Extraction of Non-language-dependent
Token Information for Forensic Identification, Examination, and
Discrimination): A dictionary-based system for extracting source code

metrics for software forensics. In Proceedings of SE:E&P'98 (Software
Engineering: Education & Practice Conference), Dunedin, New
Zealand, pp. 252-259.

Gray, A. R., Sallis, P. J., and MacDonell, S. G. 1997. Software
Forensics: Extending authorship analysis techniques to computer
programs. Presented at the Third Biannual Conference of the
International Association of Forensic Linguists, 4 – 7 September 1997,
at Duke University, Durham, North Carolina, USA.

Halstead, M. H. 1977. Elements of Software Science, Elsevier North-
Holland, New York.

Hanebutte, N., Taylor, C., and Dumke, R. 2003. Techniques of
Successful Application of Factor Analysis in Software Measurement.
Empirical Software Engineering, Volume 8, p. 43-57.

Hayes, J. Huffman, and Offutt, Jeff. 2004. Recognizing Authors: A
Case Study of the Consistent Programmer Hypothesis. University of
Kentucky Technical Report TR 395-04, November.

Holmes, D. I. 1985. The analysis of literary style: A review. Journal of
the Royal Statistical Society. Series A 148, Part 4: 328-341.

Holmes, D. and Forsyth, R. 1995. The Federalist Re-visited: New
Directions in Authorship Attribution. In Literary and Linguistic
Computing 10:111-127.

Horgan, J. R., and London, S. 1992. A data flow coverage testing tool
for C. In Proceedings of the Symposium of Quality Software
Development Tools, May, New Orleans, Louisiana, pp. 2 - 10.

Huffman (Hayes), J. E., and Burgess, C. G. 1988. Partially Automated
In-Line Documentation (PAID): Design and implementation of a
software maintenance tool. In Proceedings of the 1988 IEEE
Conference on Software Maintenance, October 24-27, Phoenix, Arizona,
pp. 60-65.

Johnson, D.E. 1998. Applied Multivariate Methods for Data Analysts,
Duxbury Press, Brooks/Cole Publishing Company.

Kilgour, R. I., Gray, A. R., Sallis, P. J., and MacDonell, S. G. 1998. A
fuzzy logic approach to computer software source code authorship
analysis. In Proceedings of ICONIP/ANZIIS/ANNES'97, Dunedin, New
Zealand, pp. 865-868.

Lanubile, F., and Visaggio, G. 1995. Evaluating empirical models for
the detection of high-risk components: Some lessons learned. In
Proceedings of the 20th Annual Software Engineering Workshop.
Greenbelt, MD.

Lanubile, F., and Visaggio, G. 1997. Evaluating predictive quality
models derived from software measures: Lessons learned. Journal of
Systems and Software 38:225-234.

MacDonell, S. G., Gray, A. R., MacLennon, G., and Sallis, P. J. 1999.
Software Forensics for discriminating between program authors using
code-based reasoning, feed-forward neural networks, and multiple
discriminant analysis. In Proceedings of the 6th International
Conference on Neural Information Processing ICONIP'99, ANZIIS'99,
ANNES'99, and ACNN'99. Perth, Western Australia, pp. 66-67.

McCabe T, and Butler C. 1989. Design complexity measurement and
testing. Communications of the ACM 32(12): 1415–1425.

The MathWorks, Inc. 2002. MATLAB 6.5 Help manual. Statistics
Toolbox: classify.

24

Munson, J., and Khoshgoftaar, T. 1992. The detection of fault-prone
programs. IEEE Transactions on Software Engineering 18(5):423-433.

Nikora, A., and Munson, J. 2003. Developing fault predictors for
evolving software systems. In Proceedings of the Ninth International
Software Metrics Symposium (METRICS ’03). Sydney, Australia, pp.
338 – 349.

Offutt, A. J. 1992. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering and Methodologies
1(1), pp. 5-20.

Oman, P.W., and Cook, C.R.. 1989. Programming style authorship
analysis. In Proceedings of the Seventeenth Annual ACM Conference on
Computer Science : Computing trends in the 1990's, pp. 320 – 326.

Power analysis,
http://seamonkey.ed.asu.edu/~alex/teaching/WBI/power_es.html.

Prechelt, L., Malpohl, G., and Philippsen, M. 2001. Finding plagiarisms
among a set of programs with Jplag, from http://wwwipd. ira.uka.
de/~prechelt/Biblio/.

Rothenberger, M., Dooley, K., Kulkarni, U., and Nada, N. 2003.
Strategies for Software reuse: A principal component analysis of reuse
practices. IEEE Transactions on Software Engineering 29(9):825 – 837.

Sallis, P., Aakjaer, A., and MacDonell, S. 1996. Software Forensics:
Old methods for a new science. In Proceedings of SE: E&P ’96
(Software Engineering: Education and Practice Conference ’96),
Dunedin, New Zealand, pp. 367-371.

Schach, S., Jin, B., Wright, D., Heller, G., and Offutt, J. 2003.
Determining the distribution of maintenance categories: Survey versus
empirical study. Kluwer's Empirical Software Engineering 8(4):351-
365.

Simon, S. 1999. Re: Type I and Type II error. Educational Statistics
Discussion List (EDSTAT-L). [Online]. Available E-mail: edstat-
l@jse.stat.ncsu.edu. January 7, 1999.

Soboroff, I. M., Nicholas, C., and Kukla, J. M. 1997. Visualizing
document authorship using N-grams and latent semantic indexing. In
Ebert, D. S. and Nicholas, C. K., editors, Proceedings of the Workshop
on New Paradigms in Information Visualization and Manipulation.
ACM, pp. 43 – 48.

Spafford, E.H., and Weeber, S.A. 1993. Software Forensics: Can we
track code to its authors? Computers & Security 12:585-595.

Stamatatos, E., Fakotakis, N. and Kokkinakis, G. 2001. Computer-based
authorship attribution without lexical measures. Computers and the
Humanities 35:193-214.

Stone, M. 1974. Cross-validatory choice and assesment of statistical
predictions (with discussion). Journal of the Royal Statistical
Society B, 36:111–147.

Testwell Oy (Ltd). 2003. Welcome to Testwell Homepages.
http://www.testwell.fi/homepage.html [27 December 2003].

Voas, J. M. 1992. PIE: A dynamic failure-based technique. IEEE
Transactions on Software Engineering 18(8), pp. 717-727.

Williams, C. B. 1975. Mendenhall's Studies of Word-Length
Distribution in the Works of Shakespeare and Bacon. Biometrika
62(1):207-212.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., and

Wesslen, A. 2000. Experimentation in Software Engineering, Kluwer
Academic Publishers, London, England.

